Pierre Fraigniaud

A note on the XRAM and PRAM models

Keywords: PRAM, complexity R esum e PRAM, complexit e

In this paper, we deal with the XRAM model introduced in 3]. We mainly show that the original de nition of the XRAM model was not consistent, and must be slightly modi ed. Therefore, we modify the de nition of the XRAM model to make it consistent, and we study the consequence of this modi cation on the complexity theory developed in the XRAM model. The new model modi es, in particular, the de nition of a problem on a XRAM, and thus on a PRAM and on a RAM since these two models are particular cases of the XRAM. However, we show that, though theoretically important, this modi cation has no practical consequence on the complexity theory developed on the XRAM model.

Introduction

This paper deals with the XRAM model introduced by Cosnard and Ferreira in 3]. The XRAM model generalizes the PRAM model 8] by taking into account the several possible interconnection topologies of the existing distributed memory parallel computers (these ones are not fully connected in general 10]).

A random access machine (RAM) 9] consists of a memory with a potentially in nite number of locations, and a processor capable of loading and storing data from and into the memory, executing arithmetic and logical operations using a nite number of internal registers, and operating under the control of a program stored in a control unit.

In one step requiring a unit of time, the processor can 1. read a datum from an arbitrary location in memory into one of its internal registers, 2. perform a computation on the content of one or two registers, and 3. write the content of one register into an arbitrary memory location.

The parallel RAM (PRAM) 8] consists of an arbitrary large number n of RAMs, all sharing the same common memory. E v ery step of a PRAM consists of three phases (all along the paper, we restrict ourselves to the exclusive read, exclusive write (EREW) model):

1. all processors read simultaneously from n di erent locations in the shared memory (one for each processor), and each processor stores the obtained value in one of its internal registers 2. all processors perform a computation on the content of one or two local registers 3. all processors write simultaneously into n di erent locations in the shared memory (one for each processor).

Cosnard and Ferreira generalized the PRAM model by i n troducing the XRAM model as follows:

De nition 1 (From 3]) Let X i , i = 0 : : : n ; 1, b e a c ollection of subsets of f0 : : : n ; 1g. A n XRAM(P M X) is an undirected bipartite graph such that P = fP i i= 0 : : : n ; 1g and M = fM i i= 0 : : : n ; 1g are the two partitions (representing the processors and the memory locations respectively) and such that P i is connected t o M j if and only if j 2 X i . X is the corresponding interconnection network.

Each computation step of an XRAM satis es the same constraints as the PRAM excepted that the memory locations that can access processor P i are limited t o M j j2 X i , i = 0 : : : n ; 1.

For instance, the hypercube RAM is de ned by the sets X i = fj 2 f 0 : : : n ; 1g j the binary expressions of i and j di er in at most one bit positiong, i = 0 : : : n ; 1. The hypercube RAM is denoted by HRAM in the following. The PRAM is a special case of De nition 1 where X i = f0 : : : n ; 1g for every i = 0 : : : n ; 1 (although the number of memory location is limited to n 2 instead of being in nite, but this can be easily solved by allowing jPj and jMj to be di erent, and jMj to be arbitrarily large).

Though this model is quite attractive, and draws a bridge between PRAMs and distributed memory computers, it su ers of a major default that is two virtually equivalent topologies are not comparable. This default is pointed out in the next section, and a new de nition that corrects it is proposed. The main consequence of this new de nition is the freedom of the initial and nal placements of data and results. This also forces a new de nition of the complexity of a problem, and then we can prove t h a t t wo isomorphic topologies have indeed the same computational power. Hopefully, w e a l s o s h o w that our new model does not modify the hierarchy of the complexity classes since all results that were previously derived based on De nition 1 are still valid up to an additive factor corresponding to the time of the permutation routing problem. In Section 3, we discuss about several properties of our new model. In particular, we show that a problem can be naturally decomposed in subproblems whereas such a formal decomposition was not easy in the former model. We also discuss about separation theorems, and show that most of the ones proved in 3] still hold in our new model. We also revisit the speed-up folk theorem and the simulation theorem on a PRAM and prove that a speed-up of 2p ;1 is possible on a p-processors PRAM, even if there is no constraint on the memory location of the data and the results. We generalize in this way the result obtained in 1], where input and output memory locations were part of the problem. Finally, w e conclude the paper in Section 4 by s o m e c o m m e n ts about the XRAM model as a practical and/or theoretical model for parallel computation.

