E Formenti 
email: eforment@lip.ens-lyon.fr
  
P K Urka Janvier 
  
P K Urka 
email: kurka@ms.m.cuni.cz
  
  
  
On connectedness and dimension of a Besicovitch space over S Z
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We prove that the topological space S Z = : = , proposed in 5] is path-connected and has in nite dimension. The latter property m a k es of this space a more natural setting for cellular automata when they are considered as a solutions of di erence equations. In fact, di erence equations are de ned on an innite dimensional space. On the contrary the classical product topology on S Z is zero-dimensional. Moreover we present a transitive dynamical system on S Z = :

= , whose existence was given as an open problem in 5]. Another interesting property t h a t w e prove i s t h a t S Z = :

= is not separable. This property partially explain the \di culty" of nding transitive systems on such a space. We also prove that some properties of Toeplitz sequences on S Z = : = a n d a s a b yproduct we obtain a \weak xed point" theorem for continuous mappings on S Z = :

= . Finally we s k etch a n i n teresting connection between in nite Sturmian words and S Z = :

= .

On prouve que l'espace topologique S Z = :

= , p r o p o s e dans 5], est connexe et que sa dimension topologique est in nie. Cette derni ere propriet e r e n d cette espace plus naturel pour l' etude des automates cellulaires, par exemple quand ils sont consider es comme solutions des equations aux di erences. En e et, l'espace des equations aux di erences a une dimension in nie. Alorque la topologie produit classique sur S Z = :

= donne un espace de dimension z ero. De plus, nous exhibons un syst eme dynamique topologiquement transitif sur S Z = : = l'existence d'un tel syst eme a et e donn ee comme probl eme ouvert dans 5]. Une autre propri et e i n t eressante de S Z = :

= est la non-separabilit e, qui explique en part \la di cult e" de trouver des systemes transitifs sur cet espace. On prouve aussi quelques propri et es des suites de Toeplitz sur S Z = :

= . Comme corollaire, on obtient un theoreme faible de point xe. Nous montrons aussi quelques relations entre S Z = :

= et l'ensemble des mots Sturmiens in nis.

Mots-cl es: m etriques invariantes par translation, dimension, syst emes dynamiques discrets product topology on S Z is zero-dimensional. Moreover we present a transitive dynamical system on S Z = : = , whose existence was given as an open problem in 5]. Another interesting property t h a t w e p r o ve is that S Z = :

= is not separable. The proofs of many of the results are made using properties of Toeplitz con gurations. In particular, we prove that every two T oeplitz con gurations are in di erent classes of : = and that this set does not coincide with S Z = : = . A s a b yproduct we obtain a \weak xed point" theorem for continuous mappings on S Z = : = . Finally we s k etch a n i n teresting connection between in nite Sturmian words and S Z = : = .

1 Introduction Shift-invariant metrics have been proposed in 5] as a possible solution to the problem of distinguishing strong chaotic behavior of some cellular automata (CA) from the chaotic behavior of systems topologically conjugated with the shift map. In 5] the authors proposed the following approach. For all con gurations x y 2 S Z and 8k 2 N let # 6 = ;k k (x y) = jfi 2 f ; k ;k + 1 : : : 0 1 : : : k g s:t: x i 6 = y i gj :

Roughly speaking, the quantity # 6 = ;k k (x y) is the Hamming distance between the two s e g m e n ts of length 2k + 1 (and centered in zero) of the congurations x and y.

Let us consider the mapping d: S Z S Z ! R + de ned as follows

8x y 2 S Z d (x y) = lim sup k!+1 ( # 6 = ;k k (x y) 2k + 1 ) :
In other words, d(x y) quanti es the percentage of di erent cells in the con gurations x and y.

Example 1 Let us consider the con guration b de ned as follows b = : : : 0 q 4 1 q 3 0 q 2 1 q 1 0 q 0 j 0 q 0 1 q 1 0 q 2 1 q 3 0 q 4 : : : where q 2 N and q > 1. The symbol `j' i n d i c ates the position of the cell of index zero. It is not di cult to prove that lim sup

k!1 # ;k k (b 0) 2k + 1 2q q + 1 and lim inf k!1 # ;k k (b 0) 2k + 1 2
q + 1 : We remark that b does not contain any arithmetic progression of cells with identical values.

