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Abstract

In this paper, we give a general framework for the foundation of an operational
(small step) semantics of object-based languages with an emphasis on func-
tional and imperative issues. The framework allows classifying very naturally
object-based calculi according to their main implementation techniques of in-
heritance, namely delegation and embedding. This distinction comes easily from
the choice of the rules we make.

Our framework is founded on two previous works, namely the Lambda Calculus
of Objects of Fischer, Honsell, and Mitchell for the object aspects and the Ac,
of Benaissa, Lang, Lescanne, and Rose for the description of the operational
semantics and sharing. The former is the formalization of a small delegation-
based language which contains both lambda calculus and object primitives to
create, update, and send messages to objects, while the latter is designed to
provide a generic description of functional language implementations and is
based on a calculus of explicit substitutions extended with addresses to speak
about memory management.

The framework is presented as a set of modules, each of which captures a
peculiar aspect of object-calculi (functional vs. imperative, delegation vs. em-
bedding, and any combination of them).

Our framework satisfies some crucial properties, namely confluence on the func-
tional fragment (the final result does not depend on the sequence of computa-
tions i.e., on the evaluation strategy), operational soundness (our calculi yield
the same results on the same data as in the Lambda Calculus of Objects),
subject reduction (programs preserve types), type soundness (a typed program
can not go wrong as invoking an unknown method on an object).



Keywords: Functional and imperative object-based languages, operational
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Résumé

Dans cet article, nous définissons un systeme général pour la fondation d’une
sémantique opérationnelle (& pas réduit) des langages basés sur les objets, en
insistant sur des probleémes propres aux langages fonctionnels ou impératifs.
Dans ce cadre, nous pouvons classifier trés naturellement les calculs basés sur les
objets selon leur principale technique d’implantation de ’héritage, notamment
délégation et emboitement. Cette distinction est faite simplement dans le choix
des regles.

Notre systeme se fonde essentiellement sur deux travaux précédents, le Lambda
Calcul des Objets de Fisher, Honsell, et Mitchell pour les aspects objets, et le
calcul Aol de Benaissa, Lang, Lescanne, et Rose pour la description de la
sémantique opérationnelle et du partage. Le premier est la formalisation d’un
petit langage basé sur la délégation qui contient & la fois le lambda calcul et
des primitives sur les objets permettant de les créer, de les modifier, et de
leur envoyer des messages, tandis que le second est conccu pour donner une
description générique des langages fonctionnels et est basé sur un calcul de
substitution explicite étendu avec des adresses pour modéliser la gestion de la
mémoire.

Le systeme est présenté sous la forme d’un ensemble de modules, chacun
décrivant un aspect particulier des calculs & objets (fonctionnel ou impératif,
délégation ou emboitement, et toute combinaison de ceux-ci).

Notre systeme satisfait des propriétés cruciales comme la confluence sur le
fragment fonctionnel (le résultat final ne dépend pas de la séquence des cal-
culs, c’est-a-dire de la stratégie d’évaluation), la correction opérationnelle (nos
calculs retournent le méme résultat pour les mémes données que le Lambda
Calcul des Objets), I'auto réduction (les programmes préservent les types),
et la sireté du typage (un programme typé ne peut pas mener a une erreur
d’exécution comme invoquer une méthode inconnue sur un objet).

Mots-clés: Langages basés sur les objets, fonctionnels et impératifs, sémantique
opérationnelle, problemes d’implantation, gestion de la mémoire, systeme de
types, délégation ou emboitement.



1 Introduction

An (operational) semantics for a programming language is aimed to help the
programmer and the designer of a compiler to better understand her (his) work
and possibly to prove mathematically that what she (he) does is correct. For
instance, the designers of Java proposed a description of an operational semantics
of the Java Virtual Machine [LY96], but unfortunately its informal character
does not fulfil the above aim. In this paper, we set the foundation for a formal
description of the operational semantics (small step) of object-based languages.
One main characteristic of our framework, called AObj™®, is that it induces an
easy classification of the object-based languages and their semantics, making
a clear distinction between delegation languages and embedding languages; this
comes naturally from the choice of the rules. Moreover, the present formal system
is generic which means that it presents many semantics in one framework which
can be instantiated to conform to specific wishes. For this, it proposes a set
of several modules each of which captures a peculiar aspect of object-calculi
(functional vs. imperative, delegation vs. embedding, and any combination of
them). Genericity comes also from a total independence from the strategy. Indeed
the modules are sets of rules which describe small steps in the transformations
of the objects, when the strategies describe how these rules are invoked giving
the general evolution of the whole program. Usually in the description of an
operational semantics, strategies and small steps are tightly coupled whereas in
our approach they are disconnected. AObj"*describes both static and dynamic
aspects of object-oriented languages. Static aspects are the concepts related to
the program, namely its syntax, including variable scoping, and above all its
type system. Dynamic aspects are related to its behavior at run time i.e., its
operational semantics, also known as the implementation choices. In addition,
this paper introduces in the world of the formal operational semantics of objects-
based languages the concepts of addresses and simultaneous rewriting, which
differ from the classical match and replace technique of rewriting and which are
intended to capture the imperative features of object-based languages.

AObj™* has also a strong mathematical content which allows us to prove for-
mally properties as theorems, like confluence on the functional fragment (the
final result does not depend on the sequence of computations i.e., on the evalu-
ation strategy), operational soundness (our calculi yield the same results on the
same data as in the Lambda Calculus of Objects), subject reduction (programs
preserve types), type soundness (a typed program can not go wrong as invoking
an unknown method on an object).

AObjt is founded on two previous works, namely the Lambda Calculus of
objects of Fisher, Honsell, and Mitchell [FHM94, GHL98] for the object aspects,
and Aol of Benaissa, Lang, Lescanne and Rose [BLLR99]. The former is the
formalization of a small delegation-based language which contains both lambda
calculus and object primitives to create, update, and send messages to objects,
while the latter is a calculus of explicit substitutions which gives a generic de-
scription of functional language implementations. Ao§, itself was founded on the
notion of address defined by Rose in his thesis [Ros96], and derived from the



weak lambda calculus of explicit substitution Ao,, [CHL96].

The paper is structured as follows. Section 2 quickly presents the main lines
of the formal approaches to object-based languages, when Section 3 addresses
mostly the implementation aspects. Section 4 introduces the Lambda Calculus
of Objects, and Ax,, which is a variant of Ao,. Section 5 is the real core of the
paper as it presents AObj"* through its four modules L, C, F and I. Section 6
gives some examples motivating our framework, Section 7 details the notion
of simultaneous rewriting, and Section 8 talks about strategies. Section 9 is a
presentation of a type system for AObj"®. Finally, Section 10 gives some formal
properties of AObj°.

2 Object-based Calculi

The last few years have addressed the study of object-oriented languages and
their type systems [AC96, FHM94]. The main goal of this research was to build
safe and flexible type systems that analyze the program text before execution.

