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In this paper, we compare three nested loops parallelization algorithms (Allen and Kennedy's algorithm, Wolf and Lam's algorithm and Darte and Vivien's algorithm) that use di erent representations of distance vectors as input. We identify the concepts that make them similar or di erent. We study the optimality of each with respect to the dependence analysis it uses. We propose well-chosen examples that illustrate the power and limitations of the three algorithms. This study permits to identify which algorithm is the most suitable for a given representation of dependences.

Introduction

Loop transformations have been shown to be useful for extracting parallelism from regular nested loops for a large class of machines, from vector machines and VLIW machines to multi-processors architectures. Of course, to each t ype of machine corresponds a di erent optimized code: depending on the memory hierarchy of the target, the granularity of the generated code must be carefully chosen so that memory accesses are optimized. Fine-grain parallelism is e cient f o r v ector machines, whereas for shared-memory machines, coarse-grain parallelism (obtained by tiling or blocking techniques) is preferable and permits the reduction of inter-processor communications. However, detecting parallelism (i.e. transforming DO loops into DOALL loops), and understanding parallelism (i.e. detecting which dependences are responsible for the sequentiality in the code) is independent of the target architecture. It only depends on the structure of the sequential code to be parallelized. This is certainly one of the reasons why a large amount of algorithms have been proposed for detecting DOALL loops, as a rst step in the parallelization process. First, one studies the problem of parallelization on an ideal machine (a PRAM for example), and then, further optimizations are taken into account (depending on the machine for which the code is to be compiled) such as the choice of granularity, the data distribution, the optimization of communications, : : : This two-step approach is the most often used and not only in the eld of automatic nested loops parallelization: this is also the case, among others, for general task scheduling or software pipelining.

This paper studies di erent parallelism detection algorithms based on: i. a simple decomposition of the dependence graph into its strongly connected components such as Allen and Kennedy's algorithm AK87]. ii. unimodular loop transformations, either ad-hoc transformations such as Banerjee's algorithm Ban90], or generated automatically such a s W olf and Lam's algorithm WL91]. iii. schedules, either mono-dimensional schedules KMW67, DKR91, Fea92a] (a particular case being the hyperplane method Lam74]) or multi-dimensional schedules DV94, F ea92b]. These algorithms seem very di erent not only by the techniques they use (graph algorithms for (i), matrix computations for (ii), linear programming for (iii)), but also by the description of dependences they work with (graph description and level of dependences for (i), direction vectors for (ii), description of dependences by polyhedra for (iii)). Nevertheless, we try to identify the concepts that make these algorithms di erent or similar and we discuss their respective p o wer and limitations.

Our main result is that all parallelizing algorithms, that use information only on distance vectors, can be subsumed by a general algorithm, based on an algorithm rst proposed by Karp, Miller and Winograd KMW67] in the context of uniform recurrence equations. This algorithm has three main properties:

it can be adapted to all usual represent a t i o n s o f d i s t a n c e v ectors it can be proven optimal with respect to the representation of dependences it works with it points out exactly which dependences are responsible for a loss of parallelism. Furthermore, we show that Allen and Kennedy's algorithm and Wolf and Lam's algorithm are particular implementations of this algorithm for less accurate dependence representations. As a consequence, they can also be proven optimal with respect to the dependence representation they use.

This study permits to characterize exactly which algorithm is the most suitable for a given representation of dependences. No need to use a sophisticated dependence analysis algorithm if the parallelization algorithm can not use the precision of its result. Conversely, n o n e e d t o u s e a sophisticated parallelization algorithm if the dependence representation is not precise enough.

Input and output of parallelization algorithms

Nested DO loops are one of the code structures that permit to describe a set of computations, whose size is not proportional to the code size. For example, n nested loops whose loop counters describe a n-cube of size N , correspond to a set of computations of size N n . F urthermore, it often happens that such loop nests contain a non trivial degree of parallelism (i.e. sets of independent computations of size (N r ) f o r r 1).

This aspect makes the parallelization of nested loops a very challenging problem: a compilerparallelizer must be able to detect, if possible, a non trivial degree of parallelism with a compilation time not proportional to the sequential execution time of the loops. To m a k e this possible, e cient parallelization algorithms must be proposed with a complexity, a n input size and an output size that depend only on n but certainly not on N , i.e. that only depend on the size of the sequential code and not on the number of computations it describes. The input of parallelization algorithms is a description of the dependences that link the di erent computations generated by the loop nest, the output is a description of an equivalent code with explicit parallelism.

Input: reduced dependence graph

Each iteration of the loops that surround a statement corresponds to a particular execution of the statement, that we c a l l a n operation. The dependences between operations are represented by a directed acyclic graph that has as many v ertices as operations: the expanded dependence graph (EDG). Executing the operations of the loop nest while respecting the partial order speci ed by the EDG guarantees that the result of the loop nest is preserved. Detecting parallelism in the loop nest means detecting anti-chains in the EDG.