Unfortunately, d is only a pseudo-metric. In literature d is known as Besicovitch pseudo-metric and it is usually de ned on R or C (see for example 3, 2]). If we consider the relation x :

= y if and only if d(x y) = 0, then d restricted to S Z = :

= is a metric. When not confusion is likely, let us denote by d both the pseudo-metric on S Z and the metric on S Z = : = . W e will also denote the equivalence class of x 2 S Z w.r.t. :

= b y x :

= or simply x. If we consider S Z = :

= endowed with the topology induced by d then one can prove the following.

Theorem 1 [START_REF] Blanchard | Language complexity of rotations and sturmian sequences[END_REF][START_REF] Cattaneo | A Shiftinvariant M e t r i c o n S Z Inducing a Non-trivial Topology[END_REF]) The space S Z = :

= is not discrete, not compact, but perfect.

In literature one may nd an analogous pseudo-metric, called Weyl pseudo-metric 10, 1 2 ], which is de ned as follows:

8x y 2 S Z d W (x y) = lim sup L!1 ( sup k2Z # 6 = k k+L;1 (x y) L ) :
We prefer to use the Besicovitcz pseudo-metric other than the Weyl's one because of many reasons. First, the space hS Z d i is complete (see 14]), while hS Z d W i is not ( see 10] for a proof). Some results of the present paper, for example Theorem 2, have already been proved for the Weyl pseudometric in 10]. Second, it has been proved that the space hS Z = : = d i is suitable for the study of cellular automata and that at least the concept of sensitivity to initial conditions ts some intuitive requirements.

There are many open questions on this subject. For example, we w ere not aware of the existence of any transitive s y s t e m o n s u c h a space. This fact is also due to a more deep topological problem. We had not yet proved or disproved the existence of a dense set in S Z = :

= . Remark 3 answers to this last question.

We think that a deep understanding of the topological properties of S Z = : = may shed new light on the chaotic behavior of cellular automata. Along this line of thought w e p r o ve the following.

Theorem 2 The space S Z = :

= is simply connected. As a trivial consequence of Theorem 2 we h a ve the following.

Corollary 1 The space S Z = :

= is perfect.

Theorem 3 gives a quite interesting justi cation for using the new topology on S Z . Cellular automata can be thought as a solution of a di erence equation. The space of di erence equations is in nite dimensional. It is for this reason that we think that the new topology is more \natural" then the classical product topology, which i s w ell known to give a zero-dimensional space.

Theorem 3 The space S Z : = has in nite dimension. Theorem 4 The space S Z = :

= is not separable.

Let us recall that a dynamical system hX fi is strongly transitive (resp. transitive) if for all non-void open sets A, it holds n2N f n (A) = X (resp. cl( n2N f n (A)) = X, where cl(:) is the topological closure operator).

For dynamical systems in compact spaces the property o f h a ving a dense orbit is equivalent to topological transitivity, and it is often easier to prove than transitivity 9 ]. From Theorem 4 one deduces that no dynamical system on S Z = : = can have a dense orbit. This fact explain in part the \di culty" in nding transitive systems on S Z = : = . In Example 2 we show an example of such a system. This settles, in part, a question in 5].

Example 2 Let us consider the following mapping f: S Z = :

= ! S Z = :

= de ned as follows 8x 2 S Z = : = f(: : : x ;4 x ;3 x ;2 x ;1 jx 0 x 1 x 2 x 3 x 4 : : : ) = : : : x ;4 x ;2 jx 0 x 2 x 4 : : :

Let us prove that f is continuous. Remark that 8k 2 N # 6 = ;k k (f(x) f (y)) 2k + 1 2 # 6 = ;2k 2k (x y) 4k + 1 (1)
and therefore d(f(x) f (y)) 2 d(x y). This implies that f is continuous.

From (1) we have that if x : = y then f(x) : = f(y).

Recall that a dynamical system hX gi is strongly transitive if and only if 8x y 2 X 8 > 0 there exists z 2 B (x) and n 2 N such that g n (z) = y. A strongly transitive system is also transitive (but in general the converse is not true).

For any x y 2 S Z = :

= , let > 0 and k 2 N such that 1 2 k < . We build a con guration z 2 B (x) as follows.

8i 2 Z z i = y j if i = j 2 k for some j 2 Z

x i otherwise:

It is not di cult to see that f k (z) = y. Hence, hS Z = : = f i is strongly transitive.

Consider the same system when S Z is equipped with the classical product topology. For simplicity, let S = f0 1g.