In addition (and not in contrast) with the traditional class-based view, where
classes are seen as the primitive notion to build object instances, the last few
years have seen the development of the, so called, object-based (or prototype-
based) languages. Object-based languages can be either viewed as a novel object-
oriented style of programming (such as in Self [US87], Oblig [Car95], Kevo
[Tai92], Cecil [Cha93], O-{1,2,3} [AC96]) or simply a way to implement the
more traditional class-based languages.

In object-based languages there is no notion of class: the inheritance takes
place at the object level. Objects are built “from scratch” or by inheriting the
methods and fields from other objects (sometimes called prototypes).

Most of the theoretical papers address the study of functional object-calculi;
nevertheless, it is well-known that object-oriented programming is inherently
“imperative” since it is based on a notion of “state”. However, those papers are
not a simple exercise of style, since, as well stated in [AC96, BF98] it may happen
that a type system designed for a functional calculus can be “well fitted” for an
imperative one.

Among the theoretical proposals for defining an object-based language, two
of them have spurred an intense research.

The Object Calculus of Abadi and Cardelli is a calculus of typed objects. The
objects have fized size in order to give account to a standard notion of sub-
typing. The operations allowed on objects are method invocations and method
updates. The calculus is computationally complete since the lambda calculus can
be encoded via suitable objects. The calculus has both functional and imperative
version, the latter being obtained by simply modifying the dynamic semantics
of the former. Many type systems are proposed for this calculus. Some of them
take into account the so called mytype specialization of the inherited methods.
Issues of protection are also elegantly solved via “variance annotations” inside



object-types. Finally, classes can be implemented using the well-known record-
of-premethods approach (i.e., a class is an object which has a new method that
“installs” the premethods of the class).

The Lambda Calculus of Objects of Fisher, Honsell, and Mitchell is an untyped
functional lambda calculus enriched with object primitives. In this calculus, ob-
jects are untyped and a new object can be created by modifying and/or extending
an existing object (called a prototype). The result is a new object which inherits
all the methods and fields of the prototype. This calculus is also (trivially) com-
putationally complete, since the lambda calculus is built in the calculus itself.
Bono and Fisher in [BF98] have designed an imperative version of AObj featuring
an encapsulation mechanism obtained via abstract data types. Classes can also
be implemented in AObj: in a simplified view, a class A has a new method that
first creates an instance b of the superclass B of A and then adds (or updates)
this instance with all the methods declared in A.

3 Implementation of Object-based Calculi

While issues related to the soundness of the various type systems of object-calculi
are widely studied in the literature, a few papers address how to build formally a
general framework to study and implement inheritance in the setting of object-
based calculi. Among the two main categories of object-based calculi (i.e., fully
functional and imperative ones) there are two different techniques of implemen-
tation of inheritance, namely the embedding-based and the delegation-based ones,
studied in this section. Since we are interested in modeling operational seman-
tics for extensible objects, we have chosen the Lambda Calculus of Objects as
a target calculus; likewise we could have chosen the Extended Object Calculus
of [Liq97], without loosing the full aims of the paper.

The following schematic example will be useful to understand how inheri-
tance can be implemented using the embedding-based and the delegation-based
techniques. Again for the sake of simplicity we will not raise issues like privacy or
encapsulation (considering, in fact, that methods and fields belong to the same
abstraction level).

Ezample 1 (A small program using a “schematic” prototype). Consider the fol-
lowing (untyped) definition of a “pixel” prototype.
object pixel is
x = 0;
y =03
onoff = true;
set(a,b,c) {(((self.x:=a).y:=b).onoff:=c)}
end
Consider the following piece of code.



let p = clone(pixel) in
{p.set(a,b,c) :={(((self.x:=self.x*a).y:=self.y*b) .onoff:=c)};
p.switch() :+{self.onoff:=not(self.onoff)}}
where := denotes an override and :+ denotes an extension.

In the following we discuss the two models of implementation of inheritance
and we highlight the differences between an imperative versus a functional model
of object-calculi. Before we start, we explain (rather informally) the semantics
of the clone operator.

3.1 The clone Operator

The semantics of the clone operator changes depending on the delegation-based
or embedding-based technique of inheritance, and is orthogonal to the functional
or imperative features of the framework. In delegation-based inheritance, a clone
operation produces a “shallow” copy of the prototype i.e., another object-identity
which shares the same object-structure as the prototype itself. On the contrary,
in embedding-based inheritance, a clone operation produces a “hard copy” of
the prototype, with a proper object-identity and a proper object-structure ob-
tained by “shallowing” and “refreshing” the object-structure of the prototype.
This difference will be clear in the next subsections that show possible imple-
mentations of Example 1.

3.2 Functional Object-calculi

As known, functional calculi lack a notion of state. Although people feel that
object-calculi have only little sense in functional setting, we will show in this
paper that they are worth studying and that it may be possible to include
an object calculus in a pure functional language like Haskell with much of the
interesting features of objects.

Delegation-based Inheritance The main notion is this of object since there are no
classes. Some objects are taken as prototypical in order to build other objects. An
“update” operation can either override (indicated in the example as : =) or extend
(indicated as :+) an object with some fields or methods. A functional update
always produces another object, which owns a proper “object-identity” (i.e., a
memory location containing a reference to the object-structure). The result of
an update is a “new” object, with a proper object-identity, which shares all
the methods of the prototype except the one affected by the update operation.
By looking at Figure 1, one sees how Example 1 can be implemented using a
delegation-based technique.

Embedding-based Inheritance In embedding-based inheritance a new object is
built by a “hard copy” of the prototype; in fact, clone really builds another
object with a proper object-identity and a proper copy of the object-structure of
the prototype. By looking at Figure 2 one can see how Example 1 can be imple-
mented using an embedding-based technique (for sake of simplicity we omitted
in the picture the intermediate identities of the sub-objects of pixel, and p).
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Figurel. Functional Delegation-based Inheritance

3.3 Imperative Object-calculi

Imperative object-calculi have been shown to be fundamental in describing im-
plementation class-based languages like Smalltalk and Java. They are also essen-
tial as foundation of programming languages like Obliq and Self. The main goal
when one tries to define the semantics of an imperative object-based language
is to say how an object can be modified while maintaining its object-identity.
Particular attention must be paid when one deals with object extension, because
the extension must maintain the object-identity of the object being extended.

Delegation-based Inheritance The semantics of the update operation is subtle
because of side effects. Figure 3 shows the implementation of Example 1. Observe
how the override of the set method and the addition of the switch method
change the object structure of p without changing its object-identity.

Embedding-based Inheritance As above, (see Figure 4), an update modifies the
object-structure while keeping its object-identity.

4 Some Ancestors of AObjT°

In this section we give a gentle introduction to calculi that have inspired our
framework.
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4.1 The Lambda Calculus of Objects with Self-Extension A(Dbj‘"

The calculus AObj" [GHL9S] is a calculus in the style of AObj. The type system of
AObjt allows to type the, so called, “self-inflicted extensions” i.e., the capability
of objects to extend themselves upon receiving a message. The syntax and the
operational semantics are defined in Figure 5. Observe that the (Beta) rule is
given using meta substitutions (denoted by {M/z}), as opposed to the explicit
substitution used in AObj™.