Unfortunately, in general, the EDG can not be used as an input for parallelization algorithms, since it is too large (it has as many v ertices as operations described by the loop nest) and may not be described exactly at compile-time. One prefers to manipulate the reduced dependence graph (RDG) which is a representation, in a condensed form, of an approximate EDG. This approximation must be a superset of the EDG so that dependence relations are preserved. The RDG has as one vertex per statement in the loop nest and its edges are labelled in a way depending on the chosen approximation (we will recall how in section 2.3). See ZC90] for a survey on dependence tests such as gcd test, power test, omega test, lambda test, and Fea91] for more details on exact dependence analysis.

Since its input is the RDG and not the EDG, a parallelization algorithm is not able to distinguish between two di erent EDGs which h a ve the same RDG. The parallelism that can be detected is then the parallelism contained in the RDG. Thus, the quality of a parallelization algorithm must be studied with respect to the dependence analysis.

Output: nested loops

The size of the parallelized code, as noticed before, should not depend on the number of operations it describes. This is the reason why the output of a parallelization algorithm must always be described by a set of loops1 .

For the sake of clarity, w e restrict ourselves to the case of perfectly nested DO loops with a ne loop bounds, even if the algorithms presented in the next sections can be extended to more complicated nested loops. This permits to identify, as usual, the iterations of n nested loops (n is called the depth of the loop nest) with vectors in Z n (called the iteration vectors) c o n tained in a nite convex polyhedron bounded by the loop bounds (called the iteration domain). The i-th component of an iteration vector is the value of the i-th loop counter in the nest, counting from the outermost to the innermost loop. In the sequential code, the iterations are therefore executed in the lexicographic order of their iteration vectors.

In the next sections, we will denote by P , the polyhedral iteration domain, by I and J , ndimensional iteration vector in P , and by S i , t h e i-th statement in the loop nest. We will write I > l J if I is lexicographically greater than J and I l J if I > l J or I = J .

There are at least three ways to de ne a new order on the operations of a loop nest (i.e. three ways to de ne the output of the parallelization algorithm), that can be expressed by nested loops:

to use elementary loop transformations as basic steps for the algorithm, such as loop distribution (as in Allen and Kennedy's algorithm), or loop interchange and loop skewing (as in Banerjee's algorithm) to apply a linear change of basis on the iteration domain, i.e. to apply a unimodular transformation on the iteration vectors (as in Wolf and Lam's algorithm).

to de ne a d-dimensional schedule, i.e. to apply an a ne transformation from Z n to Z d and to interpret the transformation as a multi-dimensional timing function. Each component will correspond to a sequential loop, the missing (n ; d) dimensions will correspond to DOALL loops (as in Feautrier's algorithm and Darte and Vivien's algorithm). These three transformation schemes can be described by loop nests after more or less complicated rewriting processes (see WL91, DR94, Xue94, CFR94, Col94]). We will not discuss them here. We will rather study the link between the loops transformations involved (the output) and the dependences representation (the input), our goal being to characterize, for a given dependences representation, which algorithm is optimal, i.e. exhibits the maximal number of parallel loops.

Representations of dependences

In all dependence analysis methods, dependence relations between operations are de ned by Bernstein's conditions Ber66]. Brie y speaking, two operations are considered dependent if both access the same memory location and if at least one access is a write. Furthermore, this dependence is directed according to the sequential order. Depending on the order of write(s) and/or read, this dependence corresponds to the so called ow dependence, anti dependence or output dependence. W e write: S i (I) = ) S j (J) if statement S j at iteration J depends on statement S i at iteration I . The partial order de ned by = ) describes the EDG2 . Note that (J ; I ) is always lexicographically non negative when S i (I) = ) S j (J).

The RDG is a compression of the EDG. In the RDG, two statements S i and S j are said dependent ( w e write S i ! S j ) if there exists at least one pair (I J ) such that S i (I) = ) S j (J). Furthermore, the dependence S i ! S j is labelled by the set f(I J ) 2 P 2 j S i (I) = ) S j (J)g, o r b y an approximation that contains this set. The precision and representation of this approximation makes the power of the dependence analysis.

For a certain class of nested loops, it is possible to express exactly this set of pairs (I J ) (see Fea91]): I is given as an a ne function f i j of J where J varies in a polyhedron P i j : f(I J ) 2 P 2 j S i (I) = ) S j (J)g = f(f i j (J) J ) j J 2 P i j P g

(1) In most dependence analysis algorithms however, rather than the set of pairs (I J ), one computes the set of values (J ; I ). This latter is called the set of distance vectors, o r dependence vectors. When exact dependence analysis is feasible, equation 1 shows that the set of distance vectors is the projection of the integer points of a polyhedron. This set can be approximated by its convex hull or by a more or less accurate description of a larger polyhedron (or a nite union of polyhedra). When the set of distance vectors is represented by a nite union, the corresponding dependence edge in the RDG is decomposed into multi-edges.

