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Abstract

In this paper� we deal with the XRAMmodel introduced in ���� We mainly show that the
original de�nition of the XRAMmodel was not consistent� and must be slightly modi�ed�
Therefore� we modify the de�nition of the XRAM model to make it consistent� and we
study the consequence of this modi�cation on the complexity theory developed in the
XRAM model� The new model modi�es� in particular� the de�nition of a problem on a
XRAM� and thus on a PRAM and on a RAM since these two models are particular cases
of the XRAM� However� we show that� though theoretically important� this modi�cation
has no practical consequence on the complexity theory developed on the XRAM model�

Keywords� PRAM� complexity

R�esum�e

Cet article traite du mod�ele XRAM introduit dans ��� et de ses implications sur le
mod�ele PRAM� Il recti�e en particulier la d�e�nition originelle du mod�ele XRAM pour
rendre ce mod�ele robuste vis��a�vis de l	isomorphisme de graphe�

Mots�cl�es� PRAM� complexit�e
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� Introduction

This paper deals with the XRAM model introduced by Cosnard and Ferreira in ���� The XRAM
model generalizes the PRAM model ��� by taking into account the several possible interconnection
topologies of the existing distributed memory parallel computers �these ones are not fully connected
in general �
���

A random access machine �RAM� ��� consists of

� a memory with a potentially in�nite number of locations� and

� a processor capable of loading and storing data from and into the memory� executing arith�
metic and logical operations using a �nite number of internal registers� and operating under
the control of a program stored in a control unit�

In one step requiring a unit of time� the processor can


� read a datum from an arbitrary location in memory into one of its internal registers�

�� perform a computation on the content of one or two registers� and

�� write the content of one register into an arbitrary memory location�

The parallel RAM �PRAM� ��� consists of an arbitrary large number n of RAMs� all sharing
the same common memory� Every step of a PRAM consists of three phases �all along the paper�
we restrict ourselves to the exclusive read� exclusive write �EREW� model��


� all processors read simultaneously from n di�erent locations in the shared memory �one for
each processor�� and each processor stores the obtained value in one of its internal registers�

�� all processors perform a computation on the content of one or two local registers�

�� all processors write simultaneously into n di�erent locations in the shared memory �one for
each processor��

Cosnard and Ferreira generalized the PRAM model by introducing the XRAM model as follows�

De�nition � �From ����
Let Xi� i � � � � � � n � 
� be a collection of subsets of f� � � � � n � 
g� An XRAM�P�M�X� is an
undirected bipartite graph such that P � fPi� i � � � � � � n � 
g and M � fMi� i � � � � � � n � 
g
are the two partitions �representing the processors and the memory locations respectively� and such
that Pi is connected to Mj if and only if j � Xi� X is the corresponding interconnection network�
Each computation step of an XRAM satis�es the same constraints as the PRAM excepted that the
memory locations that can access processor Pi are limited to Mj� j � Xi� i � � � � � � n� 
�

For instance� the hypercube RAM is de�ned by the sets Xi � fj � f� � � � � n� 
g j the binary
expressions of i and j di�er in at most one bit positiong� i � � � � � � n � 
� The hypercube RAM
is denoted by HRAM in the following� The PRAM is a special case of De�nition 
 where Xi �
f� � � � � n� 
g for every i � � � � � � n� 
 �although the number of memory location is limited to n
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instead of being in�nite� but this can be easily solved by allowing jP j and jM j to be di�erent� and
jM j to be arbitrarily large��

Though this model is quite attractive� and draws a bridge between PRAMs and distributed
memory computers� it su�ers of a major default that is two virtually equivalent topologies are not
comparable� This default is pointed out in the next section� and a new de�nition that corrects it
is proposed� The main consequence of this new de�nition is the freedom of the initial and �nal
placements of data and results� This also forces a new de�nition of the complexity of a problem�
and then we can prove that two isomorphic topologies have indeed the same computational power�
Hopefully� we also show that our new model does not modify the hierarchy of the complexity classes
since all results that were previously derived based on De�nition 
 are still valid up to an additive
factor corresponding to the time of the permutation routing problem� In Section �� we discuss
about several properties of our new model� In particular� we show that a problem can be naturally
decomposed in subproblems whereas such a formal decomposition was not easy in the former model�
We also discuss about separation theorems� and show that most of the ones proved in ��� still hold
in our new model� We also revisit the speed�up folk theorem and the simulation theorem on a
PRAM and prove that a speed�up of �p� 
 is possible on a p�processors PRAM� even if there is no
constraint on the memory location of the data and the results� We generalize in this way the result
obtained in �
�� where input and output memory locations were part of the problem� Finally� we
conclude the paper in Section � by some comments about the XRAM model as a practical and�or
theoretical model for parallel computation�

� A new de�nition of the XRAM model

��� Comparability must be re�exive

We adopt the same terminology as in ���� given a problem P and two models of computation M�

andM��M��P� �M��P� �resp� M��P� � M��P�� if the complexity of P in the modelM� is smaller
�resp� strictly smaller� than the complexity of P in the model M�� We will say that the model M�

is less powerful than the model M� if M��P� � M��P� for every problems P � This is denoted by
M� �M�� Moreover� if M� �M�� and if there exists a problem P such thatM��P� � M��P�� then
we say that M� is strictly less powerful than M�� that is denoted by M� � M��

The twomodels PRAM and HRAM are separated in ��� as follows� �Of course HRAM � PRAM��
Let us consider the cyclic shift problem de�ned by� C�Mi�� C�M�i��� mod n

�� i � � � � � � n�
� where
C�Mi� denotes the content of the ith memory location� This problem can be solved in one step on a
PRAM� On the other hand� solving this problem on a HRAM requires at least ��logn� steps since
C�Mn��� must be �sent� to processor P� that is at distance ��logn� from Mn�� in the hypercubic
network induced by the HRAM�

Even if this proof is virtually correct� one can argue against it because it also proves that
the HRAM is strictly less powerful than� � � itself� Indeed� let us consider two isomorphic copies
G� and G� of an Hamiltonian graph G� For instance� graphs �a� and �b� of Figure 
 are two
isomorphic copies of the ��dimensional hypercube Q�� Assume that the vertices of the two copies
are arbitrarily labeled� These two graphs induce two XRAMs� For instance� XRAMs �c� and �d� of
Figure 
 are obtained from the graphs �a� and �b�� respectively� Now� in a same way as �� 
� �� �� is
an Hamiltonian cycle of graph �a� in Figure 
 but not of graph �b�� it is likely true that one can �nd
a permutation �� � �n such that the ordered set f���i�� i� � � � � � n�
g is an Hamiltonian cycle in
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Figure 
� Two isomorphic XRAMs obtained from two isomorphic copies of Q��

G� but not in G�� and a permutation �� � �n such that the ordered set f���i�� i � � � � � � n� 
g is
an Hamiltonian cycle in G� but not in G�� Hence� following the same arguments as the separation
proof for the HRAM and the PRAM� one can prove that the two XRAMs obtained from two
isomorphic copies of the same graph G are incomparable�

G�RAM�P� � G�RAM�P� and G�RAM�P
�� � G�RAM�P

��

where P and P � are two di�erent versions of the cyclic shift problem adapted to the corresponding
Hamiltonian cycles of G� and G��

Therefore� the classi�cation based on the comparator ��� de�ned before does not produce a
partial order because it is not re�exive� As we will see later� it may also produce some strange
results but� in the following section� we �rst modify the de�nition of the XRAM so that ���
produces a partial order� This will be enough to avoid inconsistent results that can be obtained
with De�nition 
�

��� A new de�nition of the XRAM model

We propose the following new de�nition for the XRAM model� To make a distinction between the
de�nition of Cosnard and Ferreira� and the new de�nition� we denote our model by io�XRAM �for
input�output XRAM��

De�nition � �New de�nition of the XRAM� io�XRAM�
Let G be any graph of p vertices� An io�XRAM of topology G consists in a set P �for processor� of
p RAMs� a set M �for memory� of p memory blocks� each block being potentially in�nite as does
the memory of a RAM� and two sets I �for input� and O �for output� of n memory locations� The
p RAMs of P and the p memory blocks of M are connected as the incident bipartite graph of G�

Computation on a io�XRAM are performed as follows�

�� Input the data� Data are initially stored in I� They are �loaded� inM using an input function
�I � ��

�
I � �

�
I� � f� � � � � n�
g � f� � � � � p�
g�N that maps I toM � The mapping �I depends

on the problem solved �but not on the values of the data�� the ith data� that is the one stored
in position i of I� is stored in the memory block M��

I
�i� at the address in this memory block

speci�ed by ��I�i��

�



�� Computation� This is done exactly in the same way as seen before for the PRAM or the
XRAM� computation proceeds step by step� each step being composed of the three phases de�
scribed in Section 	 where� for each processor� data can be loaded and stored from
to adjacent
memory blocks following the connections de�ned by the graph G�

�� Output the results� Results must be placed in O� They are loaded from M using an output
function �O � ���O� �

�
O� � f� � � � � n � 
g � f� � � � � p � 
g � N that maps O to M � As �I�

the mapping �O depends on the solved problem �but not on the values of the results�� the ith
result� that is the one that must be placed in position i of O is stored in memory block M��

O
�i�

at the address ��O�i��

The two functions �I and �O allow to take into account that two XRAMs de�ned from two
isomorphic copies of the same graph are the same� even if the two sets of nodes are labeled in a
di�erent way� the choice of the adapted functions �I and �O will allow to execute the same code for
solving the same problem on the two machines� We will formally prove this fact soon but� before�
we need to de�ne what is the complexity of a problem in the io�XRAM model�

��� Complexity of a problem

An instance of a problem on an io�XRAM is de�ned as a function from I to O whereas it was
de�ned on a XRAM as a function from M to M � We are free to choose the best adapted input
and output functions �I and �O but this choice is� generally� of no help because it depends on the
problem and not on its instances� For instance� one cannot choose the functions �I and �O such
that ���O � �I systematically sorts any set of keys�

Of course the load of the data from the input set I to the memory� and the store of the result
from the memory to the output set O are only virtual operations� It is simply a way to say where
are initially the data and where can be obtained the results� Therefore� in the computation process�
phases 
 and � are for free� and only phase � is costly�

More precisely� given a problem P � and given �I and �O� let A be an algorithm solving P �
that is for any instance of P � A transforms the contents of the memory locations according to
the rules of the io�XRAM computation such that if� for every i� the ith component of the data is
placed in memory block M��

I
�i� at the address �

�
I�i�� then� for every j� the jth component of the

result is placed in M��
O
�j� at the address �

�
O�j�� As usual� the complexity of the algorithm A is the

maximum� taken over all the instances of P � of the number of steps of A required to solve a given
instance of P � Given �I and �O� the complexity of a problem P is the minimum� taken over all the
algorithms A solving P � of the complexity of A� It is denoted by comp�I��O�P��

However� De�nition � introduces a new degree of freedom� and solving a problem P on an
io�XRAM consists in�


� �nding �I and �O�

�� given �I and �O� �nding the fastest algorithm A solving P �

Therefore� the complexity of a problem P is denoted by comp�P� and satis�es

comp�P� � min
�I��O

comp�I��O�P��

We can now prove the following result that was not true with De�nition 
�

�



Theorem � Let G� and G� be two isomorphic copies of a graph G and let X� and X� be the two
io�XRAMs obtained from G� and G� respectively� X� and X� have the same power�

Proof� Let �� and �� be two arbitrary labelings of the nodes of G� and G� respectively� ��� and
�� then also label the processors and the memory locations of X� and X��� These labeling� plus
the isomorphism � between G� and G�� induce a permutation � � �p� � � �� � � � �

��
� � Let �I

and �O be the �best� input and output functions for solving a problem P on X�� and let A be
the �best� algorithm used to solved P on X�� given �I and �O � Then choose the input function
�� � ��I � �

�
I� and the output function �� � �

�
O� �

�
O� for X�� and apply the algorithm A� on X� where

A� is obtained from A by replacing each instruction �Pi accesses Mj at the address k� by �P��i�

accesses M��j� at the address k�� A and A� have the same complexity� �

Remark� The execution of the algorithm A� in the proof of Theorem 
 can also be done using
the XRAM model �De�nition 
� excepted that the data are not placed initially at their correct
positions and therefore A� will not produce the correct answer�

Note also that� roughly speaking� the io�PRAM model and the PRAM model are identical
because two labelings of the vertices of the complete graph cannot be distinguished� The unique
di�erence lies on the statement of problems in these two models� in the io�PRAM� a problem is
de�ned in terms of input and output� and not in term of memory location�

To de�nitively convince that the input and output functions must be included in the de�nition
of the XRAM� let us consider the following example� let Cn be the cycle of n vertices and Qlogn

be the hypercube of n vertices �we assume n to be a power of ��� Label the vertices of Cn from
 to n � 
 in the clockwise direction� Label the vertices of the hypercube as usual� that is the
labeling obtained using the recursive construction of the cube� vertex i is joined by and edge to
vertex j if and only if the binary expressions of i and j di�er of exactly one bit� Now� consider
the cyclic shift problem P as de�ned in Section ��
 under the XRAM model� It allows to prove
that Qlogn�P� � Cn�P�� Does it mean that the cycle is more powerful than the hypercube� Of
course not� again the several ways of labeling the vertices are not taken into account in De�nition 
�
and induce inconsistent results� In fact the new de�nition of the XRAM model allow to prove the
following theorem that sounds quite natural but that was not true with the former de�nition�

Theorem � Let G � �V�E� be any graph� and G� � �V�E�� be a subgraph of G� E� � E� Then the
io�XRAM of topology G� is less powerful that the io�XRAM of topology G� io�G�RAM � io�GRAM�

Proof� Let � and �� be two arbitrary labeling of the nodes of G and G� respectively� Since G� is a
subgraph of G� one can de�ne � � � � ����� Let ���I �A

�� ��O� be the placements and the algorithm
solving a problem P on G�� Using the relabeling function � as we did in the proof of Theorem 
�
one can construct an algorithm A and placements �I and �O that directly apply to G� Therefore
io�G�RAM�P� � io�GRAM�P�� �

Remark� Why this straightforward proof did not applied in the model of De�nition 
� Simply
because the labeling of the RAMs and the memory locations is more or less forced in De�nition 

whereas it is not considered in De�nition ��

Note also that there exist many conditions for which io�G�RAM � io�GRAM� where G� is a
subgraph of G� For instance it might be the case if the diameter or the girth of G� turn to be
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much larger than the ones of G� However such conditions must be studied in detail because one
must also �nd a problem for which these structural modi�cations really induce an increase in the
problem complexity�

��� XRAM versus io�XRAM

It is known that sorting on hypercube is in ��logn� and in O�logn log log� n� ���� Now� can we
prove that the complexity of sorting on an io�HRAM is in this range� Such a question is meaningful
because a problem on an io�XRAM does not map the memory to itself� but an input set I to an
output set O� where I and O are both isomorphic to the memory space M � and where the choice
of the isomorphisms I 	� M and O 	� M are free� Of course� the answer of this question is yes�
though up to the price of a permutation on the machine� More precisely�

Theorem � Let us consider an arbitrary p�processor XRAM of topology G� For any problem P�
we have

compId�Id�P� � O�comp�P�  max
���p

compId�Id�P���

where P� is the problem that consists to permute any array A stored in I �A�i� in position i�
following �� and to obtain the result in O �A�i� in position ��i��� Moreover� this bound is tight�

This theorem shows that although the virtual spaces I and O� and the functions that map these
spaces to the memory� must be introduced to keep consistent the formal de�nition of an abstraction
of a distributed memory computer� the complexity of a problem can be computed practically in
�xing arbitrarily the input and output position of the data� Note that the bound of Theorem � is
tight because for every � � �p� comp�P�� � O�
�� For instance� on a p�processor hypercube� any
permutation can be o��line routed in O�log p� steps �
�� Therefore all the result for the hypercube
that were previously derived are valid in the io�HRAM model up to an additive logarithmic factor�

� General properties of the io�XRAM model

��� Decomposition of a problem in subproblems

As we have seen� functions �I and �O were introduced to insure the re�exivity of the comparability
by taking into account the possible graph isomorphisms� As we said� such functions cannot be used
for solving a problem because they depend on the problem only� and not on its instances� However�
one can be tempted to cheat by decomposing a problem in subproblems� For instance� consider the
problem of adding matrices in the following order�

� C � A  B�

� D� At  B� �
 At denotes the transposition of A
�

where A and B are stored in I in row major order� and C and D are stored in O in row major order�
This problem implies to transpose A� This cannot be done using the input and output functions�
once the data have been loaded� intermediate results cannot be output during the computation in
order to be loaded again in di�erent memory locations after� Indeed� the complexity of a problem

!



is evaluated once the data are loaded� and before they are output� Therefore� if a problem P can
be decomposed into two successive subproblems P� and P�� then

comp�I��O�P� � comp�I�Id�P��  compId��O�P��� �
�

However� it could be interesting to redistribute the data between the execution of P� and P��
This redistribution might be costly� but may also allow to place the data in the right position so
that P� can be executed rapidly� For instance� if comp�P�� � comp��

I
���
O

�P�� and comp�P�� �
comp��

I
���
O
�P��� then

comp�P� � comp�P��  compId�Id��
�
I � �

� ��
O �  comp�P��� ���

In Equation �� compId�Id��
�
I � �

� ��
O � is the time necessary to perform the permutation of the data

from their positions after the execution of P� to the positions chosen to perform P� optimally� It is
not clear whether or not the upper bound � is better than 
� In fact� there is a tradeo� between�
on one hand� the time to perform P� and P� given the input and output positions of the data� and�
on the other hand� the time to permute the data between P� and P�� Therefore� we can state the
following general upper bound�

comp�P� � min
�I��O��I��O

�
comp�I��O�P��  compId�Id��I � �

��
O �  comp�I��O�P��

�
�

More generally� if a problem P can be decomposed into a succession of k subproblems P��P�� � � � �Pk�
k � �� that we denote by P � P�jP�j � � � jPk� then comp�P� is equal to

min
k��

min
P��P�� � � � �Pk

P � P�jP�j � � � jPk

min
�
�i�
I � �

�i�
O

i � 
� � � � � k

�
� Pk��

i��

�
comp

�
�i�
I

��
�i�
O

�Pi�  compId�Id��
�i���
I � �

�i� ��
O �

�
 comp

�
�k�
I

��
�k�
O

�Pk�

�
� �

The reader may �nd interesting to refer to practical experiments where redistributing the data
between the several phases of a problem yields better results than the direct algorithm ��� 
���
This is typically the case in the parallel implementations of the ScaLAPack subroutines for linear
algebra ����

Remark� Such a decomposition in subproblems was not so clear in the former XRAM model� Let
us take an example� �nding the eigenvalues of a matrix is a well de�ned problem� but nobody will
never understand the sentence ��nding the eigenvalues of a matrix that is stored on a hypercube
such that row 
 is stored on processor �� block � � � �!� � � � �� is stored on processor 
�� column �
is stored on processor �
�� � �� as a problem� Indeed� the problem is ��nding the eigenvalues of a
matrix� and the other part of the sentence is just indications about the initial storage of the data�
Such a distinction between problem and storage formally appears in the io�XRAM model�

��� About separation theorems

We have seen that the HRAM and the PRAM can be separated in the XRAM model� This result
still holds in the io�XRAM model� Indeed� let us consider the permutation problem de�ned by�
C�Oi� � C�I��i��� i � � � � � � p � 
 where � is an arbitrary permutation of �p stored in I between
positions p and �p� 
� This problem can be solved in one step on a PRAM� However� whatever is
the choice of the input and output functions� there exists a permutation �� such that the memory