The main difference between the syntax of AObj™ and that of AObj [FHM94]
lies in the use of a single operator + for building an object from an existing
prototype. If the object M contains m, then < denotes an object override,
otherwise <— denotes an object extension.

The principal operation on objects is method invocation, whose reduction is
defined by the (Select) rule. Sending a message m to an object M containing
a method m reduces to Sel(M,m, M), where the arguments of Sel have the
following intuitive meaning (in reverse order):

— (3-arg) is the receiver (or recipient) of the message;
— (2"-arg) is the message we want to send to the receiver of the message;
— (1%%-arg) is (or reduces to) a proper sub-object of the receiver of the message.

By looking at the last two rewrite rules, one may note that the Sel function
“scans” the recipient of the message until it finds the definition of the method
we want to use. When it finds the body of the method, it applies this body to
the recipient of the message.
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set

! new code of set
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p.set(a,b,c):= -

Ezample 2 (An object with “self-inflicted extension”). Consider the object self_ext
defined as follows:

self_ext = (() < addn = Aself.(self < n = \s.1))

If we send the message add n to self_ext, then we get the following computa-
tion:

self_ext < add.n — Sel(self_ext,add n,self_ext)
— (Aself.(self < n = As.1)) self ext
— (self_ext ¢ n = As.1)

resulting in the method n being added to self_ext. On the other hand, if we
send the message add n twice to self_ext, instead, the method n is only over-
ridden with the same body; hence we obtain an object which is “operationally
equivalent” to the previous one.

4.2 The Weak Lambda Calculus of Explicit Substitution Ax,,

We introduce a calculus of explicit substitution called Ax,,, which is the starting
point of our calculi of objects. It is a weak lambda calculus! extended with
environments. By “weak”, we mean a lambda calculus in which reductions may

! For sake of readability, in this paper we present a lambda calculus with explicit
names, unlike the original work [CHL96] which defines Ao, a lambda calculus with
de Bruijn index.
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not occur under abstractions. This restriction is standard in all programming
languages. The syntax and rules of this calculus are given on Figure 6. A lambda
term is either an abstraction, an application, a variable, or a constant.

To be seen as a program i.e., to enable a computation, a lambda term M must
be associated with an environment s (also known as an explicit substitution) to
form what we call a closure M[s], where s is the list of bindings of the variables
free in M. Therefore Ms] is closed, hence its name of closure. A closure is called
weak lambda term. To reduce terms, environments have to be distributed in
applications (App) until reaching a function or a variable. Hence, weak lambda
terms (denoted by W) may also be applications of weak lambda terms.

When a function is reached, one has a redex (Az.M)[s] W and we can apply
the rule (B). This redex is reduced locally i.e., W is not propagated to the
occurrences of z, but the environment is just enlarged with the new pair W/z.
When a variable is reached (Var), it is simply replaced by the weak lambda term
it refers to. For readability, we write a substitution containing W as first value
associated to z while reading the substitution from left to right as ... W/x....
In other words, if there exists another binding W'/z of the same variable name
in the same substitution, then it is on the right of W/z. The result of a reduction
is a weak normal form i.e., a term of the form (Az.M)[s] or c[s].

Ezample 3. The evaluation of (Az.\y.z) true in Ax,, is
((Az.Ay.z) true) [id] zppy (Az.Ay.z)id] truefid] 5y (Ay.z)[truelid]/z;id].

An extension of Ax, with addresses to handle sharing in implementations
(similar to Ao%) is part of our framework as module L, presented in Subsec-
tion 5.1.



Syntax.

M,N :=Xx.M | MN |z|c (Lambda Calculus)
| (| (M + m = N)| M < m (Object Terms)

| Sel(M,m,N) (Auxiliary)
Operational Semantics.
(M. M)N — M{N/z} (Beta)
M < m — Sel(M,m, M) (Select)
Sel({M < m = N),m,P) - NP (Success)
)

Sel((M < n = N),m,P) — Sel(M,m, P) m#n  (Next

Figure5. The Lambda Calculus of Objects with Self-inflicted Extension AObjt

5 The Framework AObjt*

This section presents our framework. It is split into separated modules, namely
L for the lambda calculus, C for the common operations on objects, F for the
functional object part, and | for the imperative object part. All these modules
can be combined, giving the whole A\Obj™*, and the union of modules L, C and
F (denoted by L + C 4 F) is called the functional fragment of AObj™.

We use three levels of expressions. The first level is the static level, i.e.,
the code of programs. The second and third levels are dynamic levels: the level
of evaluation contexts, and the level of internal structure of objects (or simply
object-structure). These three levels are described on Figure 7.

The static level (terms written M and N) gives all the constructs the pro-
grammer may need to write her (his) program: pure lambda terms, constructors
of objects, method invocations, and explicit duplicators. There are operations
to modify objects: the functional update, denoted by < and the imperative up-
date denoted by ¢:. An informal semantics of these operators has been given
in Section 3. As in [GHL98], these operators can be understood as extension as
well as override operators, since an override is handled as a particular case of
extension. One has also two primitives for “copying” objects: shallow(z) is an
operator which gives a new object-identity to the object pointed by x but still
shares the same object-structure as the object x itself; refresh(z) is a kind of dual
to shallow(z) in the sense that it makes an “hard copy” of the object-structure
of x, and reassigns this structure to . Therefore, the object-identity of = is not
affected.

Evaluation contexts (terms written U and V') model states of abstract ma-
chines. An evaluation context contains the temporary structure needed to com-

10



Terms.

M,N =X .M |MN |z|c (Lambda Calculus)
W o= M[s] | WW (Weak Lambda Calculus)
su=W/z;s | id (Substitution)
Beta-reduction.
Az M)[s]W — M[W/z; 3] (B)

Substitution elimination.

(MN)[s] = M[s] N|s] (App)
zl.. Wix...]>W (Var)

Figure6. The Weak Lambda Calculus of Explicit Substitutions Ax,.

pute the result of an operation. It always denote a term closed by the distribu-
tion of the environment. There is an evaluation context corresponding to each
construct of the language. Evaluation contexts are given addresses, denoted by
a,b, ..., taken from an infinite and denumerable set A. Addresses were initially
introduced for Ax in [Ros96] (and later on for Aoy, in [Ben97, BLLR99]) to model
sharing, particularly in functional languages whose underlying evaluation strat-
egy is call-by-need (the so-called lazy languages). In this paper, addresses are
convenient to model the implementation of objects as well. Intuitively, £* mod-
els a reference to the term E at address a. Therefore, we use subjacent notions
of admissible terms and simultaneous rewriting. An admissible term is a term in
which there is not two different subterms at the same address. In the following,
we only deal with admissible terms. A simultaneous rewriting (see also Section 7)
means that, if a subterm F at address a is reduced to a term U, then all the sub-
terms at the same address a are reduced in the same step to U. In other words,
the simultaneous rewriting is the rewrite relation preserving admissibility.