We give below usual representations of the set of distance vectors (by decreasing precision).

Rays and vertices A dependence analysis algorithm such a s I T 8 7 ] p r o vides a description of a dependence polyhedron by i t s v ertices and rays3 . A dependence polyhedron with no vertices (or whose vertices have been converted to rays) is called a dependence cone. V ery often, the dependence polyhedron has a single vertex but many r a ys.

Direction vectors When the set of distance vectors is a singleton, the dependence is said uniform and the only distance vector is called a uniform dependence vector. Otherwise, the set of distance vectors can still be represented by a n-dimensional vector (called the direction vector), whose components belong to Z f g (Z f + ;g). Its i-th component i s a n approximation of all possible i-th components of distance vectors: it is equal to z+ (resp. z;) if all i-th components are greater than (resp. smaller than) or equal to z. It is equal to if the i-th component t a k es any v alue and to z if the dependence is uniform in this dimension with unique value z. In general, + (resp. ;) is used as shorthand for 1+ (resp. (;1);). Note that a direction vector can always be decomposed into several lexicographically non negative direction vectors. For example, the direction vector (0+ ) is decomposed into (+ ) a n d (0 0+) since the distance vectors (0 ;) do not exist. In the rest of the paper, we will thus assume that all direction vectors are lexicographically non negative.

Level of dependence The coarsest representation of dependences is the representation by level.

The set of distance vectors is represented by a n i n teger p, i n 1 : : : (n+1)], de ned as the largest integer such that the p ; 1 r s t c o m p o n e n ts of the distance vectors are zero. A dependence at level p n means that the dependence occurs at depth p of the loop nest, i.e. at a given iteration of the p ; 1 outermost loops. In this case, one says that the dependence is a loop carried dependence at level p or that the dependence is carried at level p. I f p = n + 1 , the dependence occurs inside the loop body, but between two di erent statements. Note that the representation by distance vectors is not equivalent to the representation by pairs (as in equation 1), since the information concerning the location in the EDG of such a distance is lost. This may e v en be the cause of a loss of parallelism (see section 3.3.3). However, this representation remains important, especially when exact dependence analysis is either too expensive or not feasible.

A study of di erent loops parallelization algorithms

In this section, we present the main ideas of Allen and Kennedy's algorithm, Wolf and Lam's algorithm, and Darte and Vivien's algorithm. For each algorithm, we g i v e an example that illustrates its power and an example that illustrates its limitations.

Allen and Kennedy's algorithm

Allen and Kennedy's algorithm AK87] is based on the following facts:

i. An outermost loop is parallel if it has no loop carried dependence, i.e. if there is no dependence with level 1. ii. All iterations of a statement S 1 can be carried out before any iteration of a statement S 2 if there is no dependence in the RDG from S 2 to S 1 .

Property (i) permits to mark a loop as a DOALL or a DOSEQ loop, whereas property (ii) suggests that the parallelism detection can be done independently in each strongly connected component o f the RDG. The input of the algorithm is a description of the RDG whose edges are labelled by the levels of dependences. Parallelism extraction is done by loop distribution.

For a dependence graph G, w e denote by G(k) the subgraph of G in which all dependences at level strictly smaller than k have been removed. Here is a sketch of the algorithm in its most basic formulation. The initial call is ALLEN-KENNEDY(RDG, 1).

ALLEN-KENNEDY(G, k)

If k > n , s t o p . Decompose G(k) i n to its strongly connected components G i and sort them topologically. Rewrite code so that each G i belongs to a di erent loop nest (at level k) and the order on the G i be preserved (distribution of loops at level k).

For each G i , mark the loop at level k as a DOALL loop if G i has no edge at level k. Otherwise mark the loop as a DOSEQ loop.

For each G i , call ALLEN-KENNEDY(G i , k + 1).

Example 1

DO i = 1 n DO j = 1 n DO k = 1 n a(i, j, k) = a ( i ; 1, j + i, k) + a ( i, j, k ; 1) + b(i, j ; 1, k) b(i, j, k) = b ( i, j ; 1, k + j) + a ( i ; 1, j, k) CONTINUE
The dependence graph G = G(1) drawn on gure 1 has only one strongly connected component (and at least one edge at level 1), thus the rst call has no e ect. Howeve r , a t l e v el 2 (the edge at level 1 is not considered), G(2) has two strongly connected components: all computations on array b can be carried out before any computation on array a. With a loop distribution at level 2 and 3, we get: 

DOSEQ 1 i = 1 n DOSEQ 2 j = 1 n DOALL 2 k = 1 n b(i, j, k) = b ( i, j ; 1, k + j) + a ( i ; 1, j, k) 2 CONTINUE DOALL 3 j = 1 n DOSEQ 3 k = 1 n a(i, j, k) = a ( i ; 1, j + i, k) + a ( i, j, k ; 1) + b(i, j ; 1, k) 3 CONTINUE 1 CONTINUE
Property 1 Algorithm ALLEN-KENNEDY is optimal among all parallelism detection algorithms whose input is a RDG labelled by the level of dependences.

