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On connectedness and dimension of a Besicovitch

space over SZ

E� Formenti and P� K�urka

Janvier ����

Abstract

We prove that the topological space SZ � ��� proposed in ��� is path�connected
and has in�nite dimension� The latter property makes of this space a more
natural setting for cellular automata when they are considered as a solutions
of di�erence equations� In fact� di�erence equations are de�ned on an in��
nite dimensional space� On the contrary the classical product topology on
SZ is zero�dimensional� Moreover we present a transitive dynamical system
on SZ� ��� whose existence was given as an open problem in ���� Another
interesting property that we prove is that SZ� �� is not separable� This prop�
erty partially explain the �di	culty
 of �nding transitive systems on such
a space� We also prove that some properties of Toeplitz sequences on SZ� ��
and as a byproduct we obtain a �weak �xed point
 theorem for continuous
mappings on SZ � ��� Finally we sketch an interesting connection between
in�nite Sturmian words and SZ � ���

Keywords� Shift�invariant metrics� dimension� discrete dynamical systems

R�esum�e

On prouve que l�espace topologique SZ� ��� propos�e dans ���� est connexe
et que sa dimension topologique est in�nie� Cette derniere propriet�e rend
cette espace plus naturel pour l��etude des automates cellulaires� par exemple
quand ils sont consider�es comme solutions des �equations aux di��erences� En
e�et� l�espace des �equations aux di��erences a une dimension in�nie� Alorque
la topologie produit classique sur SZ � �� donne un espace de dimension z�ero�
De plus� nous exhibons un systeme dynamique topologiquement transitif
sur SZ � ��� l�existence d�un tel systeme a �et�e donn�ee comme probleme ouvert
dans ���� Une autre propri�et�e int�eressante de SZ� �� est la non�separabilit�e�
qui explique en part �la di	cult�e
 de trouver des systemes transitifs sur cet
espace� On prouve aussi quelques propri�et�es des suites de Toeplitz sur SZ � ���
Comme corollaire� on obtient un theoreme faible de point �xe� Nous mon�
trons aussi quelques relations entre SZ� �� et l�ensemble des mots Sturmiens
in�nis�

Mots�cl�es� m�etriques invariantes par translation� dimension� syst�emes dynamiques

discrets
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Abstract

We prove that the topological space SZ� �
�
� proposed in ��� is path�

connected and has in�nite dimension� The latter property makes of
this space a more natural setting for cellular automata when they are
considered as solutions of di	erence equations� In fact the space of dif�
ference equations is in�nite dimensional� On the contrary the classical
product topology on SZis zero�dimensional� Moreover we present a
transitive dynamical system on SZ� �

�
� whose existence was given as

an open problem in ���� Another interesting property that we prove
is that SZ� �

�
is not separable� The proofs of many of the results are

made using properties of Toeplitz con�gurations� In particular� we
prove that every two Toeplitz con�gurations are in di	erent classes of
�

 and that this set does not coincide with SZ� �

�
� As a byproduct we

obtain a �weak �xed point� theorem for continuous mappings on SZ� �
�
�

Finally we sketch an interesting connection between in�nite Sturmian
words and SZ� �

�
�

�



� Introduction

Shift�invariant metrics have been proposed in ��� as a possible solution to the
problem of distinguishing strong chaotic behavior of some cellular automata
�CA� from the chaotic behavior of systems topologically conjugated with
the shift map� In ��� the authors proposed the following approach�

For all con�gurations x� y � SZand �k � N let

	��
�k�k

�x� y� 
 jfi � f�k��k � �� � � � � �� �� � � � � kg s�t� xi �
 yigj �

Roughly speaking the quantity 	���k�k�x� y� is the Hamming distance be�
tween the two segments of length �k � � �and centered in zero� of the con�
�gurations x and y�
Let us consider the mapping d�SZ� SZ� R� de�ned as follows

�x� y � SZ� d�x� y� 
 lim sup
k���

�
	���k�k�x� y�

�k � �

�
�

In other words d�x� y� quanti�es the percentage of di�erent cells in the
con�gurations x and y�

Example � Let us consider the con�guration b de�ned as follows

b 
 � � ��q
�
�q

�
�q

�
�q

�
�q

�
j �q

�
�q

�
�q

�
�q

�
�q

�
� � �

where q � N and q � �� The symbol �j� indicates the position of the cell of
index zero� It is not di�cult to prove that

lim sup
k��

	�k�k�b� ��

�k � �
�

�q

q � �
and lim inf

k��

	�k�k�b� ��

�k� �
�

�

q � �
�

We remark that b does not contain any arithmetic progression of cells with
identical values�

Unfortunately d is only a pseudo�metric� In literature d is known as Besi�
covitch pseudo�metric and it is usually de�ned on R or C �see for example
�� ���� If we consider the relation x

�

 y if and only if d�x� y� 
 � then d

restricted to SZ� �� is a metric� When not confusion is likely let us denote
by d both the pseudo�metric on SZand the metric on SZ� ��� We will also
denote the equivalence class of x � SZw�r�t�

�

 by x �� or simply x�

If we consider SZ� �� endowed with the topology induced by d then one
can prove the following�

�



Theorem � ���� �	
 The space SZ� �� is not discrete� not compact� but per�
fect�

In literature one may �nd an analogous pseudo�metric called Weyl
pseudo�metric ��� ��� which is de�ned as follows�

�x� y � SZ� dW �x� y� 
 lim sup
L��

�
sup
k�Z

	��
k�k�L���x� y�

L

�
�

We prefer to use the Besicovitcz pseudo�metric other than the Weyl�s one
because of many reasons� First the space hSZ� di is complete �see ����� while
hSZ� dW i is not � see ���� for a proof�� Some results of the present paper for
example Theorem � have already been proved for the Weyl pseudometric
in ����� Second it has been proved that the space hSZ� ��� di is suitable for
the study of cellular automata and that at least the concept of sensitivity
to initial conditions �ts some intuitive requirements�

There are many open questions on this subject� For example we were not
aware of the existence of any transitive system on such a space� This fact
is also due to a more deep topological problem� We had not yet proved or
disproved the existence of a dense set in SZ� ��� Remark � answers to this
last question�

We think that a deep understanding of the topological properties of SZ� ��
may shed new light on the chaotic behavior of cellular automata� Along this
line of thought we prove the following�

Theorem � The space SZ� �� is simply connected�

As a trivial consequence of Theorem � we have the following�

Corollary � The space SZ� �� is perfect�

Theorem � gives a quite interesting justi�cation for using the new topol�
ogy on SZ� Cellular automata can be thought as a solution of a di�erence
equation� The space of di�erence equations is in�nite dimensional� It is for
this reason that we think that the new topology is more �natural� then the
classical product topology which is well known to give a zero�dimensional
space�

Theorem � The space SZ�
�
has in�nite dimension�

Theorem  The space SZ� �� is not separable�

�



Let us recall that a dynamical system hX� fi is strongly transitive �resp�
transitive� if for all non�void open sets A it holds �n�Nf

n�A� 
 X �resp�
cl��n�Nf

n�A�� 
 X  where cl��� is the topological closure operator��
For dynamical systems in compact spaces the property of having a dense
orbit is equivalent to topological transitivity and it is often easier to prove
than transitivity ���� From Theorem � one deduces that no dynamical system
on SZ� �� can have a dense orbit� This fact explain in part the �di�culty�
in �nding transitive systems on SZ� ��� In Example � we show an example
of such a system� This settles in part a question in ����

Example � Let us consider the following mapping f �SZ� �� � SZ� �� de�ned
as follows �x � SZ� ��

f�� � �x��� x��� x��� x��jx�� x�� x�� x�� x� � � �� 
 � � � x��� x��jx�� x�� x� � � �

Let us prove that f is continuous� Remark that

�k � N�
	���k�k�f�x�� f�y��

�k � �
� � 	

	 ����k��k�x� y�

�k � �
���

and therefore d�f�x�� f�y�� � � 	 d�x� y�� This implies that f is continuous�
From ��	 we have that if x

�

 y then f�x�

�

 f�y��

Recall that a dynamical system hX� gi is strongly transitive if and only
if �x� y � X� �� � � there exists z � B��x� and n � N such that gn�z� 
 y�
A strongly transitive system is also transitive �but in general the converse is
not true	�

For any x� y � SZ� ��� let � � � and k � N such that �
�k

� �� We build a
con�guration z � B��x� as follows�

�i �Z� zi 


�
yj if i 
 j 	 �k for some j �Z
xi otherwise�

It is not di�cult to see that fk�z� 
 y� Hence� hSZ� ��� fi is strongly transi�
tive�

Consider the same system when SZis equipped with the classical product

topology� For simplicity� let S 
 f�� �g� Let C� 

n
c � f�� �gZj c� 
 �

o
� C�

is de�ned similarly� C� and C� are clopen set such that f�� �gZ
 C� � C��
Moreover it is easy to see that f�Ci� 
 Ci� i 
 �� �� From these facts we
deduce that the system is not transitive
 in fact� for all non�void open sets
U 
 C�� cl�f�U�� 
 C� �
 f�� �gZ�

�



A con�guration c is spatial periodic if and only if

�p � N such that �m�n � N� �m � n mod p� c�m� 
 c�n��

It is well known that the set of spatial periodic con�gurations is dense in SZ

when SZis given the product topology� In ��� it has been proved that the
same set is not dense when SZis given the topology that we have presented
above� Moreover every two spatial periodic con�gurations are in di�erent
equivalence classes� Here we try to extend these results to Toeplitz con�g�
urations�
We say that a con�guration c is Toeplitz if and only if

�n � N� �p � N�� such that �m � N� �m� n mod p� �c�m� 
 c�n���

Trivially we note that a spatial periodic con�guration is Toeplitz but in
general the converse is not true�

Remark � From Theorem � we can give an alternative proof of the fact that
the set of spatial periodic con�gurations SP is not dense in SZ� �� �since SP
is a countable set	�

Proposition � Every two Toeplitz con�gurations are in distinct classes of
�

�

As a byproduct of the previous proposition we prove that if a dynamical
system preserves a particular subset A of �Toeplitz sequences� �a detailed
de�nition of A is given in Section �� then it has at least a �xed point� This
fact has some analogies with the set continuous functions on the interval
��� �� �Fixed point Theorem��

Theorem � Every dynamical system on SZ� �� which preserves the set A
has at least a �xed point� Moreover this �xed point contains a Toeplitz
con�guration�

Proposition � There is an equivalence class of
�

 �i�e� a point of SZ� ��	

that does not contain any Toeplitz con�guration�

We think that Proposition � can be furtherly extended to the following�

Conjecture � Toeplitz con�gurations are not dense in SZ� ���

�



� Proofs of results

In order to prove the results we are going to use an alternative de�nition of
Toeplitz sequences� We take the de�nition as presented in ����

Let us consider a �nite alphabet S and a special symbol ��� called hole
not belonging to S� Let b � �S � f�g�N� For any sequence c � �S � f�g�N
let t�� t�� � � � � tj � � � � be a strictly increasing sequence of integers such that
c�ti� 
 ���� Let us de�ne a transformation Tb� �S � f�g�N� �S � f�g�N in the
following way�

Tb�ci� 


�
ci if ci �
 ���
b�j� ifi 
 tj for some j

Now if we take a sequence fbjgj�N � �S � f�g�N of spatial periodic se�
quences and we denote Tbj by Tj  it is not di�cult to prove that the limit
limj�� Tj�c� always exists� Moreover if c��� �
 ��� then the limit does not
contain any hole�

Notation � We use the under�bar notation for spatial periodic con�gura�
tions� For example b�� � � � � bk denotes a spatial periodic con�guration c of
period k � � such that �i �Z� c�i� 
 b�i mod k � �� �

For any x � ��� �� let us consider its binary expansion�
P�

i��
xi
�i
� We build

the Toeplitz sequence associated with x in this way�

x� 
 � � ��������������� � � �
x� 
 � � ���������������� � � �
x�x� 
 �� � ������������������� � � �
x�x� 
 �� � ����������������� � � �
x�x� 
 �� � �������������� � � �
x�x� 
 �� � ���������������� � � �

and so on� Note that the construction process works for all reals such that
x � ��� ��� The point x 
 � is associated with the con�guration ��

We remark that the above construction always admits a limit and the limit
has no holes� In fact consider c� 
 �� and c� 
 �� � Let bj 
 c� if j is even
c� otherwise� By the above remarks we have that for any binary expansion
x limj�� Tj�x� exists� Note that if the binary expansion contains a � say
at position k then Tk�x�� �
 ��� and so the limit does not contain any hole�

For the sake of simplicity we will prove the results for f�� �gN� The general�
izations to SZis straightforward�

�



Proof of Theorem �� Let f � ��� ��� f�� �gN� �� be the mapping that for any
x � ��� �� it gives the Toeplitz sequence associated with x� Let us de�ne f
by induction on �nite strings�

�x � ��� ��� f�x�� � � � � xn��� 


�
T���f�x�� � � � � xn� if xn�� 
 �
T���f�x�� � � � � xn� if xn�� 
 ��

�nally f�x� 
 limn�� f�x�� � � � � xn�� We underline that f is a mapping� In
fact even if a point x � ��� �� can have more than one binary expansion it
has a unique associated Toeplitz sequence� We prove that f is continuous
by using the classical ��� de�nition� For any � � � and for any x � ��� �� �x
m � N such that �m �

�
�
�

�
� Let � 
 �

�m � The binary expansion of y � ��� ��
such that jx� yj � � has a certain number of digits in common with the
one of x more precisely n � �blog����c� Therefore the Toeplitz sequences
associated with x and y di�er only in one cell per block of �n consecutive
cells� Hence d�f�x�� f�y�� � �

�n � �
�m � �� Let us note that f��� 
 �

and f��� 
 � therefore f is a walk from � to �� For any w� z � f�� �gN� ��
let gw� ��� �� � f�� �gN� �� be such that �x � ��� �� gw�x�i 
 f�x�i 	 wi� As
before for any x � f�� �gN and for any � � � let �m �

�
�
�

�
 and assume

� 
 �
�m � It is not di�cult to see that gw is continuous� In fact for any

y � f�� �gN such that jx� yj � � we have that there exists m � N such
that m � �blog� �c �continuity of f�� This means that gw�x� and gw�y�
will be possibly di�erent only in one cell per blocks of �m cells� Note that
this di�erence is maintained if and only if the corresponding value in w

is �� Therefore d�gw�x�� gw�y�� �
�
�m � �� It is a matter of thought to

verify that gw��� 
 � and gw��� 
 w and hence gw is a walk from � to
w� In the same way we can de�ne a walk gz from � to z� The mapping
gw�z � ��� ��� f�� �gN� �� de�ned as follows

�x � ��� �� gw�z�x� 


�
gw��x� � � x � �

�
gz��x� �� �

� � x � �

is a walk from z to w� �

Remark � The map f de�ned in the proof of Theorem � has other inter�
esting properties� Let us de�ne the map h� f�� �gN� �� � ��� �� as follows

�x � f�� �gN � h�x� 
 d��� x� 
 lim sup
k��

Pk
i�� xi
k � �

�

It is not di�cult to prove that h � f�x� 
 x� In literature h is called upper
density� see for example ����� Moreover it is not di�cult to see that

�x� y � f�� �gN � h�x� y� 
 d��� x� y� 
 d�x� y��

�



Proof of Theorem �� We are going to prove the thesis by induction on the
dimension n that is to say that for all n � N the space ��� ��n can be
embedded in f�� �gN� ���

The mapping f proves the theorem for n 
 �� Let us suppose that the
thesis holds for n 
 t we prove the thesis for n 
 t� �� Let us consider the
mapping ft��� ��� ��

t��� f�� �gN� �� de�ned as follows�

�x � ��� ��t��� x 
 �x�� � � � � xt���

ft���x� 
 f�x���f�x��� � � � f�xt����f�x���f�x��� � � � f�xt���� � � � �

We claim that ft�� is continuous� Let � � � and m � N such that �m �
�
�
�

�
�

Let � 
 �
�m � We consider the cube ��� ��t�� endowed with the following metric

�x 
 �x�� � � � � xt��� � ��� ��t��� y 
 �y�� � � � � yt��� � ��� ��t��

dp�x� y� 
 max fjx� � y�j � � � � � jxt�� � yt��jg �

For any y � ��� ��t�� such that dp�x� y� � � let us consider the binary expan�
sions of �x�� y��� � � � � �xt��� yt���� Any xi will coincide with yi on the �rst
ni � �blog� �c� We build the image of ft�� with the extraction process
depicted in Figure �� Hence

d�ft���x�� ft���y�� 
 lim supk��
�
�k�k�ft���x	�ft���y	

�k��

� lim supk��

j
�k��

��t���n�

k
�����

j
�k��

��t���nt��

k

�k��

� lim supk��
�t��	�

j
�k��

��t���m

k

�k��

� �
�m � ��

�

Let us de�ne a mapping g� ��� ��� f�� �gN as follows�

�x � ��� ��� �n � N g�x�n 


�
�� if � � nx � k � �� x for some k � N
�� otherwise�

For all x � ��� ��� g�x� is the Sturmian sequence with density x i�e� h�g�x� 

x�

A Sturmian sequence can be de�ned by considering the sequence of inter�
sections with a squared lattice of a semi�line having a slope which is an
irrational number� Horizontal intersections are denoted by a � vertical in�
tersections by a � �intersections with corners are denoted by �� or �� but

�



t+1

1

x

.