Ezample 4. The term ((V U)?U)¢ where U = ((Az.z)[id]? true[id]?)¥ and V is
any evaluation context, may reduce in one step by rule (B) of Figure 8 to

((V z[true[id)® /z;id])7)® z[true[id]® /2; id])®
but not to, e.g.,

((V z[true[id]® /z; id]f)b ((\x.x) [id]d true[id]e)f)c

since the two distinct underlined subterms have a same address, namely f.

11



Code

M,N:=XeM | MN | ¢ | = (Lambda Calculus)
| M<m (Message Sending)
| () (Object Initialization)
| (M +~m=N) | (M +<+: m=N) (Object Updates)
| shallow(z) | refresh(x) (Duplication Primitives)

where z ranges over variables, ¢ ranges over literal constants and m ranges over
method names.

Evaluation Contexts

U,V = M[s]* (Closure)
| (UV)® (Application)
| (U< m)® (Message Sending)
| (U+m=V)* | (U+:m=V)" (Object Updates)
| TO1" | * (Objects)
| (O <4+ m)* (Lookup)

where everywhere a, b, ¢ range over an infinite set A of addresses.

Object-structures

O:=()" | (Om=V)* | o (Internal Objects)
| copy(O)* (Duplicator)
Environments
su=U/x;s | id (Substitution)
Evaluation contexts U,V,... and Object-structures O, 0’ may also be written
E®,F’, ... when convenient.

Figure7. The Syntax of A\Obj™.

12



“Fresh” addresses are often provided to evaluation contexts, while distribut-
ing the environment. A fresh address is an address unused in a global term.
Intuitively, the address of an evaluation context is the address where the re-
sult of the computation will be stored. A closure M[s]* is analogous to a clo-
sure in Ax,,, but it is given an address, and the terms in s are also addressed
terms. [O]" represents an object whose internal object-structure is O and whose
object-identity is a. In other words, the address a is the (an) entry point of the
object-structure O. (O <> m)* is the evaluation context associated to a method-
lookup i.e., the scanning of the object-structure to find the method m. < is an
auxiliary operator, reminiscent to the selection operator Sel of AObj", invoked
when one sends a message to an object. ® is a back pointer [Ros96], its role
will be explained in Subsection 5.4 when we will deal with the cyclic aspects of
objects i.e., the possibility to create “loops in the store”. ® is the only term
which can occur inside a term having the same address a, therefore generalizing
our informal notion of admissible term and simultaneous rewriting.

Internal objects (O) model the object-structures in memory. They are per-
manent structures which may only be accessed through the address of an object
(denoted by a in [O]"), and are never destroyed nor modified (but by the garbage
collector, if there is one). Our calculus being inherently delegation-based, objects
are implemented as linked lists (of methods). Embedding-based inheritance can
however be simulated thanks to the refresh(z) and shallow(z) operators. In par-
ticular, refresh(x) is defined in term of an auxiliary operator called copy(O)
which makes a copy of the object-structure. Again, because of imperative traits,
object-structures can contain occurrences of e®.

(M. M)[s]® U)* — M[U/z;5]® (B)
(MN)[s]* = (M[s]" N[s])*  b,c fresh (App)
al..Ulz...]" =2 U (VarG)
z[...E*/x...]* - E* where E = (\y.M)[s] or c[s] (VarE)

Figure8. The Module L

5.1 The Module L
The module L is the calculus Ax,, presented in Subsection 4.2, to which ad-

dresses have been added. It is presented on Figure 8. It is almost the calculus
Aol of Benaissa, Lang, Lescanne, and Rose [BLLR99], but with variable names
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instead of de Bruijn index. Addresses allow to give account to sharing in imple-
mentations of functional programming languages, particularly lazy (or call by
need) languages.

The rules of L are almost the same as the rules of Ax,, but they handle
address management and sharing. The main idea is that if an evaluation con-
text (i.e., an addressed term) is located at address a, then its reducts will also
be located at address a. Therefore, the term is only reduced once since all its
occurrences share the result.

(B) does not need more explanation than the ones given in Section 4.2. Note
only how the result of the reduction of the evaluation context located at address
a is “stored” at address a. (App) creates two new evaluation contexts located
at new addresses b and c. Note that, since it duplicates the environment s, it
creates a sharing among the addresses which s contains. This will be the case
for every other rule which duplicates an environment. Here again, the right hand
side of the reduction is stored at the same address as the left hand side.

The main subtlety in this module is in rules (VarG, VarE). Indeed, we have
two rules corresponding to the single rule (Var) of Ax,,. The reason is due to
the choice that can be made on the address where to store the right hand side:
either the address of the main evaluation context (VarE) or the address of the
evaluation context bound to z (VarG). Actually, both choices are valid, and the
main difference is in the amount of sharing provided by each solution. A very
detailed discussion on this point can be found in the above citations.

The side condition on (VarE) was absent in the original presentation. How-
ever, it is crucial because of side effects, due to adopting an imperative seman-
tics for objects. We want two occurrences of a variable to represent a “unique”
object-identity. In a calculus of functions and addresses (like the original Ac?,)
this restriction disappears. Anyway, this is not too strong a restriction as effi-
cient implementations of functional languages (call by value or call by need) use
the same slightly restricted version of the rule.

5.2 The Common Object Module C

The Common Object module is shown on Figure 9. It handles object instantia-
tion and message sending. Object instantiation is characterized by (NO) where an
empty object is given an object-identity. More sophisticated objects may then be
obtained by (functional or imperative) update. Message sending is formalized by
the five remaining rules, namely (SP) which propagates the environment into the
receiver of the message, (SA) which performs the self-application, (SG, SE, NL)
which perform the method-lookup. Note that the message sending operator <
is pre-computed so that the object it is applied to is given an object-structure
and an object-identity (SP). When this is the case (SA), the object is looked up
and the result applied to the object itself. Note that we find in (SG, SE) a choice
similar to the graph-based vs. environment-based access in functional languages,
characterized by rules (VarG, VarE). This is not surprising, since now there is
two ways to access functions: through environments and through objects (the
latter are called methods).
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Instantiation

Ofsle = 107" b fresh (NO)

Message Sending
(M < m)[s]* = (M[s]" < m)® b fresh (SP)
(101" = m)* = ((0 +>m)°[01")" ¢ fresh (SA)
(Oe=m=VYm =V (SG)
(O + m = E°)® «>m)* — E° (SE)
(0O —n=V) m)* = (0 < m)* (NL)

Figure9. The Common Object Module C.

Functional Update

(M < m = N)[s]* = (M[s]" < m = N[s]°)® b, ¢ fresh (FP)
(01" «m=V)* =[O« m=V)]" ¢ fresh (FC)

FigurelO. The Functional Object Module F.

5.3 The Functional Object Module F

The operational semantics of the Functional Object module is given by two rules
(Figure 10). (FP) pre-computes the functional update, installing the evaluation
context needed to actually proceed. (FC) describes the actual update of an object
of identity b. The update is not made in place and no side effect is performed,
but the result is a new object (with a new object-identity a). This is why we call
this operator “functional”.