L et C 0 = n c 2 f 0 1g Z jc 0 = 0 o , C 1 is de ned similarly. C 0 and C 1 are clopen set such that f0 1g Z = C 0 C 1 .
Moreover it is easy to see that f(C i ) C i i = 0 1. F rom these facts we deduce that the system is not transitive in fact, for all non-void open sets

U C 0 , cl(f(U)) C 0 6 = f0 1g Z .
A con guration c is spatial periodic if and only if 9p 2 N such that 8m n 2 N (m n mod p) ) c(m) = c(n):

It is well known that the set of spatial periodic con gurations is dense in S Z when S Z is given the product topology. [START_REF] Cattaneo | A Shiftinvariant M e t r i c o n S Z Inducing a Non-trivial Topology[END_REF], it has been proved that the same set is not dense when S Z is given the topology that we h a ve presented above. Moreover every two spatial periodic con gurations are in di erent equivalence classes. Here we try to extend these results to Toeplitz con gurations.

We s a y that a con guration c is Toeplitz if and only if 8n 2 N 9p 2 N + such that 8m 2 N (m n mod p) ) (c(m) = c(n)):

Trivially we note that a spatial periodic con guration is Toeplitz, but in general the converse is not true.

Remark 1 From Theorem 4 we can give an alternative proof of the fact that the set of spatial periodic con gurations SPis not dense in S Z = : = (since SP i s a c ountable set).

Proposition 1 Every two Toeplitz con gurations are in distinct classes of : =.

A s a b yproduct of the previous proposition we p r o ve that, if a dynamical system preserves a particular subset A of \Toeplitz sequences" (a detailed de nition of A is given in Section 2) then it has at least a xed point. This fact has some analogies with the set continuous functions on the interval 0 1] (Fixed point Theorem).

Theorem 5 Every dynamical system on S Z = :

= which preserves the set A has at least a xed p oint. Moreover this xed p oint contains a Toeplitz con guration.

Proposition 2 There i s a n e quivalence class of : = (i.e. a point of S Z = : = ) that does not contain any Toeplitz con guration.

We think that Proposition 2 can be furtherly extended to the following.

Conjecture 1 Toeplitz con gurations are not dense in S Z = : = .

Proofs of results

In order to prove the results we are going to use an alternative de nition of Toeplitz sequences. We take the de nition as presented in 1].

Let us consider a nite alphabet S and a special symbol `.', called hole, not belonging to S. L e t b 2 (S f :g) N . F or any sequence c 2 (S f :g) N , let t 0 t 1 : : : t j : : :be a strictly increasing sequence of integers such that c(t i ) = `.'. Let us de ne a transformation T b : ( S f :g) N ! (S f :g) N in the following way: T b (c i ) = c i if c i 6 = . ' b(j) ifi = t j for some j Now i f w e take a sequence fb j g j2N (S f :g) N of spatial periodic sequences and we denote T b j by T j , it is not di cult to prove that the limit lim j!1 T j (c) a l w ays exists. Moreover if c(0) 6 = `.' then the limit does not contain any hole.

Notation 1 We use the under-bar notation for spatial periodic con gurations. For example b 0 : : : b k denotes a spatial periodic con guration c of period k + 1 such that 8i 2 Z c (i) = b(i mod k + 1 ). For any x 2 0 1] let us consider its binary expansion: P 1 i=1 x i 2 i . W e build the Toeplitz sequence associated w i t h x in this way:

x 1 = 0 : 0:0:0:0:0:0:0:0 : : : x 1 = 1 : :1:1:1:1:1:1:1:1 : : : x 1 x 2 = 0 0: 000:000:000:000:000 : : : x 1 x 2 = 0 1: 0:010:010:010:010 : : : x 1 x 2 = 1 0: 01:101:101:101 : : : x 1 x 2 = 1 1: :111:111:111:111 : : : and so on. Note that the construction process works for all reals such that x 2 0 1). The point x = 1 is associated with the con guration 1.

We remark that the above construction always admits a limit and the limit has no holes. In fact, consider c 0 = 0 : and c 1 = :1 . L e t b j = c 0 if j is even, c 1 otherwise. By the above remarks we h a ve that for any binary expansion x, lim j!1 T j (x) exists. Note that if the binary expansion contains a 0, say at position k, then T k (x) 0 6 = `.' and so the limit does not contain any h o l e . For the sake of simplicity w e w i l l p r o ve the results for f0 1g N . The generalizations to S Z is straightforward.