Proof: The proof is based on the fact that algorithm ALLEN-KENNEDY has the same behaviour as Darte and Vivien's algorithm DV94] for the particular case of a RDG labelled by the level of dependences, if all DOALL loops are made innermost. The optimality of algorithm ALLEN-KENNEDY is then a consequence of the optimality of Darte and Vivien's algorithm in the general case precised by property 3 .

Property 1 shows that algorithm ALLEN-KENNEDY i s w ell adapted to a representation of dependences by l e v el of dependences. Therefore, to detect more parallelism than found by algorithm ALLEN-KENNEDY, is possible only if more precision is given on the dependences. A classic example for which i t i s p o s s i b l e t o o vercome algorithm ALLEN-KENNEDY is an example where a simple interchange (example 2) or a simple skew and an interchange (example 3) reveal parallelism (see dependence graphs on gure 2).

Examples 2 and 3

DO i = 1 n DO i = 1 n DO j = 1 n DO j = 1 n
a(i, j) = a ( i ; 1, j ; 1) + a(i, j ; 1) a(i, j) = a ( i ; 1, j) + a ( i, j ; 1) CONTINUE CONTINUE

Wolf and Lam's algorithm

Examples 2 and 3 contain parallelism. However, as shown by property 1, this parallelism can not be extracted if the dependences are represented by l e v el of dependences only. T o remedy this Looking for unimodular transformations is of practical interest since they are (1) linear, (2) invertible in Z n . G i v en a unimodular transformation T , property (1) permits to check i f T is valid (T is valid if T d > l 0 for all non zero distance vectors d) and property (2) permits to rewrite easily the code (simple change of basis in Z n ). In general, since T d > l 0 can not be checked for all distance vectors, one tries to guarantee T d > l 0 for all non zero direction vectors, with the usual arithmetic conventions in Z f g (Z f + ;g). In the following, we consider only non zero direction vectors that we can thus assume lexicographically positive (see section 2.3). Denote by t(1), : : : , t(n), the rows of T . F or a direction vector d:

T d > l 0 , 9 k d 1 k d n j 8 i 1 i < k d t (i):d = 0 a n d t(k d ):d > 0:
This means that the dependences represented by d are carried at loop level k d . If k d = 1 for all direction vectors d, then all dependences are carried by the rst loop, and all inner loops are DOALL loops. t(1) is then called a timing vector or separating hyperplane. Such a timing vector exists if and only if ;, the closure of the cone generated by all direction vectors, is pointed. This is also equivalent to the fact that the cone ; + -de ned by ; + = fy j 8 x 2 ; y : x 0gis full-dimensional (see Sch86] for more details on cones and related notions). Building T from n linearly independent v ectors of ; + permits to transform the loops into n fully permutable loops.

The notion of timing vector is in the heart of the hyperplane method and its variants (see Lam74, DKR91]), which are particularly interesting for exposing ne-grain parallelism, whereas the notion of fully permutable loops is the base of all tiling techniques IT88, SD90, BDRR94, WL91], which are used for exposing coarse-grain parallelism. As said before, both formulations are equivalent when reasoning on ; + .

When the cone ; is not pointed, ; + has a dimension r, 1 r < n , r = n ; s where s is the dimension of the lineality space of ;. With r linearly independent v ectors of ; + , one can transform the loop nest so that the r outermost loops are fully permutable. Then, one can recursively apply the same technique for transforming the n ; r innermost loops, by considering the direction vectors not already carried by at least one of the r outermost loops (i.e that belong to the lineality space of ;). This is the general idea of Wolf and Lam's algorithm even if it is not explicitely described in these terms in WL91]. This can be summarized by algorithm WOLF-LAM given below. Algorithm WOLF-LAM takes as input a set of direction vectors D and a sequence of linearly independent vectors E (initialized to void) from which the transformation matrix is built:

WOLF-LAM(D, E )

De ne ; as the closure of the cone generated by the direction vectors of D. De ne ; + = fy j 8 x 2 ; y : x 0g and let r be the dimension of ; + .

Complete E into a set E 0 of r linearly independent v ectors of ; + (by construction, E ; + ). Let D 0 be the subset of D de ned by d 2 D 0 , 8 v 2 E 0 v : d = 0 (i.e. D 0 = D \ E 0? = D \ lin.space(;)). Call WOLF-LAM(D 0 , E 0 ). Now, building the desired unimodular matrix T can be done as follows:

Let D be the set of direction vectors. Set E = and call WOLF-LAM(D, E ). Build a non singular matrix T 1 whose rst rows are the vectors of E (in the same order). Let T 2 = pT ;1 1 where p is chosen so that T 2 is an integral matrix. Compute the left Hermite form of T 2 , T 2 = QH , where H is non negative, lower triangular and Q is unimodular. Q ;1 is the desired transformation matrix (since pQ ;1 D = H T 1 D).