5.4 The Imperative Object Module |

The Imperative Object module, shown on Figure 11, contains rules for the im-
perative update and cloning primitives. Imperative update is formalized in a
way close to the functional update. (IP) and (IC) are much like (FP) and (FC),
but they differ in address management. Indeed let us look at the address b in
rule (IC). In the left hand side, b is the identity of an object [O], when in the
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Imperative Update

(M : m = N)[s]* = (M][s]" «: m = N[s]°)® b, c fresh (IP)
([01° «=: m=V)* = [(O «m = V)] ¢ fresh (1C)

Cloning Primitives

shallow(z)[...[01"/z...]* = [O0]" (SC)
refresh(z)[... [0]1"/z...]* = [copy(0)°]” ¢ fresh (RE)
copy(()")* = () (CE)

copy({(O + m = V)*)* = (copy(O)° < m = V)* ¢ fresh (CO)

Figurell. The Imperative Object Module I.

right hand side it is the identity of the whole object modified by the rule. Since
b may be shared from anywhere in the context of evaluation, this modification
is observable non locally, hence a side effect is performed.

Rule (IC) may create cycles and therefore back pointers. Intuitively, when
we deal with imperative traits, we can create non admissible terms because of
cyclic references. Every reference to [O]b in V' must be replaced by e’ to avoid
[(O « m =V)]" to contain itself. This implies to redefine (see Section 7) the
concept of simultaneous rewriting in order to include this feature.

The primitives for cloning are shallow(z) and refresh(z); shallow(z) creates
an object-identity for an object sharing the same object-structure as x, whereas
refresh(z) gives a new (but identical to the old one) internal structure to the ob-
ject z. The operational semantics of these primitives is also given on Figure 11.
refresh(z) calls an auxiliary operation named copy(O) (RE) to recursively per-
form a copy of the linked list (CE, CO). Note however that methods are never
copied.

6 Understanding AObj™®
An Example of Derivation
We give an example of a reduction in AObj ™.

Example 5. Let self _ext be the term defined in Example 2 i.e.,

self_ext = (() «+ addn = Aself.(self < n = \s.1) )

N
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The reduction of (self_ext <add.n) in AObjT is as follows:

(self_ext < add n)[id]!

% ((()[id]* + add.n = N[id]®)? < add n)! (1)
= ([()*1" + add.n = N[id]?)? < addn)" (2)
= ([(()° addn = N[id*)¢]* < add_n)* (3)
O
— ((0 <> addn)7 [0]°)! (4)
— ((Aself.(self < n = As.1))[id]? [O]*) (5)
— (self «+ n= )\s.l)[fO]Q/self;id]1 (6)
% ([0]? < n = As.1[[0]?/self;id]®)* (7)
= [{O  n = As.1[[0]* /selt; id]F)*]" 8)

In (1), two steps are performed to distribute the environment inside the
extension (SP, FP). In (2), the empty object is given an object-structure and an
object identity (NO). In (3), this new object is functionally extended (FC), hence
it shares the structure of the former object but has a new object-identity. In (4),
and (5), two steps are performed to look up method addn (SA, SG). Here, we
have chosen to apply (SG), but we could have chosen (SE) as well, hence given a
fresh address to the closure representing the method add n (actually the closure
which is to be applied to the self object, not the one inside the object). (6) is an
application of (B). In (7), the environment is distributed inside the functional
extension (FP) and then self is replaced by the object it is bound to (VarG).
Here, we cannot apply (VarE) because of its side condition (otherwise it would
have changed the identity of self). (8) is simply a (FC) i.e., the proceeding of
a functional extension.

Functional vs. Imperative

We show how the functional module F can be simulated by the imperative one I.
This can be simply done by combining the shallow(z) operation with an imper-
ative update as illustrated by the following example.

Ezample 6. Let the functional object (M < m = N), obtained by inheriting
the properties of the prototype M. This object can be encoded by a shallow(z)
followed by an imperative method update as follows:

(Az.(shallow(z) +: m = N)) M

This proves the fact that F C I.
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Cloning

It is possible, using the Imperative Object module, to define a clone operation.
The clone defined in Figures 2 and 4 is defined as follows:

clone(z) £ (refresh o shallow)(z)

£ (\y.refresh(y)) shallow(x)

Its intuitive semantics is illustrated by Figure 12.

a___ Cc

=

y = shallow (X)

b d

clone (x) =refresh(y) ‘ ‘ ‘

Figurel2. The clone(x) Operator.

The clone defined in Figures 1 and 3 is defined as follows:
clone(z) £ shallow(x)

Since AObj" is inherently delegation-based, it follows that an embedding-
based technique of inheritance can be encoded using the Imperative Object
module. Other interesting operators can be defined by combining the different
features of AObj°.

7 The Simultaneous Rewriting

Simultaneous rewriting [Ros96] is a key concept in this paper and we would like to
warn the reader not to take it as just a slight variant of the usual term rewriting.
Actually, due mostly to imperative features introduced in module |, simultaneous
rewriting goes much beyond the classical match and replace paradigm of the
traditional first order rewriting and must be defined extremely carefully in order
to preserve:

Horizontal Admissibility, i.e., all the subterms at the same address should
be rewritten together, as shown in Example 4.
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Vertical Admissibility, i.e., for all e* occuring in a term U, there exists a
subterm E® of U such that e” is a proper subterm of E®.

Roughly speaking, in order to maintain these requirements the definition pro-
ceeds as follows to rewrite a term A into C.

1. Match a subterm of A at address say a with a left hand side of a rule and
replace all the subterms of A at address a with the corresponding right hand
side (except %) and create the new fresh addresses (if required). This way,
one gets a term B.

2. Find in B all the subterms at an address b which occur inside another sub-
term at the same address b, and replace them by e°.

3. Find e’ not in the context of an E°, and replace them by their corresponding
E" as found in A.

Points 2 and 3 must be repeated until a fix point is reached.

Ezample 7. The term ([()!']” = m = (Asel£.x)[[()'1?/x;id]*)* does not reduce
to

() + m= (Asele0)[[()']/x;id)*]

(a non admissible term) but instead to
(TO! < m = (Aself.x)[o?/x;id]?)*1”

It is crucial to note that the sense of the two terms is essentially different,
since the latter expresses a loop in the store whereas the former does not mean
anything consistent (two semantically distinct subterms have a same address).

Ezample 8. The term ([(()! < m = M[e*/x;id]*)*]"* + n = NI[id]?)® does not
reduce to

[(()! m = M[e*/%;id])® « n = N[id]*)"1°
but instead to

(0" m= M o*]"/xidP)? ¢ n = N[id")7’

In this last term, the back pointer * has been unfolded following the definition
of simultaneous rewriting i.e., replaced by the term it refers to, namely [ o3 ]4
(3 is still in the context of the subterm, and therefore 3 is not unfolded). This
unfolding is due to the removal of the surrounding address 4, which otherwise
could lead to a loss of information on the shape of the term associated to the
address 4.
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8 Strategies

The rules of \Obj™® express the operational semantics of A\Obj", independently of
any evaluation strategy. Thus, in the reminder of the paper, we give strong results
valid on any implementation which uses AObj™® as its underlying model i.e.,
independent of any strategy. However, if one wants to deal with implementations,
one should address the strategy issue. For this reason, although strategies are
not the main subject of this paper, we wish to give some intuition of how they
can be defined in AObj™*.