Proof of Theorem 2. Let f : 0 1] ! f 0 1g N = : = be the mapping that for any x 2 0 1] it gives the Toeplitz sequence associated with x. Let us de ne f by induction on nite strings: 8x 2 0 1] f(x 0 : : : x n+1 ) = T 0: (f(x 0 : : : x n ) if x n+1 = 0 T :1 (f(x 0 : : : x n ) if x n+1 = 1 : nally f(x) = l i m n!1 f(x 0 : : : x n ). We underline that f is a mapping. In fact even if a point x 2 0 1] can have more than one binary expansion, it has a unique associated Toeplitz sequence. We p r o ve that f is continuous by using the classical -de nition. For any > 0 and for any x 2 0 1], x m 2 N such that 2m > 1 . Let = 1 2 m . The binary expansion of y 2 0 1] such that jx ; yj has a certain number of digits in common with the one of x, more precisely n ; b log 2 ( )c. Therefore the Toeplitz sequences associated with x and y di er only in one cell per block o f 2 n consecutive cells. Hence d(f(x) f (y)) 1 2n 1 2m < . Let us note that f(0) = 0 and f(1) = 1, therefore f is a walk from 0 to 1. F or any w z 2 f 0 1g N = : = let g w : 0 1] ! f 0 1g N = : = be such that 8x 2 0 1] g w (x) i = f(x) i w i . A s before, for any x 2 f 0 1g N and for any > 0, let 2m > 1 , and assume = 1 2 m . It is not di cult to see that g w is continuous. In fact, for any y 2 f 0 1g N such that jx ; yj we h a ve that there exists m 2 N such that m ; b log 2 c (continuity o f f). This means that g w (x) a n d g w (y) will be possibly di erent only in one cell per blocks of 2m cells. Note that this di erence is maintained if and only if the corresponding value in w is 1. Therefore d(g w (x) g w (y)) 1 2m < . It is a matter of thought t o verify that g w (0) = 0 and g w (1) = w and hence g w is a walk from 0 to w. In the same way w e can de ne a walk g z from 0 to z. The mapping g w z : 0 1] ! f 0 1g N = : = de ned as follows 8x 2 0 1] g w z (x) = g w (2x) 0 x 1 2 g z (2x ; 1) 1 2 < x 1 is a walk from z to w.

Remark 2 The map f de ned i n t h e p r oof of Theorem 4 has other interesting properties. Let us de ne the map h: f0 1g N = :

= ! 0 1] as follows: 8x 2 f 0 1g N h (x) = d(0 x ) = lim sup k!1 P k i=0 x i k + 1 :
It is not di cult to prove that h f(x) = x. I n l i t e r ature h is called upper density, s e e for example 11]. Moreover it is not di cult to see t h a t 8x y 2 f 0 1g N h (x ; y) = d(0 x ; y) = d(x y):

Proof of Theorem 3. We are going to prove the thesis by induction on the dimension n, that is to say that for all n 2 N, the space 0 1] n can be embedded in f0 1g N = : = .

The mapping f proves the theorem for n = 1. Let us suppose that the thesis holds for n = t, w e p r o ve the thesis for n = t + 1. Let us consider the mapping f t+1 : 0 1] t+1 ! f 0 1g N = : = de ned as follows: 8x 2 0 1] t+1 x = ( x 0 : : : x t+1 ) f t+1 (x) = f(x 0 ) 0 f(x 1 ) 0 : : : f (x t+1 ) 0 f(x 0 ) 1 f(x 1 ) 1 : : : f (x t+1 ) 1 : : : :

We claim that f t+1 is continuous. Let > 0 and m 2 N such that 2m > 1 . Let = 1 2 m . W e consider the cube 0 1] t+1 endowed with the following metric 8x = ( x 0 : : : x t+1 ) 2 0 1] t+1 y = ( y 0 : : : y t+1 ) 2 0 1] t+1 d p (x y) = m a x fjx 0 ; y 0 j : : : jx t+1 ; y t+1 jg: For any y 2 0 1] t+1 such t h a t d p (x y) < let us consider the binary expansions of (x 0 y 0 ) : : : (x t+1 y t+1 ). Any x i will coincide with y i on the rst Let us de ne a mapping g: ( 0 1) ! f 0 1g N as follows: 8x 2 (0 1) 8n 2 N g(x) n = 0 if 0 < n x ; k < 1 ; x for some k 2 N 1 otherwise: For all x 2 (0 1) g (x) is the Sturmian sequence with density x, i.e. h g(x) =

x.