.

.

0x

x

Figure �� Extraction process of the image of ft�� from the Toeplitz sequences
associated with x 
 �x�� � � � � xt���� Spotted cells represent �holes��

this new happen if the slope is an irrational�� Sturmian sequences repre�
sented by a semi�line starting at the origin are called standard� Let Stand
be the set of all such sequences� �For more on Sturmian sequences see for
example �� ����

Remark � Let us consider the set A 
 f�� �gN of words

w 
 �q��q��q��q��q� � � �

such that q� � � and qi � � for i � �� Clearly ��A� 
 f�� �gN� ��� In fact� if
w is such that �i � N� qt 
 � for t � i then w � f� ��� � ��g� It is not di�cult
to prove that also in � �� and � �� there are elements of A �see Remark � in
���	�

By a cardinality argument one can prove the existence of a bijection �
between A and Stand� In ���� de Luca presents an interesting example of
such a mapping� We give its de�nition by induction

�x � A� let ��x�� 
 �� ��x�n�� 
 �xn��x�n�
��

where �u�� is the smallest palindrome word having u as su�x� Then ��x� 

limn�� ��x�n�

Therefore we have the following situation

Stand



����� A
�

���� f�� �gN� ��

It would be interesting to prove that if x
�

 y then ��x�

�

 ��y��

Moreover note that if we extend the de�nition of A to SZthen ��A� �
SZ� ��� but ��A� is dense in SZ� ���

�



Lemma � If x� y� x
y
� ��� �� are irrationals then d�g�x�� g�y�� 
 x�� � y� �

y��� x��

Proof� Let x� y� x
y
� ��� �� be all irrationals and consider the following dy�

namical system �rotation of the torus��

T �a� b� 
 �a� x� b� y� mod �

de�ned on the torus R��Z�� The system T is uniquely ergodic �� ��� and
the Lebesgue measure can be assumed as the unique invariant measure� We
note that g�x�n �
 g�y�n if and only if Tn��� �� � ��� �� x�� ��� y� ��� ���
x� ��� ��� �� y�� This set has Lebesgue measure x��� y� � y��� x�� �

Proof of Theorem �� If we consider x� y� x
y
all irrationals and �

� � x� y �
�
� then by Lemma � we have d�g�x�� g�y�� � �

� � Therefore there exists a
continuum of points which are at distance greater than �

� but this implies
that the space cannot have a countable dense set� �

Proof of Proposition �� Let x� y be two distinct Toeplitz con�gurations�
It follows that there exists an integer i such that x�i� �
 y�i�� From the
de�nition of Toeplitz sequence it holds that there exists px � N

� such that
�n � i mod px x�n� 
 x�i�� In the same way there exists py such that
�m � i mod py  y�m� 
 y�i�� Therefore if we take p 
 px 	 py we have that
�h � i mod p x�h� 
 x�i� �
 y�i� 
 y�h� this implies d�x� y� � �

p
� �

Proof of Theorem �� From Proposition � it follows that the mapping f is
injective� Let us consider a generic dynamical system over SZ� ��� i�e� a
continuous map of SZ� �� on itself such that F � Im�f�� 
 Im�f�� Let us
consider the following diagram

Im�f�
F

���� Im�f�x��f ��yf��
��� ��

fFf��

����� ��� ��

We remark that f � ��� �� � Im�f� is injective and therefore it is a home�
omorphism from ��� �� to Im�f� � SZ� ��� Therefore fFf�� and F are
topologically conjugated �here we consider the restriction of F to Im�f���
It is well known that every continuous mapping from ��� �� to itself has a
�xed point therefore F has a �xed point and it is clearly a Toeplitz con�
�guration� �

��



Proof of Proposition �� The idea of the proof is to �nd a con�guration
which is at non�null distance from any Toeplitz con�guration� Let us con�
sider the con�guration b as de�ned in Example �� Let c be an arbitrary
Toeplitz con�guration� Let i be an integer such that b�i� �
 c�i� and pi its
period� Without loss of generality we can suppose that b�i� 
 �� Under this
assumption it is straightforward to prove that d�b� c�� �

pi
	 q
��q � �
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