�



blockM��
I
�i� and the memory blockM��

I
����i�� are at unbounded distance in the hypercube� �Indeed�

only a constant amount of data can be stored in each block� otherwise it would already take an
unbounded time just to access locally the data�� Therefore� it is true that

io�HRAM � PRAM

when we restrict our study to the EREW model� Other separation results have been proved in ����
Most of them separate not only topologies but also memory access constraints �EREW� CREW�
CRCW�� They stay true in the io�XRAM model because proofs use arguments based on problems
not de�ned in term of memory location� but in fact in terms of input and output �like searching or
pre�x computation��

Tom Leighton deeply investigates in �
� the computational power of several topologies including
cycles �linear arrays�� meshes� meshes of trees� and hypercubes and related networks� We refer the
reader to his book for the several simulation and separation results that link these topologies� He
showed in particular that the butter�y network is universal in the sense that it can emulate every
bounded degree network with a constant slowdown in the computation time� The XRAM model
give a general framework to such results�

��� Speed�up and simulation

De�nition � applies to the io�XRAM of topologyKp �the complete graph of p vertices�� and therefore
to the PRAM model� Of course it does not imply any modi�cation of the PRAM theory because�
as we said� two labelings of the vertices of Kp cannot be distinguished� However� we need to go
through the proofs of theorems based on problems described in terms of data movement inside the
memory �the memory locations of the data and the results are speci�ed as part of the problem��
As an example� we consider the speed�up folk theorem that says that the speed�up of a parallel
algorithm using p processors cannot be greater than O�p�� Of course� super linear speed�up can be
obtained in practice �that is on real parallel machines� because a processor which deals with less
data may avoid problems as� for instance� cache miss� that might strongly slow down the sequential
computation on a large amount of data� However� it is often said that a speed�up larger than p
cannot be achieved on PRAM� Akl� Cosnard and Ferreira �
� have shown that it is not true and
that a speed�up of �p � 
 can be achieved on a PRAM of p processors� This result holds mainly
because one must keep in mind that each RAM has a �nite number of registers� and therefore a
PRAM of p processors has p times more registers than a single RAM� This is why a p�processors
PRAM is more than p times faster than a RAM�

The proof in �
� lies on two arguments �in the following� we assume that each processor has a
unique register� the generalization to an arbitrary number of registers can be found in �
���


� there exists a problem that can be solved in one step on a p�processors PRAM� and that
cannot be solved in less than �p� 
 steps on a single RAM �Theorem ��� in �
���

�� each step of a p�processors PRAM can be simulated in �p� 
 steps on a RAM �Theorem ��

in �
���

The second argument stays true even under the model of De�nition �� However� the �rst argument
used a problem of the class named data�movement intensive problem that is de�ned in terms of
memory location as follows�

�



Problem � Let I�� � � � � Ip be p distinct integers in the range ���� p� stored in an array A in such a
way that A�i� � Ii� i � 
� � � � � p� It is required to modify A so that it satis�es the following condition�

�
A�i� � i if there exists j such that Ij � i�
A�i� � Ii otherwise�

���

Problem 
 requires 
 step on a p�processors PRAM� whereas it requires at least �p�
 steps on a
RAM� Indeed� the memory location of the input and the output is imposed� that is the data A�i� is
given in memory location i� and the result A�i� must be returned in memory location i� with a risk
of overwriting an unread data� We could now imagine to store the results elsewhere to avoid this
problem� Indeed� what is important is that we must know where is the result� but why the memory
location of the result should be speci�ed in advance� In fact it does not correspond to De�nition ��
Problem 
 under the PRAM model is translated in the following problem in the io�PRAM model�

Problem � We are given an array A stored in I �A�i� in position i�� We want to modify it
according the rule of Problem 	� and we want the result stored in O �A�i� in position i��

The two sentences �stored in I� and �stored in O� just mean �we give you the data�� and �we
want the result�� but the position where are stored and loaded the data in the memory is not part
of the problem� it is part of the algorithm solving the problem� Anyway� one can still prove that
Problem � cannot be solved in less than �p � 
 steps on an io�PRAM� that is even with a total
freedom on the memory locations of the data and the results�

Lemma � Problem � requires at least �p� 
 steps on an io�PRAM�

Proof� Let i� 
 � i � p� and let i� � �O�i�� More precisely� i� denotes the memory location where
can be found the result A�i� after modi�cations speci�ed by Equation � in Problem 
� C�Mi�� � i

if there exists j such that Ij � i� and C�Mi� � � Ii otherwise� It means that the last instruction
�write� at the address i� must follow at least p instructions �read� because p reads are necessary
to check whether or not there exists j such that Ij � i� Therefore� for every i� 
 � i � p� each �nal
write at the address �O�i� must be preceded by p reads� That is a total of at least �p� 
 steps are
necessary �one step can be economized because one can read and then write in the same step�� �

Therefore� we get the following result�

Theorem � The speed�up of a p�processors io�PRAM over an io�RAM cannot exceed �p� 
� and
this bound is tight�

Proof� The tightness of the bound is given by lemma 
� The simulation theorem ��
 in �
� shows
that any step of a p�processors PRAM can be simulated on a RAM in at most �p� 
 steps� �

� XRAM� yet another model�

Everybody can state the simple but primordial requirement about what must satisfy a computer
model� it must be simple and must re�ect the behavior of real computers� Of course quite a few






models satisfy both requirements� To conclude this paper� let us analyze the XRAM model in terms
of these two conditions�

The XRAM model clearly satis�es the �rst condition� It is just a formal way to express the fact
that we work on a machine that has some particular connection properties� The huge amount of
results obtained in this framework �see for instance �
�� proves the fruitfulness of such a model�

Concerning the second requirement� the approach followed by theoreticians proving theorems
in the XRAM framework is justi�ed by the fact that real parallel computers are indeed not fully
connected� and that many machines were built with topologies as hypercube� meshes� trees� etc�
Now� we can point out many defaults of the XRAM model� For instance�

� Computation times and communication times are not distinguished in the XRAM model
whereas the elementary computation time and the elementary communication time often
di�er by many order of magnitude in real parallel computers �
���

� Computation steps and communication steps are linked in such a way that the e"cient and
practical method that consists to overlap communications with computations ��� cannot be
easily expressed in the XRAM model�

� The several models of communication costs that apply to parallel machines �!� are di"cult
to handle with the XRAM model because they make distinction between start�up times�
commutation times� propagation time� etc�

� The routing mode related to the XRAM model is packet�switching whereas circuit�switching
or wormhole routing are often preferred on the last generation of parallel computers �

��

� The computation grain of the XRAM model is �ne whereas new parallel computers are often
composed of few very powerful processors �
���

Does it mean that the XRAM model is useless� Of course not� First we can argue against some
of the previously listed defaults� For instance� the �ne grained approach is quite e"cient because
it is often the good manner to derive a parallel algorithm� a �ne grained algorithm can easily
be transformed in a coarse grained algorithm �
�� Other defaults can be treated in modifying the
model by including a router attached to each processor� Doing this requires to consider many factors
as elementary communication time� communication constraints� routing mode� etc� Moreover� even
if such a model will closely approach the behavior of real machines� it will turn to be so complicated
that quite a few powerful theoretical results will be possible to derive on it� So is it a vicious circle�

The answer is no because one should not oppose simplicity and practicability� Theoreticians
must know about some part of applied computer science so that their models and results can be used
for practical applications� Ingineers must know about some of the main theoretical results derived
under abstract models so that they can adapt these results and apply them to real programming
environments� From that point of view� we claim that the XRAM model is de�nitively a good

model�

Now� it is true that� in order to derive e"cient algorithms and to compute lower bounds
on the complexities of problems� all the formal environment provided by the input and output
sets� and by the input and output functions could be relaxed� and a model like the one de�ned
in �
��Chapter 
�
��� could be certainly prefered�
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