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Abstract

In this paper� we compare three nested loops parallelization algorithms �Allen and
Kennedy�s algorithm� Wolf and Lam�s algorithm and Darte and Vivien�s algorithm�
that use di�erent representations of distance vectors as input� We identify the concepts
that make them similar or di�erent� We study the optimality of each with respect to
the dependence analysis it uses� We propose well�chosen examples that illustrate the
power and limitations of the three algorithms� This study permits to identify which
algorithm is the most suitable for a given representation of dependences�

Keywords� automatic parallelization� dependence analysis� linear programming

R�esum�e

Dans ce rapport� nous comparons trois algorithmes de parall�elisation automatique de
boucles imbriqu�ees �les algorithmes de Kennedy et Allen� de Wolf et Lam et de Darte
et Vivien� qui utilisent des repr�esentations di��erentes des vecteurs de distance� Nous
identi�ons les concepts qui leur sont communs et ceux qui les di��erencient� Nous �etu�
dions l�optimalit�e de chacun des algorithmes par rapport 	a l�analyse de d�ependance
qu�il utilise� Nous illustrons sa puissance et ses limitations par des exemples bien choi�
sis� Cette �etude permet �nalement d�identi�er quel algorithme est le mieux adapt�e a
une analyse de d�ependance donn�ee�

Mots�cl�es� parall�elisation automatique� analyse de d�ependances� programmation lin�eaire
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� Introduction

Loop transformations have been shown to be useful for extracting parallelism from regular nested
loops for a large class of machines� from vector machines and VLIW machines to multi�processors
architectures� Of course� to each type of machine corresponds a di�erent optimized code� de�
pending on the memory hierarchy of the target� the granularity of the generated code must be
carefully chosen so that memory accesses are optimized� Fine�grain parallelism is e�cient for vec�
tor machines� whereas for shared�memory machines� coarse�grain parallelism �obtained by tiling or
blocking techniques� is preferable and permits the reduction of inter�processor communications�

However� detecting parallelism �i�e� transforming DO loops into DOALL loops�� and under�
standing parallelism �i�e� detecting which dependences are responsible for the sequentiality in the
code� is independent of the target architecture� It only depends on the structure of the sequential
code to be parallelized� This is certainly one of the reasons why a large amount of algorithms have
been proposed for detecting DOALL loops� as a �rst step in the parallelization process� First� one
studies the problem of parallelization on an ideal machine �a PRAM for example�� and then� further
optimizations are taken into account �depending on the machine for which the code is to be com�
piled� such as the choice of granularity� the data distribution� the optimization of communications�
� � �This two�step approach is the most often used and not only in the �eld of automatic nested
loops parallelization� this is also the case� among others� for general task scheduling or software
pipelining�

This paper studies di�erent parallelism detection algorithms based on�

i� a simple decomposition of the dependence graph into its strongly connected components such
as Allen and Kennedy�s algorithm �AK����

ii� unimodular loop transformations� either ad�hoc transformations such as Banerjee�s algo�
rithm �Ban���� or generated automatically such as Wolf and Lam�s algorithm �WL����

iii� schedules� either mono�dimensional schedules �KMW��� DKR��� Fea�
a� �a particular case
being the hyperplane method �Lam���� or multi�dimensional schedules �DV��� Fea�
b��

These algorithms seem very di�erent not only by the techniques they use �graph algorithms for �i��
matrix computations for �ii�� linear programming for �iii��� but also by the description of depen�
dences they work with �graph description and level of dependences for �i�� direction vectors for �ii��
description of dependences by polyhedra for �iii��� Nevertheless� we try to identify the concepts that
make these algorithms di�erent or similar and we discuss their respective power and limitations�

Our main result is that all parallelizing algorithms� that use information only on distance
vectors� can be subsumed by a general algorithm� based on an algorithm �rst proposed by Karp�
Miller and Winograd �KMW��� in the context of uniform recurrence equations� This algorithm has
three main properties�

� it can be adapted to all usual representations of distance vectors�

� it can be proven optimal with respect to the representation of dependences it works with�

� it points out exactly which dependences are responsible for a loss of parallelism�

Furthermore� we show that Allen and Kennedy�s algorithm and Wolf and Lam�s algorithm are
particular implementations of this algorithm for less accurate dependence representations� As a
consequence� they can also be proven optimal with respect to the dependence representation they
use�






This study permits to characterize exactly which algorithm is the most suitable for a given
representation of dependences� No need to use a sophisticated dependence analysis algorithm if
the parallelization algorithm can not use the precision of its result� Conversely� no need to use a
sophisticated parallelization algorithm if the dependence representation is not precise enough�

� Input and output of parallelization algorithms

Nested DO loops are one of the code structures that permit to describe a set of computations�
whose size is not proportional to the code size� For example� n nested loops whose loop counters
describe a n�cube of size N � correspond to a set of computations of size Nn� Furthermore� it often
happens that such loop nests contain a non trivial degree of parallelism �i�e� sets of independent
computations of size ��N r� for r � ���

This aspect makes the parallelization of nested loops a very challenging problem� a compiler�
parallelizer must be able to detect� if possible� a non trivial degree of parallelism with a compilation
time not proportional to the sequential execution time of the loops� To make this possible� e�cient
parallelization algorithms must be proposed with a complexity� an input size and an output size
that depend only on n but certainly not on N � i�e� that only depend on the size of the sequential
code and not on the number of computations it describes� The input of parallelization algorithms
is a description of the dependences that link the di�erent computations generated by the loop nest�
the output is a description of an equivalent code with explicit parallelism�

��� Input� reduced dependence graph

Each iteration of the loops that surround a statement corresponds to a particular execution of the
statement� that we call an operation� The dependences between operations are represented by a
directed acyclic graph that has as many vertices as operations� the expanded dependence graph
�EDG�� Executing the operations of the loop nest while respecting the partial order speci�ed by
the EDG guarantees that the result of the loop nest is preserved� Detecting parallelism in the loop
nest means detecting anti�chains in the EDG�

Unfortunately� in general� the EDG can not be used as an input for parallelization algorithms�
since it is too large �it has as many vertices as operations described by the loop nest� and may not
be described exactly at compile�time� One prefers to manipulate the reduced dependence graph
�RDG� which is a representation� in a condensed form� of an approximate EDG� This approximation
must be a superset of the EDG so that dependence relations are preserved� The RDG has as one
vertex per statement in the loop nest and its edges are labelled in a way depending on the chosen
approximation �we will recall how in section 
�
�� See �ZC��� for a survey on dependence tests such
as gcd test� power test� omega test� lambda test� and �Fea��� for more details on exact dependence
analysis�

Since its input is the RDG and not the EDG� a parallelization algorithm is not able to distinguish
between two di�erent EDGs which have the same RDG� The parallelism that can be detected is
then the parallelism contained in the RDG� Thus� the quality of a parallelization algorithm must
be studied with respect to the dependence analysis�

��� Output� nested loops

The size of the parallelized code� as noticed before� should not depend on the number of operations
it describes� This is the reason why the output of a parallelization algorithm must always be






described by a set of loops ��
For the sake of clarity� we restrict ourselves to the case of perfectly nested DO loops with

a�ne loop bounds� even if the algorithms presented in the next sections can be extended to more
complicated nested loops� This permits to identify� as usual� the iterations of n nested loops �n is
called the depth of the loop nest� with vectors in Zn �called the iteration vectors� contained in
a �nite convex polyhedron bounded by the loop bounds �called the iteration domain�� The i�th
component of an iteration vector is the value of the i�th loop counter in the nest� counting from
the outermost to the innermost loop� In the sequential code� the iterations are therefore executed
in the lexicographic order of their iteration vectors�

In the next sections� we will denote by P � the polyhedral iteration domain� by I and J � n�
dimensional iteration vector in P � and by Si� the i�th statement in the loop nest� We will write
I �l J if I is lexicographically greater than J and I �l J if I �l J or I � J �

There are at least three ways to de�ne a new order on the operations of a loop nest �i�e� three
ways to de�ne the output of the parallelization algorithm�� that can be expressed by nested loops�

� to use elementary loop transformations as basic steps for the algorithm� such as loop distri�
bution �as in Allen and Kennedy�s algorithm�� or loop interchange and loop skewing �as in
Banerjee�s algorithm��

� to apply a linear change of basis on the iteration domain� i�e� to apply a unimodular trans�
formation on the iteration vectors �as in Wolf and Lam�s algorithm��

� to de�ne a d�dimensional schedule� i�e� to apply an a�ne transformation from Zn to Zd and
to interpret the transformation as a multi�dimensional timing function� Each component will
correspond to a sequential loop� the missing �n � d� dimensions will correspond to DOALL
loops �as in Feautrier�s algorithm and Darte and Vivien�s algorithm��

These three transformation schemes can be described by loop nests after more or less compli�
cated rewriting processes �see �WL��� DR��� Xue��� CFR��� Col����� We will not discuss them
here� We will rather study the link between the loops transformations involved �the output� and
the dependences representation �the input�� our goal being to characterize� for a given dependences
representation� which algorithm is optimal� i�e� exhibits the maximal number of parallel loops�

��� Representations of dependences

In all dependence analysis methods� dependence relations between operations are de�ned by Bern�
stein�s conditions �Ber���� Brie�y speaking� two operations are considered dependent if both access
the same memory location and if at least one access is a write� Furthermore� this dependence is
directed according to the sequential order� Depending on the order of write�s� and�or read� this
dependence corresponds to the so called 	ow dependence� anti dependence or output de�
pendence� We write� Si�I� �� Sj�J� if statement Sj at iteration J depends on statement Si at
iteration I � The partial order de�ned by �� describes the EDG �� Note that �J � I� is always
lexicographically non negative when Si�I� �� Sj�J��

The RDG is a compression of the EDG� In the RDG� two statements Si and Sj are said
dependent �we write Si � Sj� if there exists at least one pair �I� J� such that Si�I� �� Sj�J��

�These loops can be arbitrary complicated� as long as their complexity only depends on the size of the initial code�
Obviously� the simpler the result� the better� But� in this context� the meaning of �simple� is not clear� it depends
on the optimizations that may follow� We consider that structural simplicity is preferable� but this can be discussed�

�In some cases� output and anti dependences can be removed by data expansion� See for example �Fea����

�



Furthermore� the dependence Si � Sj is labelled by the set f�I� J� � P � j Si�I� �� Sj�J�g� or by
an approximation that contains this set� The precision and representation of this approximation
makes the power of the dependence analysis�

For a certain class of nested loops� it is possible to express exactly this set of pairs �I� J�
�see �Fea����� I is given as an a�ne function fi�j of J where J varies in a polyhedron Pi�j�

f�I� J� � P � j Si�I� �� Sj�J�g � f�fi�j�J�� J� j J � Pi�j � Pg ���

In most dependence analysis algorithms however� rather than the set of pairs �I� J�� one com�
putes the set of values �J � I�� This latter is called the set of distance vectors� or dependence
vectors� When exact dependence analysis is feasible� equation � shows that the set of distance
vectors is the projection of the integer points of a polyhedron� This set can be approximated by
its convex hull or by a more or less accurate description of a larger polyhedron �or a �nite union
of polyhedra�� When the set of distance vectors is represented by a �nite union� the corresponding
dependence edge in the RDG is decomposed into multi�edges�

We give below usual representations of the set of distance vectors �by decreasing precision��

Rays and vertices A dependence analysis algorithm such as �IT��� provides a description of a
dependence polyhedron by its vertices and rays �� A dependence polyhedron with no
vertices �or whose vertices have been converted to rays� is called a dependence cone� Very
often� the dependence polyhedron has a single vertex but many rays�

Direction vectors When the set of distance vectors is a singleton� the dependence is said uniform
and the only distance vector is called a uniform dependence vector� Otherwise� the set
of distance vectors can still be represented by a n�dimensional vector �called the direction
vector�� whose components belong to Z� f�g � �Z	 f���g�� Its i�th component is an
approximation of all possible i�th components of distance vectors� it is equal to z� �resp�
z�� if all i�th components are greater than �resp� smaller than� or equal to z� It is equal to �
if the i�th component takes any value and to z if the dependence is uniform in this dimension
with unique value z� In general� � �resp� �� is used as shorthand for �� �resp� ������� Note
that a direction vector can always be decomposed into several lexicographically non negative
direction vectors� For example� the direction vector ���� �� is decomposed into ��� �� and
��� ��� since the distance vectors ����� do not exist� In the rest of the paper� we will thus
assume that all direction vectors are lexicographically non negative�

Level of dependence The coarsest representation of dependences is the representation by level�
The set of distance vectors is represented by an integer p� in �� � � ��n����� de�ned as the largest
integer such that the p � � �rst components of the distance vectors are zero� A dependence
at level p 
 n means that the dependence occurs at depth p of the loop nest� i�e� at a given
iteration of the p � � outermost loops� In this case� one says that the dependence is a loop
carried dependence at level p or that the dependence is carried at level p� If p � n � ��
the dependence occurs inside the loop body� but between two di�erent statements�

Note that the representation by distance vectors is not equivalent to the representation by
pairs �as in equation ��� since the information concerning the location in the EDG of such a
distance is lost� This may even be the cause of a loss of parallelism �see section 
�
�
�� However�
this representation remains important� especially when exact dependence analysis is either too
expensive or not feasible�

�In fact� one could argue that the polyhedron is always bounded and thus has no rays� However� since loops are
very often parametrized� some parametrized vertices are converted to non parametrized vertices and rays�

�



� A study of di�erent loops parallelization algorithms

In this section� we present the main ideas of Allen and Kennedy�s algorithm� Wolf and Lam�s algo�
rithm� and Darte and Vivien�s algorithm� For each algorithm� we give an example that illustrates
its power and an example that illustrates its limitations�

��� Allen and Kennedy�s algorithm

Allen and Kennedy�s algorithm �AK��� is based on the following facts�

i� An outermost loop is parallel if it has no loop carried dependence� i�e� if there is no dependence
with level ��

ii� All iterations of a statement S� can be carried out before any iteration of a statement S� if
there is no dependence in the RDG from S� to S��

Property �i� permits to mark a loop as aDOALL or aDOSEQ loop� whereas property �ii� suggests
that the parallelism detection can be done independently in each strongly connected component of
the RDG� The input of the algorithm is a description of the RDG whose edges are labelled by the
levels of dependences� Parallelism extraction is done by loop distribution�

For a dependence graph G� we denote by G�k� the subgraph of G in which all dependences at
level strictly smaller than k have been removed� Here is a sketch of the algorithm in its most basic
formulation� The initial call is ALLEN�KENNEDY�RDG� ���

ALLEN�KENNEDY
G� k�

� If k � n� stop�

� Decompose G�k� into its strongly connected components Gi and sort them topologically�

� Rewrite code so that each Gi belongs to a di�erent loop nest �at level k� and the order on
the Gi be preserved �distribution of loops at level � k��

� For each Gi� mark the loop at level k as aDOALL loop if Gi has no edge at level k� Otherwise
mark the loop as a DOSEQ loop�

� For each Gi� call ALLEN�KENNEDY�Gi� k � ���

Example �

DO i � �� n
DO j � �� n
DO k � �� n
a�i� j� k� � a�i � �� j 	 i� k� 	 a�i� j� k � �� 	 b�i� j � �� k�
b�i� j� k� � b�i� j � �� k 	 j� 	 a�i � �� j� k�

CONTINUE

The dependence graph G � G��� drawn on �gure � has only one strongly connected component
�and at least one edge at level ��� thus the �rst call has no e�ect� However� at level 
 �the edge at
level � is not considered�� G�
� has two strongly connected components� all computations on array
b can be carried out before any computation on array a� With a loop distribution at level 
 and 
�
we get�

�
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Figure �� Reduced Dependence Graph for Example � �with level of dependences�

DOSEQ � i � �� n
DOSEQ 
 j � �� n
DOALL 
 k � �� n
b�i� j� k� � b�i� j � �� k 	 j� 	 a�i � �� j� k�


 CONTINUE
DOALL � j � �� n
DOSEQ � k � �� n
a�i� j� k� � a�i � �� j 	 i� k� 	 a�i� j� k � �� 	 b�i� j � �� k�

� CONTINUE
� CONTINUE

Property � Algorithm ALLEN�KENNEDY is optimal among all parallelism detection algorithms
whose input is a RDG labelled by the level of dependences�

Proof� The proof is based on the fact that algorithm ALLEN�KENNEDY has the same behaviour
as Darte and Vivien�s algorithm �DV��� for the particular case of a RDG labelled by the level
of dependences� if all DOALL loops are made innermost� The optimality of algorithm ALLEN�
KENNEDY is then a consequence of the optimality of Darte and Vivien�s algorithm in the general
case precised by property 
� �

Property � shows that algorithm ALLEN�KENNEDY is well adapted to a representation of
dependences by level of dependences� Therefore� to detect more parallelism than found by algorithm
ALLEN�KENNEDY� is possible only if more precision is given on the dependences� A classic
example for which it is possible to overcome algorithm ALLEN�KENNEDY is an example where a
simple interchange �example 
� or a simple skew and an interchange �example 
� reveal parallelism
�see dependence graphs on �gure 
��

Examples 
 and 


DO i � �� n DO i � �� n
DO j � �� n DO j � �� n

a�i� j� � a�i� �� j � �� 	 a�i� j � �� a�i� j� � a�i � �� j� 	 a�i� j � ��
CONTINUE CONTINUE

��� Wolf and Lam�s algorithm

Examples 
 and 
 contain parallelism� However� as shown by property �� this parallelism can
not be extracted if the dependences are represented by level of dependences only� To remedy this

�
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Figure 
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limitation� Wolf and Lam �WL��� proposed an algorithm that uses direction vectors as input� Their
work uni�ed all previous algorithms based on elementary matrix operations such as loop skewing�
loop interchange� loop reversal� in a unique framework� the framework of valid unimodular
transformations�

Looking for unimodular transformations is of practical interest since they are ��� linear� �
�
invertible in Zn� Given a unimodular transformation T � property ��� permits to check if T is valid
�T is valid if Td �l � for all non zero distance vectors d� and property �
� permits to rewrite easily
the code �simple change of basis inZn�� In general� since Td �l � can not be checked for all distance
vectors� one tries to guarantee Td �l � for all non zero direction vectors� with the usual arithmetic
conventions in Z�f�g� �Z	f���g�� In the following� we consider only non zero direction vectors
that we can thus assume lexicographically positive �see section 
�
��

Denote by t���� � � � � t�n�� the rows of T � For a direction vector d�

Td �l �� �kd� � 
 kd 
 n j 
i� � 
 i � kd� t�i��d � � and t�kd��d � ��

This means that the dependences represented by d are carried at loop level kd� If kd � � for
all direction vectors d� then all dependences are carried by the �rst loop� and all inner loops are
DOALL loops� t��� is then called a timing vector or separating hyperplane� Such a timing
vector exists if and only if �� the closure of the cone generated by all direction vectors� is pointed�
This is also equivalent to the fact that the cone �� � de�ned by �� � fy j 
x � �� y�x � �g �
is full�dimensional �see �Sch��� for more details on cones and related notions�� Building T from n

linearly independent vectors of �� permits to transform the loops into n fully permutable loops�
The notion of timing vector is in the heart of the hyperplane method and its variants �see �Lam���

DKR����� which are particularly interesting for exposing �ne�grain parallelism� whereas the notion
of fully permutable loops is the base of all tiling techniques �IT��� SD��� BDRR��� WL���� which
are used for exposing coarse�grain parallelism� As said before� both formulations are equivalent
when reasoning on ���

When the cone � is not pointed� �� has a dimension r� � 
 r � n� r � n � s where s is the
dimension of the lineality space of �� With r linearly independent vectors of ��� one can transform
the loop nest so that the r outermost loops are fully permutable� Then� one can recursively apply
the same technique for transforming the n�r innermost loops� by considering the direction vectors
not already carried by at least one of the r outermost loops �i�e that belong to the lineality space
of ��� This is the general idea of Wolf and Lam�s algorithm even if it is not explicitely described in
these terms in �WL���� This can be summarized by algorithm WOLF�LAM given below� Algorithm
WOLF�LAM takes as input a set of direction vectors D and a sequence of linearly independent
vectors E �initialized to void� from which the transformation matrix is built�

WOLF�LAM
D� E�

� De�ne � as the closure of the cone generated by the direction vectors of D�

� De�ne �� � fy j 
x � �� y�x � �g and let r be the dimension of ���

�



� Complete E into a set E� of r linearly independent vectors of �� �by construction� E � ����

� Let D� be the subset of D de�ned by d � D� � 
v � E�� v�d � � �i�e� D� � D � E�� �
D � lin�space�����

� Call WOLF�LAM�D�� E ���

Now� building the desired unimodular matrix T can be done as follows�

� Let D be the set of direction vectors� Set E � � and call WOLF�LAM�D� E��

� Build a non singular matrix T� whose �rst rows are the vectors of E �in the same order�� Let
T� � pT��

� where p is chosen so that T� is an integral matrix�

� Compute the left Hermite form of T�� T� � QH � where H is non negative� lower triangular
and Q is unimodular�

� Q�� is the desired transformation matrix �since pQ��D � HT�D��

Remark� This algorithm is not exactly the original Wolf and Lam�s algorithm� but the general
principle is similar� Wolf and Lam build the matrix T � step by step� during the algorithm� as a
product of unimodular matrices� Furthermore� they do not compute exactly �� but they propose
heuristics and special algorithms for some particular cases�

Example �

DO i � �� n
DO j � �� n
DO k � �� n
a�i� j� k� � a�i � �� j 	 i� k� 	 a�i� j� k � �� 	 a�i� j � �� k 	 ��

CONTINUE
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Figure 
� Reduced Dependence Graph for Example � �with direction vectors�

The set of direction vectors is D � f����� ��� ��� �� ��� ��� �����g �see �gure 
�� The lineality
space of ��D� is two�dimensional �generated by ��� �� �� and ��� �� ���� Thus� ���D� is one dimen�
sional and generated by E� � f��� �� ��g� Then D� � f��� �� ��� ��� �����g and ��D�� is pointed� We
complete E� by two vectors of ���D��� for example by E� � f��� �� ��� ��� �� ��g� In this particular
example� the transformation matrix whose rows are E�� E� is already unimodular and corresponds
to a simple loop skewing� For exposing DOALL loops� we choose the �rst vector of E� in the
relative interior of ��� for example E� � f��� 
� ��� ��� �� ��g� This corresponds in terms of loops
transformations to skew the loop k by factor 
 and then to interchange loops j and k�

�



DOSEQ i � �� n
DOSEQ k � �� � � n

DOALL j � max��� dk�n
�

e��min�n� bk��
�

c�
a�i� j� k � 
 � j� � a�i� �� j 	 i� k � 
 � j� 	 a�i� j� k � 
 � j � �� 	 a�i� j � �� k � 
 � j 	 ��

CONTINUE

Wolf and Lam showed that this methodology is optimal �Theorem B��� in �WL����� �an algo�
rithm that �nds the maximum coarse grain parallelism� and then recursively calls itself on the inner
loops� produces the maximum degree of parallelism possible � Strangely� they gave no hypothesis
for such a theorem� However� once again� this theorem has to be understood with respect to the
dependence analysis that is used� here� direction vectors but with no information on the structure
of the dependence graph� A correct formulation is the following�

Property � Algorithm WOLF�LAM is optimal among all parallelism detection algorithms whose
input is a set of direction vectors �implicitely� one thus considers that the loop nest has only one
statement or that all statements form an atomic block��

Proof� Once again� we use the optimality of Darte and Vivien�s algorithm� on a loop nest whose
body has only one statement� and whose dependences are represented by direction vectors� Darte
and Vivien�s algorithm has the same behaviour as algorithm WOLF�LAM� �

Therefore� as for algorithm ALLEN�KENNEDY� the sub�optimality of algorithm WOLF�LAM
in the general case has to be found� not in the algorithm methodology� but in the weakness of its
input� the fact that the structure of the RDG in terms of strongly connected components is not
exploited results in a loss of parallelism� For example� algorithm WOLF�LAM �nds no parallelism
in example � �whose RDG is given by �gure �� because of the typical structure of the direction
vectors ����� ��� ��� ����� ��� �� ���
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Figure �� Reduced Dependence Graph for Example � �with direction vectors�

��� Darte and Vivien�s algorithm

One can imagine to combine algorithms WOLF�LAM and ALLEN�KENNEDY� so as to exploit
simultaneously the structure of the RDG and the structure of the direction vectors� �rst� compute
the cone generated by the direction vectors and transform the loop nest to expose the largest
outermost fully permutable loop nest� then� consider the subgraph of the RDG� formed by the
direction vectors that are not carried by the outermost loops and compute its strongly connected
components� �nally� apply a loop distribution in order to separate these components and apply the
same technique� recursively on each component�

��



Such a strategy permits to expose more parallelism by combining unimodular transformations
and loop distribution� However� it is not optimal as example � illustrates� We will indeed see that
the key concept is not the cone generated by the direction vectors �i�e� the weights of the edges
of the RDG�� but the cone generated by the weights of the cycles of the RDG� This remark leads
to the multi�dimensional scheduling algorithm of Darte and Vivien �DV��� that can be seen as a
combination of unimodular tranformations� loop distribution� and index�shift method�

Example �

DO i � �� n
DO j � �� n
DO k � �� n
a�i� j� k� � b�i � �� j 	 i� k� 	 b�i� j � �� k 	 
�
b�i� j� k� � a�i� j � �� k 	 j� 	 a�i� j� k � ��

CONTINUE
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Figure �� Reduced Dependence Graph for Example � �with direction vectors�

On this example �whose RDG is given on �gure ��� combining algorithms ALLEN�KENNEDY
and WOLF�LAM� as proposed above� �nds only one degree of parallelism �since at the second
phase the RDG remains strongly connected�� This is not better than the basic algorithm ALLEN�
KENNEDY� However� one can �nd two degrees of parallelism in example � �see below��

Darte and Vivien�s �rst motivation was to �nd an algorithm�

� that is �exible enough to support all representations of distance vectors based on a polyhedral
representation�

� that detects the maximal degree of parallelism contained in the RDG�

�
�
� Canonical representation of the RDG

The �rst point is that any RDG� whose edges are labelled by a polyhedral representation of the
distance vectors� can be simulated by a RDG� whose edges are labelled by dependence vectors�

Consider the particular case of a dependence between two statements S� and S� whose associated
distance vectors are represented by a polyhedron with a single vertex w and a single ray r� This
means that� in the RDG� one considers that all distance vectors of the form w � �r �with � � ��
exist� and that� in the EDG� there is a dependence path of length �� from S��I� to S��I � w� �r��
for all � � � and for all I in P �the iteration domain� such that �I � w � �r� belongs to P �

��



Thus� the situation is the same as if there were a virtual statement V � with a uniform self�
dependence r� and two uniform dependences� w from S� to V and � from V to S�� For simulating
the distance vector w��r� use once the edge from S� to V � then turn � times around V � and �nally
go to S�� However� this simulation corresponds to a dependence path of length �� 
 instead of ��
To suppress this di�erence� one assigns a delay to each edge� � to the edge labelled by w and � to
the others� The length of a simulated path is then the sum of the delays along the edges it uses�

This simulation is the base of Darte and Vivien�s algorithm whose �rst phase consists in trans�
forming a RDG� whose edges are labelled by polyhedra� into an equivalent RDG� whose edges are
labelled by weights �dependence vectors� and delays �� or ��� and whose vertices form two classes�
the actual vertices and the virtual vertices� This phase is done by the algorithm TRANSFORM�

TRANSFORM
G�

� Mark all vertices of G as actual vertices�

� For all edges e � �xe� ye� of G� create a virtual vertex Ve�

� If e is labelled by a polyhedron with vertices v�� � � � � vi� rays r�� � � � � rj and lines l�� � � � � lk�

� suppress the edge e�

� create i edges from xe to Ve labelled by v�� � � � � vi� with a delay ��

� create j self�loops around Ve labelled by r�� � � � � rj� with a delay ��

� create 
k self�loops around Ve labelled by l�� � � � � lk and �l�� � � � ��lk� with a delay ��

� create one edge from Ve to ye labelled by the null vector �� with a delay ��

� Return the transformed graph�

Remark� when the polyhedron that labels an edge e has neither rays� nor lines� it is not necessary
to create a virtual vertex� One can create edges directly from xe to ye�

For example� a representation of dependences by level correspond to a particular represen�
tation by direction vectors� a dependence at level p 
 n is equivalent to the direction vector

�

p��z �� �
�� � � � � �� ��

n�pz �� �
�� � � � � ��� A representation by direction vectors is equivalent to a representation with

uniform dependences and virtual vertices� For example� the direction vector ��� �� ��� corresponds
to a polyhedron with one vertex ��� �� �� and one ray ��� ������ whereas the polyhedron that cor�
responds to ��� 
�� �� has one vertex ��� 
� ��� one ray ��� �� �� and one line ��� �� ���

�
�
� Scheduling a system of uniform recurrence equations

Note that a RDG built by the algorithm TRANSFORM does not always correspond to the RDG
of a loop nest since dependence vectors are not anymore lexicographically non negative� In fact� �if
one forgets that some vertices are virtual and that some edges have delay ��� this is the RDG of a
system of uniform recurrence equations �SURE�� introduced� in a seminal paper� by Karp� Miller
and Winograd �KMW����

Karp� Miller and Winograd studied the problem of computability of a SURE� they showed that
it is linked to the problem of detecting cycles of null weight in the reduced dependence graph G�
and that it can be solved by a recursive decomposition of the graph� based on the detection of
multi�cycles �i�e� union of cycles� of null weight� The key structure of their algorithm is G�� the
subgraph of G generated by the edges that belong to a multi�cycle of null weight�

�




Darte and Vivien showed that G� can be e�ciently built by the resolution of a simple linear
program �program 
 or its dual program 
�� This resolution permits to design a parallelization
algorithm� whose principle is dual to Karp� Miller and Winograd�s algorithm�

min
n P

e ve j q � �� v � �� w � �� q � v � � � w� Bq � �
o

�
�

max
n P

e ze j z � �� � 
 ze 
 �� Xw�e� � �ye � �xe � ze
o

�
�

Without entering the details� X is a n�dimensional vector and there is one variable � per vertex of
the RDG and one variable z per edge of the RDG� The edges of G� �resp� G n G�� are the edges
e � �xe� ye� for which ze � � �resp� ze � �� in the optimal solution of the dual �program 
�� and
equivalently� for which ve � � �resp� ve � �� in the primal �program 
�� When summing inequations
Xw�e� � �ye � �xe � ze on a cycle C of G� one �nds that Xw�C� � � if C is a cycle of G� and
Xw�C� � l�C� � � otherwise �l�C� is the length of the cycle C��

In other words and to see the link with algorithm WOLF�LAM� when considering the cone �
generated by the weights of the cycles �and not the weights of the edges�� G� is the subgraph whose
cycle weights generate the lineality space lin�space��� of � and X is a vector of the relative interior
of ��� However� there is no need to build � e�ectively for building G�� This is one of the interest
of linear programs 
 and 
�

These are the main ideas of Darte and Vivien�s algorithm� The rest are technical modi�cations
that are needed to distinguish between virtual and actual vertices� to take into account the delay
of the edges and the nature of the edges �vertices� rays or lines of a dependence polyhedron�� The
general principle of Darte and Vivien�s algorithm is the following�

� Apply a global loop distribution for separating the di�erent strongly connected components
Gi of the RDG G�

� For each component Gi that has at least one edge� compute its transformed graph Hi �
TRANSFORM�Gi� and call DARTE�VIVIEN�Hi� ���

Algorithm DARTE�VIVIEN is given below� It takes as input a transformed RDG� strongly con�
nected� with at least one edge� and it returns a so called multi�dimensional schedule� i�e� for each
actual vertex v� a set of dv n�dimensional vectorsXv

� � � � � � X
v
dv

and dv constants �
v
�� � � � � �

v
dv
� such that

computing the iteration I of the statement Sv at the multi�dimensional step �Xv
� �I��v�� � � � � X

v
dv
�I�

�vdv� leads to a valid schedule �if these steps are lexicographically ordered��

DARTE�VIVIEN
G� k�

� Build G�� the subgraph of G generated by the edges that belong to a multi�cycle of null weight�

� For a given dependence polyhedron� add in G� all the edges that simulate this polyhedron� if at
least one of the edges that correspond to its vertices is already in G� �technical modi�cation��

� Find a vector X and constants �v� such that��
Xw�e� � �ye � �xe � � for all edges e � �xe� ye� � G�

Xw�e� � �ye � �xe � de for all edges e � �xe� ye� �� G� with delay de

For all actual vertices v of G� let �vk � �v and Xv
k � X �

� If G� is empty� return�

�




� If G� is strongly connected and has at least one actual vertex� G is not computable �and the
initial RDG is not consistent��

� Otherwise� decompose G� into its strongly connected components Gi and for each Gi that has
at least one actual vertex� call DARTE�VIVIEN�Gi� k � ���
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Figure �� Transformed Reduced Dependence Graph for Example �

We now go back to example �� The transformed RDG is given on �gure �� It has � vertices
�two of them are virtual�� The weights of elementary cycles are ��� ����� and ������ �� for the
self�loops and ��� ������ ������ ��� ��� 
��
�� ��� ����� for the other elementary cycles� Therefore�
� is pointed and one can �nd a one�dimensional schedule� for example given by X � ��� ���
��
�a � � and �b � 
� Two degrees of parallelism can be exposed and the resulting code is then�

k � 
� n

DOALL � i � max��� dk��
�

e��min�n� bn�k
�

c�
DOALL � j � �� n
a�i� j� �k 	 
 � i� � b�i � �� j 	 i� �k 	 
 � i� 	 b�i� j � �� �k 	 
 � i	 
�

� CONTINUE

DOSEQ 
 k � �� n� 
 � n� �
DOALL � i � max��� dk��

�
e��min�n� bn�k

�
c�

DOALL � j � �� n
a�i� j� �k 	 
 � i� � b�i� �� j 	 i� �k 	 
 � i� 	 b�i� j � �� �k 	 
 � i 	 
�

� CONTINUE
DOALL � i � max��� dk

�
e��min�n� bn�k��

�
c�

DOALL � j � �� n
b�i� j� �k 	 
 � i	 �� � a�i� j � �� �k 	 
 � i 	 j 	 �� 	 a�i� j� �k 	 
 � i�

� CONTINUE

��




 CONTINUE

k � 
 � n

DOALL 
 i � max��� dk
�
e��min�n� bn�k��

�
c�

DOALL 
 j � �� n
b�i� j� �k 	 
 � i 	 �� � a�i� j � �� �k 	 
 � i	 j 	 �� 	 a�i� j� �k 	 
 � i�


 CONTINUE

Property � Algorithm DARTE�VIVIEN is optimal among all parallelism detection algorithms
whose input is a graph whose edges are labelled by a polyhedral representation of distance vectors�

Proof� Consider a loop nest whose reduced dependence graph is G� Let H � TRANSFORM�G�
and d � maxfdv j v actual vertex of Hg where dv has been given by algorithm DARTE�VIVIEN
for each actual vertex of H � thus for each vertex of G� d is the recursion depth of algorithm
DARTE�VIVIEN� The transformed code contains at most d nested sequential loops ��n � d� de�
grees of parallelism are exposed�� Furthermore� for a loop nest whose iteration domain contains
�resp� is contained in� a n�dimensional cube of size N �resp� �N for some � � ��� one can build a
dependence path of length ��Nd� in the EDG that corresponds to G �this is the di�cult part of
the proof�� Therefore� any parallelization algorithm would expose a sequentiality of ��Nd�� Since
the sequentiality exposed by algorithm DARTE�VIVIEN is O�Nd�� it is optimal� �

Studying the transformed RDG of examples � to � permits to better understand why parallelism
were �or were not� found by the previous algorithms� The dependences that are responsible for the
inherent sequentiality of the loop nest are exactly those that correspond to edges of G�� This has
two consequences�

� If G� has only �ow dependences� there is no need to transform the code into single assignment
form since this would not increase the degree of parallelism in the code�

� If the dependence analysis is not exact� G� shows which edges deserve a more accurate de�
pendence analysis for detecting more parallelism� There is no need to give a more precise
description of edges in G nG� since they are not responsible for the loss of parallelism�

�
�
� Limitations of Darte and Vivien�s algorithm

Darte and Vivien�s algorithm is optimal for any polyhedral representation of distance vectors �Prop�
erty 
�� However� it may not be optimal if more information is given on the pairs of iteration
vectors that induce a dependence� This comes from the fact that the set of distance vectors
f�J � I� j S��I� � S��J�g is the projection of the set f�J � I� J� j S��I� � S��J�g �which is as
precise as the set of pairs f�I� J� j S��I� � S��J�g�� Therefore� the projection makes us believe
that the distance vectors can take place anywhere in the iteration domain even if this is not true�
This loss of precision may be the cause of a loss of parallelism as example � illustrates�

Example �

DO i � �� n
DO j � i� n

a�i� j� � b�i� �� j 	 i� 	 a�i� j � ��
b�i� j� � a�i� �� j � i� 	 b�i� j � ��

CONTINUE

��
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Figure �� Reduced Dependence Graph for Example � �with direction vectors�

If the dependences are described by distance vectors� the RDG �see �gure �� has two self�
dependences ��� �� and two edges labelled by polyhedra� both with one vertex and one ray �re�
spectively ��� �� and �������� Therefore� there exists a multi�cycle of null weight� Furthermore�
the two actual vertices belong to G�� Thus� the depth of algorithm DARTE�VIVIEN is 
 and no
parallelism can be found� However� computing iteration �i� j� of the �rst statement �resp� the
second statement� at step 
i� j �resp� i� j�� leads to a valid schedule that exposes one degree of
parallelism ��

The technique used here consists in looking for multi�dimensional schedules whose linear parts
�the vectors X� may be di�erent for di�erent statements even if they belong to the same strongly
connected component� This is the base of Feautrier�s algorithm �Fea�
b� whose fundamental mathe�
matical tool is the a�ne form of Farkas lemma� Property 
 however� shows that there is no need to
look for di�erent linear parts �whose construction is more expensive and lead to more complicated
rewriting processes� in a given strongly connected component of the current subgraph G�� as long
as dependences are given by distances vectors� On the other hand� example � shows that it can be
useful when a more accurate dependence analysis is available� Now� the only remaining open ques�
tion concerns the optimality of Feautrier�s algorithm� for which representation of the dependences
is Feautrier�s algorithm optimal!

� Conclusion

Our study o�ers a classi�cation of loops parallelization algorithms� Our main results are the
following� Allen and Kennedy�s algorithm is optimal for a representation of dependences by level
and Wolf and Lam�s algorithm is optimal for a representation by direction vectors �but for a loop
nest with only one statement�� Neither of them subsumes the other one� since each uses information
that can not be exploited by the other �graph structure for the �rst one� direction vectors structure
for the second one�� However� both are subsumed by Darte and Vivien�s algorithm that is optimal
for any polyhedral representation of distance vectors� Feautrier�s algorithm is an extension of this
latter� but the characterization of its optimality remains open�

We believe this classi�cation of practical interest� since it permits a compiler�parallelizer to
choose� depending on the dependence analysis at its disposal� the simplest and cheapest paral�
lelization algorithm that remains optimal� i�e the algorithm that is the most appropriate to the
available representation of dependences� Future work will try to answer the remaining open ques�
tion concerning the optimality of Feautrier�s algorithm�

�The schedules b �
�
i 	 j 	 �

�
c and b �

�
i 	 jc minimize the latency but the code is more complicated to write�

��
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