A new de nition of the XRAM model

Comparability m ust be re exive

We adopt the same terminology as in 3]: given a problem P and two models of computation M 1 and M 2 , M 1 (P) M 2 (P) (resp. M 1 (P) < M 2 (P)) if the complexity o f P in the model M 2 is smaller (resp. strictly smaller) than the complexity o f P in the model M 1 . W e w i l l s a y that the model M 1 is less powerful than the model M 2 if M 1 (P) M 2 (P) f o r e v ery problems P. This is denoted by M 1 M 2 . M o r e o ver, if M 1 M 2 , and if there exists a problem P such that M 1 (P) < M 2 (P), then we s a y that M 1 is strictly less powerful than M 2 , that is denoted by M 1 < M 2 .

The two models PRAM and HRAM are separated in 3] a s f o l l o ws. (Of course HRAM PRAM.) Let us consider the cyclic shift problem de ned by: C M i] C M (i;1) mod n] i = 0 : : : n ;1, where C M i] denotes the content of the ith memory location. This problem can be solved in one step on a PRAM. On the other hand, solving this problem on a HRAM requires at least (log n) steps since C M n;1] m ust be \sent" to processor P 0 that is at distance (log n) f r o m M n;1 in the hypercubic network induced by the HRAM.

Even if this proof is virtually correct, one can argue against it because it also proves that the HRAM is strictly less powerful than: : : itself! Indeed, let us consider two isomorphic copies G 1 and G 2 of an Hamiltonian graph G. For instance, graphs (a) and (b) of Figure 1 are two isomorphic copies of the 2-dimensional hypercube Q 2 . Assume that the vertices of the two copies are arbitrarily labeled. These two graphs induce two X R A M s . F or instance, XRAMs (c) and (d) of Figure 1 are obtained from the graphs (a) and (b), respectively. N o w, in a same way a s (0 1 3 2) is an Hamiltonian cycle of graph (a) in Figure 1 but not of graph (b), it is likely true that one can nd a permutation 1 2 ; n such that the ordered set f 1 (i) i = 0 : : : n ;1g is an Hamiltonian cycle in

0 1 2 3 0 1 2 3 1 0 2 3 1 0 2 3 1 0 2 3 1 0 2 3 (a) (b) (c) (d)
Figure 1: Two isomorphic XRAMs obtained from two isomorphic copies of Q 2 .

G 1 but not in G 2 , and a permutation 2 2 ; n such that the ordered set f 2 (i) i = 0 : : : n ; 1g is an Hamiltonian cycle in G 2 but not in G 1 . Hence, following the same arguments as the separation proof for the HRAM and the PRAM, one can prove that the two XRAMs obtained from two isomorphic copies of the same graph G are incomparable: G 1 RAM(P) < G 2 RAM(P) a n d G 2 RAM(P 0) < G 1 RAM(P 0)

where P and P 0 are two di erent v ersions of the cyclic shift problem adapted to the corresponding Hamiltonian cycles of G 1 and G 2 .

Therefore, the classi cation based on the comparator \<" de ned before does not produce a partial order because it is not re exive. As we will see later, it may also produce some strange results but, in the following section, we rst modify the de nition of the XRAM so that \<" produces a partial order. This will be enough to avoid inconsistent results that can be obtained with De nition 1.

A new de nition of the XRAM model

We propose the following new de nition for the XRAM model. To m a k e a distinction between the de nition of Cosnard and Ferreira, and the new de nition, we denote our model by io-XRAM (for input-output XRAM).