Intuitively, defining a strategy is to say, given an evaluation context, where
(at which address) is the subterm to reduce next. Therefore, a strategy is a
binary relation between an evaluation context and an address. For convenience
(or because of a professional bias!) we decided to describe it by an inference
system; each inference rule is subject to conditions on its application.

The reader will find in Appendix A all the strategy rules. Let us have a look
to only two characteristic rules to understand what a formal strategy is, namely:

s>b

a (Sel) Mls]*>b

Mo a (Sub)

The rules say where to reduce next in the closure M[s]*. There are two answers:
either one reduces the closure itself (located at address a), or one reduces in s
(therefore at another address, denoted by b). (Scl) describes the first solution
and (Sub) describes the second. Thus, a strategy will be associated with rule
conditions like enable (Sub) and disable (Scl), or vice-versa, or something more
involved like enable (Sub) and disable (Scl) if M is a variable, otherwise disable
(Sub) and enable (Scl). Hence, a strategy is simply a set of inference rules with
conditions. It is possible to define deterministic strategies (given a term, only
one inference is possible) or non deterministic strategies (several inferences are
possible). Strategies are discussed in more details in [BRL96].

9 A Type System for AObj™®

In this section, we present a type system for AObjT®. See Appendix B for the
full set of rules. This type system is inspired from [GHL98] to which we refer for
a precise discussion of issues related to subtyping.

9.1 Types
The type expressions are described as follows:
o,Tu=1|t|o—7|prot.(R<IR)|objt.(RIR)|c« m
R,R' :=¢|Rm:0o
k=T | Rgd
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Object-types have the form prot.(R < R')) or objt.{(R < R')); they are called
pro- or obj-types, respectively. As in [FHM94], we may consider object-types as
a form of recursively-defined types. The intended meaning of an object-type:

prot.{my : 01 ...mp 0 <A Mps1 : Optt ---My 2 o), with k>0

is the following:

— myq,...,mp are the methods that can be invoked; we say that these methods
belong to the interface part of the object-type.
— Mp41,...,my are the methods that cannot be invoked; they are reserved,

i-e., they belong to the reservation part of the object-type. We can extend
an object M with a new method m having type o only if it is possible to
assign to M an object-type of the form prot.(R < R',m : o).

The intended meaning of an obj-type is the same as a pro-type except that
an object assigned to an obj-type can be covariantly subsumed and extended
only with the methods contained in its reservation-part. Moreover, an obj-type
has “kind” Rgd. The operator «— is used to add new methods to an object-type;
essentially it is the “type counterpart” of the operators < and «:.

9.2 Contexts and Judgments
The contexts have the following shape:
I'i=¢|Nzx:o|t<#o|T,a:0

The only difference between these contexts and the ones of [GHLIS8] lies in
that we add also declarations of addresses. Our type assignment system uses
judgments of the following shapes:

(1) I'kok, I'to:T, I'to:Rgd, I'+M:0, I'+o <, o5,
(2) I'~U:o, '+0O:0 I'kFa:o

The intended meaning of the judgments in the set (1) is the same as in [GHL9S].
In particular, the judgment I' - o <# 7 (read o matches T) means that o is the
type of a possible update of an object having type 7. As in the original spirit
of matching [Bru94], this judgment formalizes the ability to “inherit” method

types. The judgment I' - o tes (read o reduces to T) expresses a limited form
of “type-conversion” which amounts to simplify occurrences of «—.

The remaining judgments in the set (2) are peculiar to the framework: they
give a type to the evaluation contexts, object-structures, and addresses respec-
tively (addresses are treated as special variables). We present the most interesting
rules.
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9.3 Type Rules for Object Expressions

The type rules relative to judgments in the set (1) contain the object expres-
sions of AObj™; they are mostly the ones of [GHL98]. One important remark
is that both functional and imperative object update are treated by the same
rule (Object); this is essentially due to the fact that our extension always “at-
taches” a new method in front of its object-structure, keeping or not its object-
identity, whether or not we use imperative traits. Moreover, observe that the
rules (Refresh) and (Shallow) applies only when the variable x, occurring in
the premise, refers to an object (i.e., is declared in the context with an object-

type).

9.4 Type Rules for Evaluation Contexts and Object-structures

For the set (2) we present the most interesting rules. The rules for the object-

structures are self-explanatory and need no comments.
The (Eval—Closure) rule

FEFl,...,FnJrl
I'="n,...,2i 7, Lig1, ig1 2 Tigty -5 Lo
I'-M:0 I'ta:0 I'+FU;:1; Vi=1l...n

(Eval—Closure)
't MUy /x1;...;Upfzp;id]* 1 o

assigns a type o to a closure. This requires the code and the address (where
the closure is memorized) to be of the same type o, and the types of the free
variables of M to be of the same type as the corresponding evaluation contexts
occurring in the substitution. Note that the assumptions needed to give a type
to the free variables of M are not used in the conclusion of the judgment, since
a closure has no free variables at all.

The (Eval—Send) and (Eval—Object) rules are essentially inspired from the
corresponding type rules for object expressions.

The (Eval—Identity) rule

I'-O:0 TI'ta:7 T'Fo<gr

(01" :0o

assigns a type to an evaluation context associated with an object; if the object-
structure has type o, its address has a type 7 and o matches 7, then [O]" has
type o. Due to imperative traits, it follows that the object-structure and its
address may have different “matched” types.

The (Eval—Lookup) rule

r'co:r I'tr<#prot.{R,m:0 < R")
I'tp<gtr I'a:(t—o)p/t]

' (0 < m)®: (t— o)p/t]
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is complex. It assigns a type to the body of a method m attached to an object O.
Since a method is nothing but a function whose first formal parameter refers
always to “self”, it follows that the type of the conclusion must be an arrow-type.
The operational semantics of the operator < is destructive i.e., it destroys the
object-structure of the receiver of message m. Therefore, the type p represents
the type of the receiver of the message m.

The (Eval—Back—Pointer) rule

I'Fa:7 I'bFo<#r

I'-e%: ¢

says in its premise that terms at address a have type 7 such that ¢ matches 7.
Again the matching judgment o <# 7 is required by imperative traits.

10 Properties of AObjT*

In this section we show some properties of AObj™*. First of all, we give three
functions (called decompilation functions) which translate the expressions of
AObj™* into those of AObj*. The functions C[], €[] and O[] are mutually
recursive and are defined in Figure 13.

The following theorem expresses the confluence of the functional fragment of
our framework.