Remark: This algorithm is not exactly the original Wolf and Lam's algorithm, but the general principle is similar. Wolf and Lam build the matrix T , s t e p b y step, during the algorithm, as a product of unimodular matrices. Furthermore, they do not compute exactly ; + but they propose heuristics and special algorithms for some particular cases.

Example 4 The set of direction vectors is D = f(1 ; 0) (0 0 1) (0 1 ;1)g (see gure 3). The lineality space of ;(D) i s t wo-dimensional (generated by ( 0 1 0) and (0 0 1)). Thus, ; + (D) is one dimensional and generated by E 1 = f(1 0 0)g. Then D 0 = f(0 0 1) (0 1 ;1)g and ;(D 0 ) i s p o i n ted. We complete E 1 by t wo v ectors of ; + (D 0 ), for example by E 2 = f(0 1 0) (0 1 1)g. In this particular example, the transformation matrix whose rows are E 1 E 2 is already unimodular and corresponds to a simple loop skewing. For exposing DOALL loops, we c hoose the rst vector of E 2 in the relative i n terior of ; + , for example E 2 = f(0 2 1) (0 1 0)g. This corresponds in terms of loops transformations to skew the loop k by factor 2 and then to interchange loops j and k:

DO i = 1 n DO j = 1 n DO k = 1 n a(i, j, k) = a ( i ; 1, j + i, k) + a ( i, j, k ; 1) + a(i, j ; 1, k + 1 ) CONTINUE 1 - 0 0 1 -1 0 0 1
DOSEQ i = 1 n DOSEQ k = 3 3 n DOALL j = max(1 d k;
n 2 e) min(n b k;1 2 c) a(i, j, k ; 2 j) = a ( i ; 1, j + i, k ; 2 j) + a ( i, j, k ; 2 j ; 1) + a(i, j ; 1, k ; 2 j + 1 ) CONTINUE Wolf and Lam showed that this methodology is optimal (Theorem B.6. in WL91]): \an algorithm that nds the maximum coarse grain parallelism, and then recursively calls itself on the inner loops, produces the maximum degree of parallelism possible". Strangely, they gave n o h ypothesis for such a theorem. However, once again, this theorem has to be understood with respect to the dependence analysis that is used: here, direction vectors but with no information on the structure of the dependence graph. A correct formulation is the following: Property 2 Algorithm WOLF-LAM is optimal among all parallelism detection algorithms whose input is a set of direction vectors (implicitely, one thus considers that the loop nest has only one statement or that all statements form an atomic block).

Proof: Once again, we use the optimality of Darte and Vivien's algorithm: on a loop nest whose body has only one statement, and whose dependences are represented by direction vectors, Darte and Vivien's algorithm has the same behaviour as algorithm WOLF-LAM.

Therefore, as for algorithm ALLEN-KENNEDY, the sub-optimality of algorithm WOLF-LAM in the general case has to be found, not in the algorithm methodology, but in the weakness of its input: the fact that the structure of the RDG in terms of strongly connected components is not exploited results in a loss of parallelism. For example, algorithm WOLF-LAM nds no parallelism in example 1 (whose RDG is given by gure 4) because of the typical structure of the direction vectors (1 ; 0) (0 1 ;) (0 0 1). 

Darte and Vivien's algorithm

One can imagine to combine algorithms WOLF-LAM and ALLEN-KENNEDY, so as to exploit simultaneously the structure of the RDG and the structure of the direction vectors: rst, compute the cone generated by the direction vectors and transform the loop nest to expose the largest outermost fully permutable loop nest then, consider the subgraph of the RDG, formed by the direction vectors that are not carried by the outermost loops and compute its strongly connected components nally, apply a loop distribution in order to separate these components and apply the same technique, recursively on each component. Such a strategy permits to expose more parallelism by c o m bining unimodular transformations and loop distribution. However, it is not optimal as example 5 illustrates. We will indeed see that the key concept is not the cone generated by the direction vectors (i.e. the weights of the edges of the RDG), but the cone generated by t h e weights of the cycles of the RDG. This remark leads to the multi-dimensional scheduling algorithm of Darte and Vivien DV94] that can be seen as a combination of unimodular tranformations, loop distribution, and index-shift method.

Example 5

DO i = 1 n DO j = 1 n DO k = 1 n a(i, j, k) = b ( i ; 1, j + i, k) + b ( i, j ; 1, k + 2 ) b(i, j, k) = a ( i, j ; 1, k + j) + a ( i, j, k ; 1) CONTINUE 0 1 - 0 0 1 1 - 0 0 1 -2
Figure 5: Reduced Dependence Graph for Example 5 (with direction vectors)

On this example (whose RDG is given on gure 5), combining algorithms ALLEN-KENNEDY and WOLF-LAM, as proposed above, nds only one degree of parallelism (since at the second phase the RDG remains strongly connected). This is not better than the basic algorithm ALLEN-KENNEDY. However, one can nd two degrees of parallelism in example 5 (see below).