De nition 2 (New de nition of the XRAM: io-XRAM)

Let G be any graph of p vertices. An io-XRAM of topology G consists in a set P (for processor) of p RAMs, a set M (for memory) of p memory blocks, each block being potentially in nite as does the memory of a RAM, and two sets I (for input) and O (for output) of n memory locations. The p RAMs of P and the p memory blocks of M are c onnected as the incident bipartite graph of G.

Computation on a io-XRAM are p erformed as follows:

1. Input the data. Data are initially stored i n I. T h e y a r e \loaded" in M using an input function I = (1 I 2 I) : f0 : : : n ;1g ! f 0 : : : p ;1g N that maps I to M. The mapping I depends on the problem solved (but not on the values of the data): the ith data, that is the one stored in position i of I, i s s t o r ed in the memory block M 1 I (i) at the address in this memory block speci ed b y 2 I (i).

2. Computation. This is done exactly in the same way as seen before for the PRAM or the XRAM: computation proceeds step by step, each step being composed of the three phases described i n S e ction 1 where, for each processor, data can be l o aded and stored f r om/to adjacent memory blocks following the connections de ned by the graph G.

3. Output the results. Results must be p l a c ed i n O. They are l o aded f r om M using an output function O = (1 O 2 O) : f0 : : : n ; 1g ! f 0 : : : p ; 1g N that maps O to M. A s I , the mapping O depends on the solved p r oblem (but not on the values of the results): the ith result, that is the one that must be p l a c ed i n p osition i of O is stored in memory block M 1 O (i) at the address 2 O (i).

The two functions I and O allow to take i n to account t h a t t wo XRAMs de ned from two isomorphic copies of the same graph are the same: even if the two sets of nodes are labeled in a di erent w ay, the choice of the adapted functions I and O will allow to execute the same code for solving the same problem on the two m a c hines. We will formally prove this fact soon but, before, we need to de ne what is the complexity of a problem in the io-XRAM model.

Complexity of a problem

An instance of a problem on an io-XRAM is de ned as a function from I to O whereas it was de ned on a XRAM as a function from M to M. W e are free to choose the best adapted input and output functions I and O but this choice is, generally, of no help because it depends on the problem and not on its instances. For instance, one cannot choose the functions I and O such that ;1 O I systematically sorts any set of keys.

Of course the load of the data from the input set I to the memory, and the store of the result from the memory to the output set O are only virtual operations. It is simply a way t o s a y where are initially the data and where can be obtained the results. Therefore, in the computation process, phases 1 and 3 are for free, and only phase 2 is costly.

More precisely, g i v en a problem P, and given I and O , let A be an algorithm solving P, that is for any instance of P, A transforms the contents of the memory locations according to the rules of the io-XRAM computation such that if, for every i, the ith component of the data is placed in memory block M 1 I (i) at the address 2 I (i), then, for every j, t h e jth component o f t h e result is placed in M 1 O (j) at the address 2 O (j). As usual, the complexity of the algorithm A is the maximum, taken over all the instances of P, of the number of steps of A required to solve a given instance of P. Given I and O , the complexity of a problem P is the minimum, taken over all the algorithms A solving P, of the complexity o f A. It is denoted by comp I O (P).

However, De nition 2 introduces a new degree of freedom, and solving a problem P on an io-XRAM consists in:

1. nding I and O 2. given I and O , nding the fastest algorithm A solving P. Therefore, the complexity of a problem P is denoted by comp(P) and satis es comp(P) = m i n I O comp I O (P):

We can now prove the following result that was not true with De nition 1:

Theorem 1 Let G 1 and G 2 be two isomorphic copies of a graph G and let X 1 and X 2 be the two io-XRAMs obtained f r om G 1 and G 2 respectively. X 1 and X 2 have the same power.