A Sturmian sequence can be de ned by considering the sequence of intersections with a squared lattice of a semi-line having a slope which i s a n irrational number. Horizontal intersections are denoted by a 1 , v ertical intersections by a 0 (intersections with corners are denoted by 01 or 10, but Remark 3 Let us consider the set A f 0 1g N of words w = 0 q 0 1 q 1 0 q 2 1 q 3 0 q 4 : : : such that q 0 0 and q i > 0 for i 1. Clearly (A) = f0 1g N = : = . I n f a c t , i f w is such that 9i 2 N q t = 0 for t i then w 2 f 0 :

= 1 : = g. It is not di cult to prove that also in 0 :

= and 1 :

= there a r e elements of A (see R emark where (u) ; is the smallest palindrome word having u as su x. Then (x) = lim n!1 (x) n . Therefore we have the following situation:

Stand ;;;! A ;;;! f 0 1g N = : = It would be interesting to prove that if x : = y then (x) : = ( y).

Moreover note that if we extend the de nition of A to S Z then (A) S Z = : = , b u t (A) is dense in S Z = :

= .

Lemma 1 If x y x y 2 0 1] are irrationals then d(g(x) g (y)) = x(1 ; y) + y(1 ; x). Proof. Let x y x y 2 0 1] be all irrationals and consider the following dynamical system (rotation of the torus):

T(a b) = ( a + x b + y) m o d 1 de ned on the torus R 2 = Z 2. The system T is uniquely ergodic 8, 13] and the Lebesgue measure can be assumed as the unique invariant measure. We note that g(x) n 6 = g(y) n if and only if T n (0 0) 2 0 1 ; x] 1 ; y 1] 1 ;

x 1] 0 1 ; y]. This set has Lebesgue measure x(1 ; y) + y(1 ; x).

Proof of Theorem 4. If we consider x y x y all irrationals and 1 3 < x y < 2 3 then by Lemma 1 we h a ve d(g(x) g (y)) > 2 9 . Therefore there exists a continuum of points which are at distance greater than 2 9 but this implies that the space cannot have a c o u n table dense set.

Proof of Proposition 1. Let x y be two distinct Toeplitz con gurations.

It follows that there exists an integer i such that x(i) 6 = y(i). From the de nition of Toeplitz sequence it holds that there exists p x 2 N + such that 8n i mod p x , x(n) = x(i). In the same way there exists p y such that 8m i mod p y , y(m) = y(i). Therefore if we take p = p x p y we h a ve that 8h i mod p, x(h) = x(i) 6 = y(i) = y(h), this implies d(x y) 1 p .

Proof of Theorem 5. From Proposition 1 it follows that the mapping f is injective. Let us consider a generic dynamical system over S Z = : ;;;! Im(f) x ? ? f ? ? yf ;1 0 1] fFf ;1 ;;;;! 0 1] We remark that f: 0 1] ! Im(f) is injective and therefore it is a homeomorphism from 0 1] to Im(f) S Z = : = . Therefore fFf ;1 and F are topologically conjugated (here we consider the restriction of F to Im(f)).

It is well known that every continuous mapping from 0 1] to itself has a xed point, therefore F has a xed point, and it is, clearly, a T oeplitz conguration.

  n i ; b log 2 c. We build the image of f t+1 with the extraction process depicted in Figure 1. Hence, d(f t+1 (x) f t+1 (y)) = lim sup k!1 # ;k k (f t+1 (x) f t+1 (y

Figure 1 :

 1 Figure 1: Extraction process of the image of f t+1 from the Toeplitz sequences associated with x = ( x 0 : : : x t+1 ). Spotted cells represent \holes".

  c ardinality argument one can prove the existence o f a b i j e ction between A and Stand. I n 7 ] , d e L u c a p r esents an interesting example of such a mapping. We give its de nition by induction: 8x 2 A let (x) 0 = " (x) n+1 = ( x n (x) n ) ;

=

  . i.e. a continuous map of S Z = : = on itself, such that F( I m ( f)) Im(f). Let us consider the following diagram Im(f) F

Proof of Proposition 2. The idea of the proof is to nd a con guration which i s a t n o n -n ull distance from any T oeplitz con guration. Let us consider the con guration b as de ned in Example 1. Let c be an arbitrary Toeplitz con guration. Let i be an integer such that b(i) 6 = c(i) a n d p i its period. Without loss of generality w e can suppose that b(i) = 1. Under this assumption it is straightforward to prove that d(b c) 1 p i q 1+q .