Darte and Vivien's rst motivation was to nd an algorithm: that is exible enough to support all representations of distance vectors based on a polyhedral representation. that detects the maximal degree of parallelism contained in the RDG.

Canonical representation of the RDG

The rst point is that any RDG, whose edges are labelled by a polyhedral representation of the distance vectors, can be simulated by a RDG, whose edges are labelled by dependence vectors. Consider the particular case of a dependence between two statements S 1 and S 2 whose associated distance vectors are represented by a polyhedron with a single vertex w and a single ray r. This means that, in the RDG, one considers that all distance vectors of the form w + r (with 0) exist, and that, in the EDG, there is a dependence path of length 1, from S 1 (I) t o S 2 (I + w + r), for all 0 and for all I in P (the iteration domain) such t h a t ( I + w + r) belongs to P .

Thus, the situation is the same as if there were a virtual statement V , with a uniform selfdependence r, and two uniform dependences, w from S 1 to V and 0 from V to S 2 . F or simulating the distance vector w + r, use once the edge from S 1 to V , then turn times around V , and nally go to S 2 . H o wever, this simulation corresponds to a dependence path of length + 2 instead of 1.

To suppress this di erence, one assigns a delay to each edge, 1 to the edge labelled by w a n d 0 t o the others. The length of a simulated path is then the sum of the delays along the edges it uses.

This simulation is the base of Darte and Vivien's algorithm whose rst phase consists in transforming a RDG, whose edges are labelled by polyhedra, into an equivalent RDG, whose edges are labelled by w eights (dependence vectors) and delays (0 or 1), and whose vertices form two classes: the actual vertices and the virtual vertices. This phase is done by the algorithm TRANSFORM:

TRANSFORM(G)

Mark all vertices of G as actual vertices. For all edges e = ( x e y e ) o f G, create a virtual vertex V e . If e is labelled by a polyhedron with vertices v 1 : : : v i , r a ys r 1 : : : r j and lines l 1 : : : l k , { suppress the edge e. { create i edges from x e to V e labelled by v 1 : : : v i , w i t h a d e l a y 1 . { create j self-loops around V e labelled by r 1 : : : r j , w i t h a d e l a y 0 . { create 2k self-loops around V e labelled by l 1 : : : l k and ;l 1 : : : ;l k , with a delay 0 . { create one edge from V e to y e labelled by the null vector 0, with a delay 0 .

Return the transformed graph.

Remark: when the polyhedron that labels an edge e has neither rays, nor lines, it is not necessary to create a virtual vertex. One can create edges directly from x e to y e .

For example, a representation of dependences by l e v el correspond to a particular representation by direction vectors: a dependence at level p n is equivalent to the direction vector ). A representation by direction vectors is equivalent to a representation with uniform dependences and virtual vertices. For example, the direction vector (0 1 0;) corresponds to a polyhedron with one vertex (0 1 0) and one ray ( 0 0 ;1), whereas the polyhedron that corresponds to (1 2+ ) h a s o n e v ertex (1 2 0), one ray ( 0 1 0) and one line (0 0 1).

Scheduling a system of uniform recurrence equations

Note that a RDG built by the algorithm TRANSFORM does not always correspond to the RDG of a loop nest since dependence vectors are not anymore lexicographically non negative. In fact, (if one forgets that some vertices are virtual and that some edges have delay 0), this is the RDG of a system of uniform recurrence equations (SURE), introduced, in a seminal paper, by Karp, Miller and Winograd KMW67].

Karp, Miller and Winograd studied the problem of computability of a SURE: they showed that it is linked to the problem of detecting cycles of null weight in the reduced dependence graph G, and that it can be solved by a recursive decomposition of the graph, based on the detection of multi-cycles (i.e. union of cycles) of null weight. The key structure of their algorithm is G 0 , t h e subgraph of G generated by the edges that belong to a multi-cycle of null weight.

If G 0 is strongly connected and has at least one actual vertex, G is not computable (and the initial RDG is not consistent). Otherwise, decompose G 0 into its strongly connected components G i and for each G i that has at least one actual vertex, call DARTE-VIVIEN(G i , k + 1 ) . We n o w go back to example 5. The transformed RDG is given on gure 6. It has 4 vertices (two of them are virtual). The weights of elementary cycles are (0 0 ;1) and (0 ;1 0) for the self-loops and (1 0 ;1), (1 ;1 1), (0 2 ;3), (0 1 ;1) for the other elementary cycles. Therefore, ; i s p o i n ted and one can nd a one-dimensional schedule, for example given by X = ( 4 0 ;2), a = 0 and b = 3 . T w o degrees of parallelism can be exposed and the resulting code is then: k = 2 ; n DOALL 1 i = max(1 d k+1 2 e) min(n b n+k 2 c) Studying the transformed RDG of examples 1 to 4 permits to better understand why parallelism were (or were not) found by the previous algorithms. The dependences that are responsible for the inherent sequentiality of the loop nest are exactly those that correspond to edges of G 0 . This has two consequences:

DOALL 1 j = 1 n a(i, j, ;k + 2 i) = b ( i ; 1, j + i, ;k + 2 i) + b ( i, j ; 1, ;k + 2 i + 2 ) 1 CONTINUE DOSEQ 2 k = 3 ; n 2 n ; 1 DOALL 3 i = m a x (1 d k+1 2 e) min(n b n+k 2 c) DOALL 3 j = 1 n a(i, j, ;k + 2 i) = b ( i ; 1, j + i, ;k + 2 i) + b ( i, j ; 1, ;k + 2 i + 2 ) 3 CONTINUE DOALL 4 i = m a x (
If G 0 has only ow dependences, there is no need to transform the code into single assignment form since this would not increase the degree of parallelism in the code.

If the dependence analysis is not exact, G 0 shows which edges deserve a more accurate dependence analysis for detecting more parallelism. T h e r e i s n o n e e d t o g i v e a more precise description of edges in G n G 0 since they are not responsible for the loss of parallelism.

Limitations of Darte and Vivien's algorithm

Darte and Vivien's algorithm is optimal for any polyhedral representation of distance v e ctors (Property 3 ) . However, it may not be optimal if more information is given on the pairs of iteration vectors that induce a dependence. This comes from the fact that the set of distance vectors f(J ; I ) j S 1 (I) ) S 2 (J)g is the projection of the set f(J ; I J ) j S 1 (I) ) S 2 (J)g (which i s a s precise as the set of pairs f(I J ) j S 1 (I) ) S 2 (J)g). Therefore, the projection makes us believe that the distance vectors can take place anywhere in the iteration domain even if this is not true. This loss of precision may be the cause of a loss of parallelism as example 6 illustrates.

Example 6 DO i = 1 n DO j = i n a(i, j) = b ( i ; 1, j + i) + a ( i, j ; 1) b(i, j) = a ( i ; 1, j ; i) + b ( i, j ; 1) If the dependences are described by distance vectors, the RDG (see gure 7) has two s e l fdependences (0 1) and two edges labelled by polyhedra, both with one vertex and one ray ( r espectively (0 1) and (0 ;1)). Therefore, there exists a multi-cycle of null weight. Furthermore, the two actual vertices belong to G 0 . T h us, the depth of algorithm DARTE-VIVIEN is 2 and no parallelism can be found. However, computing iteration (i j ) of the rst statement (resp. the second statement) at step 2i + j (resp. i + j ), leads to a valid schedule that exposes one degree of parallelism 4 .

The technique used here consists in looking for multi-dimensional schedules whose linear parts (the vectors X ) m a y be di erent for di erent statements even if they belong to the same strongly connected c omponent. This is the base of Feautrier's algorithm Fea92b] whose fundamental mathematical tool is the a ne form of Farkas lemma. Property 3 h o wever, shows that there is no need to look for di erent linear parts (whose construction is more expensive and lead to more complicated rewriting processes) in a given strongly connected component of the current subgraph G 0 , as long as dependences are given by distances vectors. On the other hand, example 6 shows that it can be useful when a more accurate dependence analysis is available. Now, the only remaining open question concerns the optimality o f F eautrier's algorithm: for which representation of the dependences is Feautrier's algorithm optimal?

Conclusion

Our study o ers a classi cation of loops parallelization algorithms. Our main results are the following: Allen and Kennedy's algorithm is optimal for a representation of dependences by level and Wolf and Lam's algorithm is optimal for a representation by direction vectors (but for a loop nest with only one statement). Neither of them subsumes the other one, since each uses information that can not be exploited by the other (graph structure for the rst one, direction vectors structure for the second one). However, both are subsumed by Darte and Vivien's algorithm that is optimal for any polyhedral representation of distance vectors. Feautrier's algorithm is an extension of this latter, but the characterization of its optimality remains open.

We believe this classi cation of practical interest, since it permits a compiler-parallelizer to choose, depending on the dependence analysis at its disposal, the simplest and cheapest parallelization algorithm that remains optimal, i.e the algorithm that is the most appropriate to the available representation of dependences. Future work will try to answer the remaining open question concerning the optimality o f F eautrier's algorithm.
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 6 Figure 6: Transformed Reduced Dependence Graph for Example 5
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 7 Figure 7: Reduced Dependence Graph for Example 6 (with direction vectors)

  Consider a loop nest whose reduced dependence graph is G. L e t H = T R A N S F ORM(G) and d = maxfd v j v actual vertex of H g where d v has been given by algorithm DARTE-VIVIEN for each actual vertex of H , t h us for each v ertex of G. d is the recursion depth of algorithm DARTE-VIVIEN. The transformed code contains at most d nested sequential loops ((n ; d) d egrees of parallelism are exposed). Furthermore, for a loop nest whose iteration domain contains (resp. is contained in) a n-dimensional cube of size N (resp. N for some 1), one can build a dependence path of length (N d ) in the EDG that corresponds to G (this is the di cult part of the proof). Therefore, any parallelization algorithm would expose a sequentiality o f ( N d ). Since the sequentiality exposed by algorithm DARTE-VIVIEN is O(N d ), it is optimal.