Proof. Let `1 and `2 be two arbitrary labelings of the nodes of G 1 and G 2 respectively. (`1 and `2 then also label the processors and the memory locations of X 1 and X 2 .) These labeling, plus the isomorphism between G 1 and G 2 , induce a permutation 2 ; p , = `2 `;1 1 . L e t I and O be the \best" input and output functions for solving a problem P on X 1 , and let A be the \best" algorithm used to solved P on X 1 , given I and O . T h e n c hoose the input function) f o r X 2 , and apply the algorithm A 0 on X 2 where A 0 is obtained from A by replacing each instruction \P i accesses M j at the address k" b y \ P (i) accesses M (j) at the address k". A and A 0 have the same complexity.

Remark. The execution of the algorithm A 0 in the proof of Theorem 1 can also be done using the XRAM model (De nition 1) excepted that the data are not placed initially at their correct positions and therefore A 0 will not produce the correct answer.

Note also that, roughly speaking, the io-PRAM model and the PRAM model are identical because two labelings of the vertices of the complete graph cannot be distinguished. The unique di erence lies on the statement of problems in these two models: in the io-PRAM, a problem is de ned in terms of input and output, and not in term of memory location.

To de nitively convince that the input and output functions must be included in the de nition of the XRAM, let us consider the following example: let C n be the cycle of n vertices and Q log n be the hypercube of n vertices (we assume n to be a power of 2). Label the vertices of C n from 0 t o n ; 1 i n t h e c l o c kwise direction. Label the vertices of the hypercube as usual, that is the labeling obtained using the recursive construction of the cube: vertex i is joined by and edge to vertex j if and only if the binary expressions of i and j di er of exactly one bit. Now, consider the cyclic shift problem P as de ned in Section 2.1 under the XRAM model. It allows to prove that Q log n (P) < C n (P)! Does it mean that the cycle is more powerful than the hypercube? Of course not, again the several ways of labeling the vertices are not taken into account in De nition 1, and induce inconsistent results. In fact the new de nition of the XRAM model allow t o p r o ve the following theorem that sounds quite natural but that was not true with the former de nition:

Theorem 2 Let G = (V E) be a n y g r aph, and G 0 = (V E 0) be a subgraph of G, E 0 E. Then the io-XRAM of topology G 0 is less powerful that the io-XRAM of topology G: io-G 0 RAM io-GRAM.

Proof. Let `and `0 be two arbitrary labeling of the nodes of G and G 0 respectively. Since G 0 is a subgraph of G, one can de ne = ` `0;1 . Let (0 I A 0 0 O) be the placements and the algorithm solving a problem P on G 0 . Using the relabeling function as we did in the proof of Theorem 1, one can construct an algorithm A and placements I and O that directly apply to G. Therefore io-G 0 RAM(P) io-GRAM(P).

Remark. Why this straightforward proof did not applied in the model of De nition 1? Simply because the labeling of the RAMs and the memory locations is more or less forced in De nition 1 whereas it is not considered in De nition 2.

Note also that there exist many conditions for which io-G 0 RAM < i o -GRAM, where G 0 is a subgraph of G. F or instance it might be the case if the diameter or the girth of G 0 turn to be much larger than the ones of G. H o wever such conditions must be studied in detail because one must also nd a problem for which these structural modi cations really induce an increase in the problem complexity.

XRAM versus io-XRAM

It is known that sorting on hypercube is in (log n) and in O(log n log log 2 n) 5]. Now, can we prove that the complexity of sorting on an io-HRAM is in this range? Such a question is meaningful because a problem on an io-XRAM does not map the memory to itself, but an input set I to an output set O, where I and O are both isomorphic to the memory space M, and where the choice of the isomorphisms I 7 ! M and O 7 ! M are free. Of course, the answer of this question is yes, though up to the price of a permutation on the machine. More precisely: Theorem 3 Let us consider an arbitrary p-processor XRAM of topology G. F or any problem P, we have comp Id Id (P) = O(comp(P) + max 2;p comp Id Id (P))

where P is the problem that consists to permute any array A stored i n I (A i] in position i) following , and to obtain the result in O (A i] in position (i)). Moreover, this bound is tight.