Theorem 1 (Confluence of Functional Fragment).
L + C+ F is confluent modulo address erasure.

Proof. The proof lies on the fact that the system is orthogonal (left linear and
with no critical pair), hence strongly confluent (each confluent diagram can be
closed in one or zero step. Actually, there are just two exceptions to the absence
of critical pair, namely (VarG, VarE) and (SG, SE) which overlap. It has been
shown [BLLR99] that (VarG, VarE) make the rewrite system strongly confluent
modulo address erasure anyway, and this result can be easily generalized to
(SG, SE). Moreover, the fact that we use simultaneous rewriting does not change
the result on strong confluence of the rewrite system. O

Of course this result does not hold for the whole A\Obj™®, since as well known,
imperative aspects break the confluence.

The following theorem expresses the soundness of the functional part of our
system w.r.t. \Obj" i.e., the fact that to any reduction in L + C 4+ F corresponds
an equivalent reduction in AObj", and the fact that any AObj"-normal form can
be computed via the system L + C+ F (i.e., without the imperative module ).

Theorem 2 (Soundness and Weak Completeness).

1. (Soundness) If U =V in L+ C+ F then E[U] = E[V] in \Obst.
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Code

Clz] ==
C[shallow(z)] = =
C[refresh(z)] = x
ClAz.M] = Ax.C[M]
C[MN] = C[M]C[N]
Cle]l =¢
erol =0
CI{M + m = N)] = (C[M] < m = C[N])
C[{M +: m = N)] = (C[M] + m = C[N])
C[M <= m] =C[M] < m

Evaluation contexts

E[MU/z;s]*] = E[MAEU]/x}s]*]
E[M[id)"] = C[M]

— {Sel((’)[[O]],m,E[[V]])
e[ulevl
E[U < m)*] = E[U] & m
ENU « m = VY] = (E[U] « m = E[V])
EUU : m = V)] = (E[U] « m = E[V])
glfo1'1 = 0[0]

Object-structures

o0 1= 10
O[(0 + m =V)*] = (O[O0] + m = E[V])
Ollcopy(0)*] = O[0]

it U= (0« m)°

otherwise

Figurel3. Translation from AObj™* to AObj" (decompilation).
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2. (Weak Completeness) If M=, N (read “weakly reduces”) in \Obj"™ and N
is a normal form, then there exists V' such that M[id]* %V in L+ C+ F
and E[V] = N.

Proof.

1. It is clear that every rule of L + C +F translates either to a rule of AObj*, or
to an identity, except (SG, SE, NL) which must occur in the left hand side
of an application in order to catch the semantics of Sel. However, it is clear
from the rules that this is always the case. Addresses only generalize these
rules in the sense that a reduction can occur simultaneously in different parts
of a term. However, it has been shown in [BLLR99] that this is sound and
this result may easily be generalized to our calculus. O

2. By weak reduction we mean that reductions never occur under a lambda
abstraction. It is clear from the definition of the translation function that if
there is no redex in V' then there may not be any redex in E[V]. Moreover,
every rule of AObj" has an implementation in L + C 4+ F. Then, the result
is a direct consequence of the soundness (Theorem 2) and of the confluence
(Theorem 1). a

In the following lemma, we assume 7 % II be either z : 0, or a : o, or t <# o,
and A x B be any provable statement in our system.

Lemma 3 (Weakening).
IfI'T"FAxBand I'NmxII,I" \- ok, then I'mx II[,I"' - A x B.

The subject reduction theorem can be stated as follows.

Theorem 4 (Subject Reduction for L + C + F).
IfI'+U:0 and U — V, then there exists I, such that "'+ V :0 and ' C I".

Proof. Consider the simultaneous rewriting of the calculus L + C + F as first
order when the reduction occurs in an empty context. We prove that the type is
preserved by each case of the reduction rules. Most of the rules are immediate
or follow by induction hypothesis and an application of Lemma 3 in order to
give a type to fresh addresses of the term occurring in the right hand side of the
reduction. Note that we do not have to resort to a standard substitution lemma
for rule (B) (unlike the lambda calculus), since the closure occurring in the right
hand side of the rule does not have free variables.

Then the thesis follows by observing that a simultaneous rewriting step oc-
curring in any context can be simulated as a sequence of the above standard
rewriting steps. a

Definition 5. Define the set of wrong terms as follows:

wrong ;= (()b “m)® | (c[s]b <= m)® | ((Aa:M)[s]b <= m)t
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By inspecting the typing rules, one can see that wrong can not be typed,
hence the type soundness for L + C + F follows as a corollary of the subject
reduction theorem i.e.,

Corollary 6 (Type Soundness for L + C + F).
IfI'FU : 1, then U does not reduce to Clwrong| in L+ C+ F, where C[] is a
generic context in \Obj™® i.e., a term with an “hole” inside it.

Conjecture 7 (Type Soundness for \Obj™*).
IfTHU : 7, then U does not reduce to Cluwrong] in AObj™®.

Hint. The presence of imperative traits induces some complications in the proof.
Therefore, a simultaneous rewriting cannot be simulated as a simple sequence
of first order rewriting steps. We feel that those technical problems will be fixed
soon, but at the time of the submission, we do not have proven all the cases.

11 Conclusions

We have defined AObj™*, a framework for object calculi which is intended to give
a firm foundation for the operational semantics of object oriented languages. Fu-
ture works will focus on specific calculi as combination of modules and strategies
e.g., the functional fragment with embedding and call by need or the impera-
tive fragment with delegation and call by value. It should also be interesting to
study specific aspects like typing, strategies and distribution of objects across
networks. Other useful extensions of this calculus should be studied, such as
providing a real imperative override of fields i.e., a real field look up and replace-
ment. To this aim, a distinction has to be done between fields (and may be more
generally procedures, functions that do not have a self-reference) and methods,
since it is known that overriding methods this way is not type sound [BF98] in
presence of object extension.
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work.
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A The Strategy Rules

Closures

s>b Uba s>a
———— (Scl _ — (H — (T1
M[s]“ba(sc) M[s]“bb(sub) U/;r-sba( ) U/a:~s>a( )
Applications

U>b Vb
— (S ——— (L —— (R
Tisa O Tress WP Tvess o)
Message Sending
U>b
— (S — (L
(U<:m)ﬂ>a(sn) (U<:m)a>b(sn)
Functional Update
U>b Vb

f Lf fi

(U(—m:V)aba(Se) (Lfe) (Rfe)

(U+m=V)rp>b {Um=V)rpb

Imperative Update

(Sie) U>b (Lie) Vb (Rie)
Uem=Vyisa " Weim=Visb 7 Wem=Vyisb
Objects
O>b Orb Vb
I i M
o755 O e 0P Gemzesy Mo
Look up
O>b
— (Slk — (Llk
(O(—’m)aba(s) (O<—>m)a>b( )
Copy
Orb
(Cop) (Nor)

copy(0)° > a copy(O)e > b

B The Type System

Rules for Well-formed Contexts
(Cont—e)

ek ok

I'to:T x¢dom(I)