	2 CONTINUE
	k = 2 n DOALL 5 i = max(1 d k 2 e) min(n b n+k;1 2 c) DOALL 5 j = 1 n b(i, j, ;k + 2 i + 1 ) = a ( i, j ; 1, ;k + 2 i + j + 1 ) + a ( i, j, ;k + 2 i) 5 CONTINUE
	Property 3 Algorithm DARTE-VIVIEN is optimal among all parallelism detection algorithms whose input is a graph whose edges are l a b elled b y a p olyhedral representation of distance v e ctors.
	1 d k 2 e) min(n b n+k;1 2 c) DOALL 4 j = 1 n b(i, j, ;k + 2 i + 1 ) = a ( i, j ; 1, ;k + 2 i + j + 1 ) + a ( i, j, ;k + 2 i) 4 CONTINUE
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Proof:

These loops can be arbitrary complicated, as long as their complexity only depends on the size of the initial code. Obviously, the simpler the result, the better. But, in this context, the meaning of \simple" is not clear: it depends on the optimizations that may follow. We consider that structural simplicity is preferable, but this can be discussed.

In some cases, output and anti dependences can be removed by data expansion. See for example Fea91].

In fact, one could argue that the polyhedron is always bounded and thu s h a s n o r a ys. However, since loops are very often parametrized, some parametrized vertices are converted to non parametrized vertices and rays.

The schedules b 3 2 i + j + 1 2 c and b 1 2 i + jc minimize the latency but the code is more complicated to write.

Vivien showed that G 0 can be e ciently built by the resolution of a simple linear program (program 2 or its dual program 3). This resolution permits to design a parallelization algorithm, whose principle is dual to Karp, Miller and Winograd's algorithm. min n P e v e j q 0 v 0 w 0 q + v = 1 + w Bq = 0 o (2) max n P e z e j z 0 0 z e 1 X w (e) + ye ; xe z e o (3) Without entering the details, X is a n-dimensional vector and there is one variable per vertex of the RDG and one variable z per edge of the RDG. The edges of G 0 (resp. G n G 0 ) are the edges e = ( x e y e ) for which z e = 0 (resp. z e = 1) in the optimal solution of the dual (program 3), and equivalently, for which v e = 0 ( r e s p . v e = 1) in the primal (program 2). When summing inequations X w (e) + ye ; xe z e on a cycle C of G, one nds that X w (C) = 0 i f C is a cycle of G 0 and X w (C) l(C ) > 0 otherwise (l(C) is the length of the cycle C ).

In other words and to see the link with algorithm WOLF-LAM, when considering the cone ; generated by the weights of the cycles (and not the weights of the edges), G 0 is the subgraph whose cycle weights generate the lineality space lin.space(;) of ; and X is a vector of the relative i n terior of ; + . H o wever, there is no need to build ; e ectively for building G 0 . This is one of the interest of linear programs 2 and 3.

These are the main ideas of Darte and Vivien's algorithm. The rest are technical modi cations that are needed to distinguish between virtual and actual vertices, to take i n to account the delay of the edges and the nature of the edges (vertices, rays or lines of a dependence polyhedron). The general principle of Darte and Vivien's algorithm is the following:

Apply a global loop distribution for separating the di erent strongly connected components G i of the RDG G.

For each component G i that has at least one edge, compute its transformed graph H i = TRANSFORM(G i ) and call DARTE-VIVIEN(H i , 1 ) . Algorithm DARTE-VIVIEN is given below. It takes as input a transformed RDG, strongly connected, with at least one edge, and it returns a so called multi-dimensional schedule, i.e, for each actual vertex v, a set of d v n-dimensional vectors X v 1 : : : X v dv and d v constants v 1 : : : v dv , such that computing the iteration I of the statement S v at the multi-dimensional step (X v 1 :I + v 1 : : : X v dv :I + v dv ) leads to a valid schedule (if these steps are lexicographically ordered).

DARTE-VIVIEN(G, k)

Build G 0 , the subgraph of G generated by the edges that belong to a multi-cycle of null weight. For a given dependence polyhedron, add in G 0 all the edges that simulate this polyhedron, if at least one of the edges that correspond to its vertices is already in G 0 (technical modi cation). Find a vector X and constants v , such that: ( X w (e) + ye ; xe 0 for all edges e = ( x e y e ) 2 G 0 X w (e) + ye ; xe d e for all edges e = ( x e y e ) = 2 G 0 with delay d e For all actual vertices v of G, let v k = v and X v k = X . If G 0 is empty, return.