This theorem shows that although the virtual spaces I and O, and the functions that map these spaces to the memory, m ust be introduced to keep consistent the formal de nition of an abstraction of a distributed memory computer, the complexity of a problem can be computed practically in xing arbitrarily the input and output position of the data. Note that the bound of Theorem 3 is tight because for every 2 ; p , comp(P) = O(1). For instance, on a p-processor hypercube, any permutation can be o -line routed in O(log p) steps 10]. Therefore all the result for the hypercube that were previously derived are valid in the io-HRAM model up to an additive logarithmic factor.

3 General properties of the io-XRAM model

Decomposition of a problem in subproblems

As we h a ve seen, functions I and O were introduced to insure the re exivity of the comparability by taking into account the possible graph isomorphisms. As we said, such functions cannot be used for solving a problem because they depend on the problem only, and not on its instances. However, one can be tempted to cheat by decomposing a problem in subproblems. For instance, consider the problem of adding matrices in the following order:

1 C A + B 2 D A t + B. (A t

denotes the transposition of A)

where A and B are stored in I in row major order, and C and D are stored in O in row major order.

This problem implies to transpose A. This cannot be done using the input and output functions: once the data have been loaded, intermediate results cannot be output during the computation in order to be loaded again in di erent memory locations after. Indeed, the complexity of a problem is evaluated once the data are loaded, and before they are output. Therefore, if a problem P can be decomposed into two successive subproblems P 1 and P 2 , then comp I O (P) comp I Id (P 1) + comp Id O (P 2):

(1) However, it could be interesting to redistribute the data between the execution of P 1 and P 2 .

This redistribution might b e c o s t l y , but may also allow to place the data in the right position so that P 2 can be executed rapidly. For instance, if comp(P 1) = comp I O (P 1) a n d comp(P 2) = comp I O (P 2), then comp(P) comp(P 1) + comp Id Id (I ; 1 O) + comp(P 2):

(2)

In Equation 2, comp Id Id (I ; 1 O) is the time necessary to perform the permutation of the data from their positions after the execution of P 1 to the positions chosen to perform P 2 optimally. I t i s not clear whether or not the upper bound 2 is better than 1. In fact, there is a tradeo between, on one hand, the time to perform P 1 and P2 given the input and output positions of the data, and, on the other hand, the time to permute the data between P 1 and P 2 . Therefore, we can state the following general upper bound: More generally, if a problem P can be decomposed into a succession of k subproblems P 1 P 2 : : : P k , k > 2, that we denote by P = P 1 jP 2 j : : : jP k , then comp(P) is equal to min k 1 min P 1 P 2 : : : P k P = P 1 jP 2 j : : : jP k min (i)

I (i) O i = 1 : : : k 2 4 P k;1 i=1 comp (i) I (i) O (P i) + comp Id Id ((i+1) I (i) ;1 O) +comp (k) I (k) O (P k) 3 5 :
The reader may nd interesting to refer to practical experiments where redistributing the data between the several phases of a problem yields better results than the direct algorithm [START_REF] Cosnard | Designing parallel non numerical algorithms[END_REF]12]. This is typically the case in the parallel implementations of the ScaLAPack subroutines for linear algebra 2].

Remark. Such a decomposition in subproblems was not so clear in the former XRAM model. Let us take an example: nding the eigenvalues of a matrix is a well de ned problem, but nobody will never understand the sentence \ nding the eigenvalues of a matrix that is stored on a hypercube such that row 1 is stored on processor 4, block 2 : : : 7 3 : : : 5 is stored on processor 13, column 2 is stored on processor 31,: : : " a s a problem. Indeed, the problem is \ nding the eigenvalues of a matrix" and the other part of the sentence is just indications about the initial storage of the data. Such a distinction between problem and storage formally appears in the io-XRAM model.