(Cont—x)
Ix:ok ok

I'to:T a¢dom(I)

(Cont—a)
I'a:ot ok
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I'to:T t¢&dom(I)

(Cont—t)
It<ttol ok

Rules for Well-formed Types

I'+ ok

—— (T'ype—Const)
I'k.:T

I't<#o,I'"F ok

(Type—Var)
Nt<#oI'Ht:T

I'to:T I'7r:T
I'ro—>71:T

(T'ype—Arrow)

I' - ok
Itk prot.((<): T

(T'ype—Pro— Empty)

I'tprot.(a R,R'):T

(Type—Pro—Left)
I'prot.(R<R):T

Iit<gtprot.(aR)Fo:T m¢gM(R)

(Type—Pro—Right)
I'tprot.(aR,m:0o):T

I' r<gtprot.(< R,m: o))

(Type—Extend—Pro)
I'7¢«m:T

I' T <gtobjt.(< R,m: o))

(T'ype—Extend—Obj)
I''tr74«m:T

I'prot.(R<RY):T tcovariant in R, R’

(Type—0bj)
I'Fobjt.(RAR):T

Rules for Well-formed Rigid Types

I' - ok
——  (Rgd—Const)
I't1: Rgd
I'to0: Rgd

(Rgd—Var)
I't<#o,I'"+Ft: Rgd

I'ro0:Rgd I'71:Rgd

(Rgd—Arrow)
I'o0 — 7:Rgd
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I'-objt.(R<RY):T

(Rgd—Obj)
I'+objt.{(R < R"Y) : Rgd

I'7:Rgd TI'tF14m:T

(Rgd—Extend)
I'174 m: Rgd

Rules for Matching

It<#o,I'"F ok

(Match—Var)
INt<gto,I'+Fit<dto

I'Fo<g¢rr T'F1<gp

(Match—Trans)
I'Fo<#p

I'to:T

—— (Match—Refl)
I'Fo<#o

I'o' <o TI'bFr<gtt

o o : (Match—Arrow)
o—=>T<o >

I'tprot.(R<R):T I'bFprot.(RaR ,m:0o):T

(M atch—Book—Pro)
I'tprot.{R< R',m: o) <#prot.{R < R")

I'tobjt.(R<R):T TI'tobjt.(R1R ,m:0):T

(M atch—Book—O0bj)
I'objt.{R < R',m: o) <#objt.(R < R

I't74«m:T

(Match—Inherit)
714 m<#T

I'71<gtr’ '« m:T

(M atch—Extend)
'« m<t «m

I'Fobjt.(RQR):T

(Promote)
I'tprot.{R < R')) <#tobjt.{R < R")

t
o 2%+

I'Fo<gtr

(Match—Red—Left)

t
2% 4

(M atch—Red—Right)
I'Fo<gtr
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Rules for Type-Reduction

rro™o  I'tr:T

(Red— Arrow—Left)
I'ro—7Ys 51

b7 e I'o:T

(Red—Arrow— Right)
I'bFo—1 2,

I'brem:T TFr 250

(Red—Inherit)

type
F'tr«m2 7 «m

I'tr<#prot.(R,m:0 <R

(Red—Owver—Pro)

type
I't7r4«m28 7

I'1T<gtobjt.(R,m:0 <R

(Red—Owver—O0bj)

type
'tr«m2 7

I'prot.(R< R m:o):T

(Red— Ext—Pro)
I'tprot.(R<R',m:0o) « m tupg prot.{R,m :0 < R'))

I'kobjt.{Ra R ,m:0):T

(Red—Ext—0bj)
I'objt.{(R< R ,m:o) « m tpg objt.(R,m :0 < R")

I't<#prot.{R<R)Fo e o

(Red—Meth— Pro)
I'tprot.(R,m:0 < R'") tupg prot.{R,m : 0’ << R")

It<#prot.(Rm:oc <R )M Fo typg 1

(Red—Meth—Obj)
I'Fobjt.(Rm:o <R ™S objt.(R,m: o’ < R')
Rules for Lambda Terms

I'F ok
I'kFe:e

(Const)

I'z:o0,I"F ok

(Var)
z:ol'tz:0o
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ez:cF-M:1

(Abs)
I'tXeM:0—T

I'-M:0—rT1 I'-N:1
I'-MN :T1

(Appl)

Rules for Object Expressions

In the following, we let <—* be either the functional + or the imperative ¢:
operators.

I'+ ok
't () :prot.{<)

(Empty)

I'tM:7 TI'bFr<gobjt.(R,m:o <R

(Send)
I'EM < m:o[r/t]

I''tM:17 TI'kFr<#objt.(R<R m:o) Lt<#r4 mEN:t—>0o

(Object)
I'F(M<+xm=N):7«m

I'txz:t T'bkr<gtobjt.(R<R)

(Refresh)
I' | refresh(z) : 7

I'taz:17 TbF1<gtobjt.(R <R

(Shallow)
I' | shallow(z) : 7

I'-M:0 TI'tFo<#rT I'F71:Rgd

(Subsume)
I'-M:1

Rules for Evaluation Contexts

FEFl,...,Fn+1
I'=nn,...o,x 7 D, Tyt Tign -5 g
I'-M:0 I'ta:0 I'FU;:17; Vi=1l...n

(Eval—Closure)
't M[Uy/x1;...;Upfzp;id]* 1 o

I'+rU:0—>71 Ir=v:.r I'ta:r
re=@v)*:r

(Eval—Appl)

I'tU:t TI'bkr<tprot.(Rm:0<4RY) TI'ta:o[r/t]

(Eval—Send)
' (U< m)®:o[r/t]
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rcu:r I'tr<#prot.(R<R',m:o)

Nt<#r« mtEV:t—o I'a:74m
(Eval—Object)

I'b(U+sxm=V):74m

'co:r I'tr<gprot.fR,m:0 < R")
I'tp<gtr I'a:(oc—1)p/t]

(Eval— Lookup)
I'-(0 <+~ m)*: (o — 7)[p/t]

I'0O:0 T'ta:7 T'hFo<gr
(Eval—Identity)

r'-[01":o
I'ta:r I'o<gtr

(Eval—Back—Pointer)
I'Fet:0o

Rules for Object-Structures
I'ta:prot.(<)

(Structure— Empty)
' () : prot.{<)
I'O:r1 I'1<tprot.(R<R',m: o))

t<gr« mEV:t—>o I'Fa:74m
(Structure—Object)

'O+ m=V):74m
I'-O:0 TItFa:o
I't copy(0)* : 0

(Structure—Copy)

General Rules for Code, Evaluation Contexts and Object-Structures
In the following, we let A be either M, or U, or O, or a.

I'FA:0o I'to 2% -
I'FA:T

(Red—Le ft)

I'tA:e THr¥%s
I'A:r
I'-A:prot{(R<R') Itprot.(RAR m:o):T

(Red—Right)

(Pre—Extend)

I'-A:prot. (R R ,m: o))

This article was processed using the BTEX macro package with LLNCS style
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