About separation theorems

We h a ve seen that the HRAM and the PRAM can be separated in the XRAM model. This result still holds in the io-XRAM model. Indeed, let us consider the permutation problem de ned by: C O i] C I (i)] i= 0 : : : p ; 1 where is an arbitrary permutation of ; p stored in I between positions p and 2p ; 1. This problem can be solved in one step on a PRAM. However, whatever is the choice of the input and output functions, there exists a permutation 0 such that the memory block M 1 I (i) and the memory block M 1 I (0 (i)) are at unbounded distance in the hypercube. (Indeed, only a constant a m o u n t of data can be stored in each block, otherwise it would already take a n unbounded time just to access locally the data.) Therefore, it is true that io-HRAM < PRAM when we restrict our study to the EREW model. Other separation results have been proved in 3]. Most of them separate not only topologies but also memory access constraints (EREW, CREW, CRCW). They stay true in the io-XRAM model because proofs use arguments based on problems not de ned in term of memory location, but in fact in terms of input and output (like searching or pre x computation).

Tom Leighton deeply investigates in 10] the computational power of several topologies including cycles (linear arrays), meshes, meshes of trees, and hypercubes and related networks. We refer the reader to his book for the several simulation and separation results that link these topologies. He showed in particular that the butter y network is universal in the sense that it can emulate every bounded degree network with a constant s l o wdown in the computation time. The XRAM model give a general framework to such results.

Speed-up and simulation

De nition 2 applies to the io-XRAM of topology K p (the complete graph of p vertices), and therefore to the PRAM model. Of course it does not imply any modi cation of the PRAM theory because, as we said, two labelings of the vertices of K p cannot be distinguished. However, we need to go through the proofs of theorems based on problems described in terms of data movement inside the memory (the memory locations of the data and the results are speci ed as part of the problem).

As an example, we consider the speed-up folk theorem that says that the speed-up of a parallel algorithm using p processors cannot be greater than O(p). Of course, super linear speed-up can be obtained in practice (that is on real parallel machines) because a processor which deals with less data may a void problems as, for instance, cache miss, that might strongly slow d o wn the sequential computation on a large amount of data. However, it is often said that a speed-up larger than p cannot be achieved on PRAM. Akl, Cosnard and Ferreira 1] h a ve s h o wn that it is not true and that a speed-up of 2p ; 1 can be achieved on a PRAM of p processors. This result holds mainly because one must keep in mind that each RAM has a nite number of registers, and therefore a PRAM of p processors has p times more registers than a single RAM. This is why a p-processors PRAM is more than p times faster than a RAM.

The proof in 1] l i e s o n t wo arguments (in the following, we assume that each processor has a unique register the generalization to an arbitrary number of registers can be found in 1]):

1. there exists a problem that can be solved in one step on a p-processors PRAM, and that cannot be solved in less than 2p ; 1 steps on a single RAM (Theorem 3.2 in 1]) 2. each s t e p o f a p-processors PRAM can be simulated in 2p ; 1 steps on a RAM (Theorem 6.1 in 1]). The second argument s t a ys true even under the model of De nition 2. However, the rst argument used a problem of the class named data-movement i n tensive problem that is de ned in terms of memory location as follows: models satisfy both requirements. To conclude this paper, let us analyze the XRAM model in terms of these two conditions.

The XRAM model clearly satis es the rst condition. It is just a formal way to express the fact that we w ork on a machine that has some particular connection properties. The huge amount o f results obtained in this framework (see for instance 10]) proves the fruitfulness of such a model.

Concerning the second requirement, the approach f o l l o wed by theoreticians proving theorems in the XRAM framework is justi ed by the fact that real parallel computers are indeed not fully connected, and that many m a c hines were built with topologies as hypercube, meshes, trees, etc. Now, we can point out many defaults of the XRAM model. For instance:

Computation times and communication times are not distinguished in the XRAM model whereas the elementary computation time and the elementary communication time often di er by many order of magnitude in real parallel computers 13]. Computation steps and communication steps are linked in such a w ay that the e cient a n d practical method that consists to overlap communications with computations 6] cannot be easily expressed in the XRAM model. The several models of communication costs that apply to parallel machines 7] are di cult to handle with the XRAM model because they make distinction between start-up times, commutation times, propagation time, etc. The routing mode related to the XRAM model is packet-switching whereas circuit-switching or wormhole routing are often preferred on the last generation of parallel computers 11]. The computation grain of the XRAM model is ne whereas new parallel computers are often composed of few very powerful processors 13]. Does it mean that the XRAM model is useless? Of course not. First we can argue against some of the previously listed defaults. For instance, the ne grained approach is quite e cient because it is often the good manner to derive a parallel algorithm: a ne grained algorithm can easily be transformed in a coarse grained algorithm 10]. Other defaults can be treated in modifying the model by including a router attached to each processor. Doing this requires to consider many factors as elementary communication time, communication constraints, routing mode, etc. Moreover, even if such a model will closely approach the behavior of real machines, it will turn to be so complicated that quite a few powerful theoretical results will be possible to derive on it. So is it a vicious circle?

The answer is no because one should not oppose simplicity and practicability. Theoreticians must know about some part of applied computer science so that their models and results can be used for practical applications. Ingineers must know about some of the main theoretical results derived under abstract models so that they can adapt these results and apply them to real programming environments. From that point of view, we claim that the XRAM model is de nitively a good model. Now, it is true that, in order to derive e cient algorithms and to compute lower bounds on the complexities of problems, all the formal environment provided by the input and output sets, and by the input and output functions could be relaxed, and a model like the one de ned in 10](Chapter 1.1.5) could be certainly prefered.

 O comp I O (P 1) + comp Id Id (I ;1 O) + comp I O (P 2) :

Supported by the research programs PRS and ANM of the CNRS, and by the DRET of the DGA. 1

Problem 1 Let I 1 : : : I p be p distinct integers in the range];1 p] stored i n a n a r r ay A in such a way that A i] = I i i = 1 : : : p . I t i s r equired t o m o dify A so that it satis es the following condition: (A i] = i if there exists j such that I j = i A i] = I i otherwise.

(

Problem 1 requires 1 step on a p-processors PRAM, whereas it requires at least 2p;1 steps on a RAM. Indeed, the memory location of the input and the output is imposed, that is the data A i] i s given in memory location i, and the result A i] m ust be returned in memory location i, with a risk of overwriting an unread data. We could now imagine to store the results elsewhere to avoid this problem. Indeed, what is important i s t h a t w e m ust know where is the result, but why the memory location of the result should be speci ed in advance? In fact it does not correspond to De nition 2.

Problem 1 under the PRAM model is translated in the following problem in the io-PRAM model: Problem 2 We are given an array A stored i n I (A i] in position i). We want to modify it according the rule of Problem 1, and we want the result stored i n O (A i] in position i).

The two s e n tences \stored in I" and \stored in O" just mean \we g i v e y ou the data", and \we want the result", but the position where are stored and loaded the data in the memory is not part of the problem, it is part of the algorithm solving the problem. Anyway, one can still prove that Problem 2 cannot be solved in less than 2p ; 1 steps on an io-PRAM, that is even with a total freedom on the memory locations of the data and the results.

Lemma 1 Problem 2 requires at least 2p ; 1 steps on an io-PRAM.

Proof. Let i, 1 i p, and let i = O (i). More precisely, i denotes the memory location where can be found the result A i] after modi cations speci ed by Equation 3in Problem 1: C M i] = i if there exists j such that I j = i, and C M i] = I i otherwise. It means that the last instruction \write" at the address i must follow at least p instructions \read" because p reads are necessary to check whether or not there exists j such that I j = i. Therefore, for every i, 1 i p, e a c h nal write at the address O (i) m ust be preceded by p reads. That is a total of at least 2p ; 1 steps are necessary (one step can be economized because one can read and then write in the same step).

Therefore, we get the following result:

Theorem 4 The speed-up of a p-processors io-PRAM over an io-RAM cannot exceed 2p ; 1, and this bound is tight.

Proof. The tightness of the bound is given by lemma 1. The simulation theorem 6.1 in 1] s h o ws that any s t e p o f a p-processors PRAM can be simulated on a RAM in at most 2p ; 1 steps.