
HAL Id: hal-02102085
https://hal-lara.archives-ouvertes.fr/hal-02102085v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A comparison of nested loops parallelization algorithms.
Alain Darte, Frédéric Vivien

To cite this version:
Alain Darte, Frédéric Vivien. A comparison of nested loops parallelization algorithms.. [Research
Report] LIP RR-1995-11, Laboratoire de l’informatique du parallélisme. 1995, 2+18p. �hal-02102085�

https://hal-lara.archives-ouvertes.fr/hal-02102085v1
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

A comparison of nested loops

parallelization algorithms

Alain Darte and Fr�ed�eric Vivien May ����

Research Report No �����

Ecole Normale Supérieure de Lyon

Adresse électronique : lip@lip.ens−lyon.fr
Téléphone : (+33) 72.72.80.00 Télécopieur : (+33) 72.72.80.80

46 Allée d’Italie, 69364 Lyon Cedex 07, France

A comparison of nested loops parallelization algorithms

Alain Darte and Fr�ed�eric Vivien

May ����

Abstract

In this paper� we compare three nested loops parallelization algorithms �Allen and
Kennedy�s algorithm� Wolf and Lam�s algorithm and Darte and Vivien�s algorithm�
that use di�erent representations of distance vectors as input� We identify the concepts
that make them similar or di�erent� We study the optimality of each with respect to
the dependence analysis it uses� We propose well�chosen examples that illustrate the
power and limitations of the three algorithms� This study permits to identify which
algorithm is the most suitable for a given representation of dependences�

Keywords� automatic parallelization� dependence analysis� linear programming

R�esum�e

Dans ce rapport� nous comparons trois algorithmes de parall�elisation automatique de
boucles imbriqu�ees �les algorithmes de Kennedy et Allen� de Wolf et Lam et de Darte
et Vivien� qui utilisent des repr�esentations di��erentes des vecteurs de distance� Nous
identi�ons les concepts qui leur sont communs et ceux qui les di��erencient� Nous �etu�
dions l�optimalit�e de chacun des algorithmes par rapport 	a l�analyse de d�ependance
qu�il utilise� Nous illustrons sa puissance et ses limitations par des exemples bien choi�
sis� Cette �etude permet �nalement d�identi�er quel algorithme est le mieux adapt�e a
une analyse de d�ependance donn�ee�

Mots�cl�es� parall�elisation automatique� analyse de d�ependances� programmation lin�eaire

A comparison of nested loops parallelization algorithms

Alain Darte and Fr�ed�eric Vivien

May ����

Abstract

In this paper� we compare three nested loops parallelization algorithms �Allen and Kennedy�s
algorithm� Wolf and Lam�s algorithm and Darte and Vivien�s algorithm� that use di�erent
representations of distance vectors as input� We identify the concepts that make them similar
or di�erent� We study the optimality of each with respect to the dependence analysis it uses� We
propose well�chosen examples that illustrate the power and limitations of the three algorithms�
This study permits to identify which algorithm is the most suitable for a given representation
of dependences�

Contents

� Introduction �

� Input and output of parallelization algorithms �

�� Input� reduced dependence graph �

�
 Output� nested loops �

� Representations of dependences �

� A study of di�erent loops parallelization algorithms �
�� Allen and Kennedy�s algorithm �
�
 Wolf and Lam�s algorithm �
� Darte and Vivien�s algorithm ��

��� Canonical representation of the RDG ��
��
 Scheduling a system of uniform recurrence equations � � � � � � � � � � � � � � �

�� Limitations of Darte and Vivien�s algorithm ��

� Conclusion ��

List of Figures

� Reduced Dependence Graph for Example � �with level of dependences� � � � � � � � � �

 Reduced Dependence Graphs for Examples
 and �
 Reduced Dependence Graph for Example � �with direction vectors� � � � � � � � � � � �
� Reduced Dependence Graph for Example � �with direction vectors� � � � � � � � � � � ��
� Reduced Dependence Graph for Example � �with direction vectors� � � � � � � � � � � ��
� Transformed Reduced Dependence Graph for Example � � � � � � � � � � � � � � � � � ��
� Reduced Dependence Graph for Example � �with direction vectors� � � � � � � � � � � ��

�

� Introduction

Loop transformations have been shown to be useful for extracting parallelism from regular nested
loops for a large class of machines� from vector machines and VLIW machines to multi�processors
architectures� Of course� to each type of machine corresponds a di�erent optimized code� de�
pending on the memory hierarchy of the target� the granularity of the generated code must be
carefully chosen so that memory accesses are optimized� Fine�grain parallelism is e�cient for vec�
tor machines� whereas for shared�memory machines� coarse�grain parallelism �obtained by tiling or
blocking techniques� is preferable and permits the reduction of inter�processor communications�

However� detecting parallelism �i�e� transforming DO loops into DOALL loops�� and under�
standing parallelism �i�e� detecting which dependences are responsible for the sequentiality in the
code� is independent of the target architecture� It only depends on the structure of the sequential
code to be parallelized� This is certainly one of the reasons why a large amount of algorithms have
been proposed for detecting DOALL loops� as a �rst step in the parallelization process� First� one
studies the problem of parallelization on an ideal machine �a PRAM for example�� and then� further
optimizations are taken into account �depending on the machine for which the code is to be com�
piled� such as the choice of granularity� the data distribution� the optimization of communications�
� � �This two�step approach is the most often used and not only in the �eld of automatic nested
loops parallelization� this is also the case� among others� for general task scheduling or software
pipelining�

This paper studies di�erent parallelism detection algorithms based on�

i� a simple decomposition of the dependence graph into its strongly connected components such
as Allen and Kennedy�s algorithm �AK����

ii� unimodular loop transformations� either ad�hoc transformations such as Banerjee�s algo�
rithm �Ban���� or generated automatically such as Wolf and Lam�s algorithm �WL����

iii� schedules� either mono�dimensional schedules �KMW��� DKR��� Fea�
a� �a particular case
being the hyperplane method �Lam���� or multi�dimensional schedules �DV��� Fea�
b��

These algorithms seem very di�erent not only by the techniques they use �graph algorithms for �i��
matrix computations for �ii�� linear programming for �iii��� but also by the description of depen�
dences they work with �graph description and level of dependences for �i�� direction vectors for �ii��
description of dependences by polyhedra for �iii��� Nevertheless� we try to identify the concepts that
make these algorithms di�erent or similar and we discuss their respective power and limitations�

Our main result is that all parallelizing algorithms� that use information only on distance
vectors� can be subsumed by a general algorithm� based on an algorithm �rst proposed by Karp�
Miller and Winograd �KMW��� in the context of uniform recurrence equations� This algorithm has
three main properties�

� it can be adapted to all usual representations of distance vectors�

� it can be proven optimal with respect to the representation of dependences it works with�

� it points out exactly which dependences are responsible for a loss of parallelism�

Furthermore� we show that Allen and Kennedy�s algorithm and Wolf and Lam�s algorithm are
particular implementations of this algorithm for less accurate dependence representations� As a
consequence� they can also be proven optimal with respect to the dependence representation they
use�

This study permits to characterize exactly which algorithm is the most suitable for a given
representation of dependences� No need to use a sophisticated dependence analysis algorithm if
the parallelization algorithm can not use the precision of its result� Conversely� no need to use a
sophisticated parallelization algorithm if the dependence representation is not precise enough�

� Input and output of parallelization algorithms

Nested DO loops are one of the code structures that permit to describe a set of computations�
whose size is not proportional to the code size� For example� n nested loops whose loop counters
describe a n�cube of size N � correspond to a set of computations of size Nn� Furthermore� it often
happens that such loop nests contain a non trivial degree of parallelism �i�e� sets of independent
computations of size ��N r� for r � ���

This aspect makes the parallelization of nested loops a very challenging problem� a compiler�
parallelizer must be able to detect� if possible� a non trivial degree of parallelism with a compilation
time not proportional to the sequential execution time of the loops� To make this possible� e�cient
parallelization algorithms must be proposed with a complexity� an input size and an output size
that depend only on n but certainly not on N � i�e� that only depend on the size of the sequential
code and not on the number of computations it describes� The input of parallelization algorithms
is a description of the dependences that link the di�erent computations generated by the loop nest�
the output is a description of an equivalent code with explicit parallelism�

��� Input� reduced dependence graph

Each iteration of the loops that surround a statement corresponds to a particular execution of the
statement� that we call an operation� The dependences between operations are represented by a
directed acyclic graph that has as many vertices as operations� the expanded dependence graph
�EDG�� Executing the operations of the loop nest while respecting the partial order speci�ed by
the EDG guarantees that the result of the loop nest is preserved� Detecting parallelism in the loop
nest means detecting anti�chains in the EDG�

Unfortunately� in general� the EDG can not be used as an input for parallelization algorithms�
since it is too large �it has as many vertices as operations described by the loop nest� and may not
be described exactly at compile�time� One prefers to manipulate the reduced dependence graph
�RDG� which is a representation� in a condensed form� of an approximate EDG� This approximation
must be a superset of the EDG so that dependence relations are preserved� The RDG has as one
vertex per statement in the loop nest and its edges are labelled in a way depending on the chosen
approximation �we will recall how in section
��� See �ZC��� for a survey on dependence tests such
as gcd test� power test� omega test� lambda test� and �Fea��� for more details on exact dependence
analysis�

Since its input is the RDG and not the EDG� a parallelization algorithm is not able to distinguish
between two di�erent EDGs which have the same RDG� The parallelism that can be detected is
then the parallelism contained in the RDG� Thus� the quality of a parallelization algorithm must
be studied with respect to the dependence analysis�

��� Output� nested loops

The size of the parallelized code� as noticed before� should not depend on the number of operations
it describes� This is the reason why the output of a parallelization algorithm must always be

described by a set of loops ��
For the sake of clarity� we restrict ourselves to the case of perfectly nested DO loops with

a�ne loop bounds� even if the algorithms presented in the next sections can be extended to more
complicated nested loops� This permits to identify� as usual� the iterations of n nested loops �n is
called the depth of the loop nest� with vectors in Zn �called the iteration vectors� contained in
a �nite convex polyhedron bounded by the loop bounds �called the iteration domain�� The i�th
component of an iteration vector is the value of the i�th loop counter in the nest� counting from
the outermost to the innermost loop� In the sequential code� the iterations are therefore executed
in the lexicographic order of their iteration vectors�

In the next sections� we will denote by P � the polyhedral iteration domain� by I and J � n�
dimensional iteration vector in P � and by Si� the i�th statement in the loop nest� We will write
I �l J if I is lexicographically greater than J and I �l J if I �l J or I � J �

There are at least three ways to de�ne a new order on the operations of a loop nest �i�e� three
ways to de�ne the output of the parallelization algorithm�� that can be expressed by nested loops�

� to use elementary loop transformations as basic steps for the algorithm� such as loop distri�
bution �as in Allen and Kennedy�s algorithm�� or loop interchange and loop skewing �as in
Banerjee�s algorithm��

� to apply a linear change of basis on the iteration domain� i�e� to apply a unimodular trans�
formation on the iteration vectors �as in Wolf and Lam�s algorithm��

� to de�ne a d�dimensional schedule� i�e� to apply an a�ne transformation from Zn to Zd and
to interpret the transformation as a multi�dimensional timing function� Each component will
correspond to a sequential loop� the missing �n � d� dimensions will correspond to DOALL
loops �as in Feautrier�s algorithm and Darte and Vivien�s algorithm��

These three transformation schemes can be described by loop nests after more or less compli�
cated rewriting processes �see �WL��� DR��� Xue��� CFR��� Col����� We will not discuss them
here� We will rather study the link between the loops transformations involved �the output� and
the dependences representation �the input�� our goal being to characterize� for a given dependences
representation� which algorithm is optimal� i�e� exhibits the maximal number of parallel loops�

��� Representations of dependences

In all dependence analysis methods� dependence relations between operations are de�ned by Bern�
stein�s conditions �Ber���� Brie�y speaking� two operations are considered dependent if both access
the same memory location and if at least one access is a write� Furthermore� this dependence is
directed according to the sequential order� Depending on the order of write�s� and�or read� this
dependence corresponds to the so called 	ow dependence� anti dependence or output de�
pendence� We write� Si�I� �� Sj�J� if statement Sj at iteration J depends on statement Si at
iteration I � The partial order de�ned by �� describes the EDG �� Note that �J � I� is always
lexicographically non negative when Si�I� �� Sj�J��

The RDG is a compression of the EDG� In the RDG� two statements Si and Sj are said
dependent �we write Si � Sj� if there exists at least one pair �I� J� such that Si�I� �� Sj�J��

�These loops can be arbitrary complicated� as long as their complexity only depends on the size of the initial code�
Obviously� the simpler the result� the better� But� in this context� the meaning of �simple� is not clear� it depends
on the optimizations that may follow� We consider that structural simplicity is preferable� but this can be discussed�

�In some cases� output and anti dependences can be removed by data expansion� See for example �Fea����

�

Furthermore� the dependence Si � Sj is labelled by the set f�I� J� � P � j Si�I� �� Sj�J�g� or by
an approximation that contains this set� The precision and representation of this approximation
makes the power of the dependence analysis�

For a certain class of nested loops� it is possible to express exactly this set of pairs �I� J�
�see �Fea����� I is given as an a�ne function fi�j of J where J varies in a polyhedron Pi�j�

f�I� J� � P � j Si�I� �� Sj�J�g � f�fi�j�J�� J� j J � Pi�j � Pg ���

In most dependence analysis algorithms however� rather than the set of pairs �I� J�� one com�
putes the set of values �J � I�� This latter is called the set of distance vectors� or dependence
vectors� When exact dependence analysis is feasible� equation � shows that the set of distance
vectors is the projection of the integer points of a polyhedron� This set can be approximated by
its convex hull or by a more or less accurate description of a larger polyhedron �or a �nite union
of polyhedra�� When the set of distance vectors is represented by a �nite union� the corresponding
dependence edge in the RDG is decomposed into multi�edges�

We give below usual representations of the set of distance vectors �by decreasing precision��

Rays and vertices A dependence analysis algorithm such as �IT��� provides a description of a
dependence polyhedron by its vertices and rays �� A dependence polyhedron with no
vertices �or whose vertices have been converted to rays� is called a dependence cone� Very
often� the dependence polyhedron has a single vertex but many rays�

Direction vectors When the set of distance vectors is a singleton� the dependence is said uniform
and the only distance vector is called a uniform dependence vector� Otherwise� the set
of distance vectors can still be represented by a n�dimensional vector �called the direction
vector�� whose components belong to Z� f�g � �Z	 f���g�� Its i�th component is an
approximation of all possible i�th components of distance vectors� it is equal to z� �resp�
z�� if all i�th components are greater than �resp� smaller than� or equal to z� It is equal to �
if the i�th component takes any value and to z if the dependence is uniform in this dimension
with unique value z� In general� � �resp� �� is used as shorthand for �� �resp� ������� Note
that a direction vector can always be decomposed into several lexicographically non negative
direction vectors� For example� the direction vector ���� �� is decomposed into ��� �� and
��� ��� since the distance vectors ����� do not exist� In the rest of the paper� we will thus
assume that all direction vectors are lexicographically non negative�

Level of dependence The coarsest representation of dependences is the representation by level�
The set of distance vectors is represented by an integer p� in �� � � ��n����� de�ned as the largest
integer such that the p � � �rst components of the distance vectors are zero� A dependence
at level p
 n means that the dependence occurs at depth p of the loop nest� i�e� at a given
iteration of the p � � outermost loops� In this case� one says that the dependence is a loop
carried dependence at level p or that the dependence is carried at level p� If p � n � ��
the dependence occurs inside the loop body� but between two di�erent statements�

Note that the representation by distance vectors is not equivalent to the representation by
pairs �as in equation ��� since the information concerning the location in the EDG of such a
distance is lost� This may even be the cause of a loss of parallelism �see section ���� However�
this representation remains important� especially when exact dependence analysis is either too
expensive or not feasible�

�In fact� one could argue that the polyhedron is always bounded and thus has no rays� However� since loops are
very often parametrized� some parametrized vertices are converted to non parametrized vertices and rays�

�

� A study of di�erent loops parallelization algorithms

In this section� we present the main ideas of Allen and Kennedy�s algorithm� Wolf and Lam�s algo�
rithm� and Darte and Vivien�s algorithm� For each algorithm� we give an example that illustrates
its power and an example that illustrates its limitations�

��� Allen and Kennedy�s algorithm

Allen and Kennedy�s algorithm �AK��� is based on the following facts�

i� An outermost loop is parallel if it has no loop carried dependence� i�e� if there is no dependence
with level ��

ii� All iterations of a statement S� can be carried out before any iteration of a statement S� if
there is no dependence in the RDG from S� to S��

Property �i� permits to mark a loop as aDOALL or aDOSEQ loop� whereas property �ii� suggests
that the parallelism detection can be done independently in each strongly connected component of
the RDG� The input of the algorithm is a description of the RDG whose edges are labelled by the
levels of dependences� Parallelism extraction is done by loop distribution�

For a dependence graph G� we denote by G�k� the subgraph of G in which all dependences at
level strictly smaller than k have been removed� Here is a sketch of the algorithm in its most basic
formulation� The initial call is ALLEN�KENNEDY�RDG� ���

ALLEN�KENNEDY
G� k�

� If k � n� stop�

� Decompose G�k� into its strongly connected components Gi and sort them topologically�

� Rewrite code so that each Gi belongs to a di�erent loop nest �at level k� and the order on
the Gi be preserved �distribution of loops at level � k��

� For each Gi� mark the loop at level k as aDOALL loop if Gi has no edge at level k� Otherwise
mark the loop as a DOSEQ loop�

� For each Gi� call ALLEN�KENNEDY�Gi� k � ���

Example �

DO i � �� n
DO j � �� n
DO k � �� n
a�i� j� k� � a�i � �� j 	 i� k� 	 a�i� j� k � �� 	 b�i� j � �� k�
b�i� j� k� � b�i� j � �� k 	 j� 	 a�i � �� j� k�

CONTINUE

The dependence graph G � G��� drawn on �gure � has only one strongly connected component
�and at least one edge at level ��� thus the �rst call has no e�ect� However� at level
 �the edge at
level � is not considered�� G�
� has two strongly connected components� all computations on array
b can be carried out before any computation on array a� With a loop distribution at level
 and �
we get�

�

1

2

21, 3

Figure �� Reduced Dependence Graph for Example � �with level of dependences�

DOSEQ � i � �� n
DOSEQ
 j � �� n
DOALL
 k � �� n
b�i� j� k� � b�i� j � �� k 	 j� 	 a�i � �� j� k�

 CONTINUE
DOALL � j � �� n
DOSEQ � k � �� n
a�i� j� k� � a�i � �� j 	 i� k� 	 a�i� j� k � �� 	 b�i� j � �� k�

� CONTINUE
� CONTINUE

Property � Algorithm ALLEN�KENNEDY is optimal among all parallelism detection algorithms
whose input is a RDG labelled by the level of dependences�

Proof� The proof is based on the fact that algorithm ALLEN�KENNEDY has the same behaviour
as Darte and Vivien�s algorithm �DV��� for the particular case of a RDG labelled by the level
of dependences� if all DOALL loops are made innermost� The optimality of algorithm ALLEN�
KENNEDY is then a consequence of the optimality of Darte and Vivien�s algorithm in the general
case precised by property � �

Property � shows that algorithm ALLEN�KENNEDY is well adapted to a representation of
dependences by level of dependences� Therefore� to detect more parallelism than found by algorithm
ALLEN�KENNEDY� is possible only if more precision is given on the dependences� A classic
example for which it is possible to overcome algorithm ALLEN�KENNEDY is an example where a
simple interchange �example
� or a simple skew and an interchange �example � reveal parallelism
�see dependence graphs on �gure
��

Examples
 and

DO i � �� n DO i � �� n
DO j � �� n DO j � �� n

a�i� j� � a�i� �� j � �� 	 a�i� j � �� a�i� j� � a�i � �� j� 	 a�i� j � ��
CONTINUE CONTINUE

��� Wolf and Lam�s algorithm

Examples
 and contain parallelism� However� as shown by property �� this parallelism can
not be extracted if the dependences are represented by level of dependences only� To remedy this

�

1
1

1
0

0
1

1
0

Figure
� Reduced Dependence Graphs for Examples
 and

limitation� Wolf and Lam �WL��� proposed an algorithm that uses direction vectors as input� Their
work uni�ed all previous algorithms based on elementary matrix operations such as loop skewing�
loop interchange� loop reversal� in a unique framework� the framework of valid unimodular
transformations�

Looking for unimodular transformations is of practical interest since they are ��� linear� �
�
invertible in Zn� Given a unimodular transformation T � property ��� permits to check if T is valid
�T is valid if Td �l � for all non zero distance vectors d� and property �
� permits to rewrite easily
the code �simple change of basis inZn�� In general� since Td �l � can not be checked for all distance
vectors� one tries to guarantee Td �l � for all non zero direction vectors� with the usual arithmetic
conventions in Z�f�g� �Z	f���g�� In the following� we consider only non zero direction vectors
that we can thus assume lexicographically positive �see section
���

Denote by t���� � � � � t�n�� the rows of T � For a direction vector d�

Td �l �� �kd� �
 kd
 n j i� �
 i � kd� t�i��d � � and t�kd��d � ��

This means that the dependences represented by d are carried at loop level kd� If kd � � for
all direction vectors d� then all dependences are carried by the �rst loop� and all inner loops are
DOALL loops� t��� is then called a timing vector or separating hyperplane� Such a timing
vector exists if and only if �� the closure of the cone generated by all direction vectors� is pointed�
This is also equivalent to the fact that the cone �� � de�ned by �� � fy j x � �� y�x � �g �
is full�dimensional �see �Sch��� for more details on cones and related notions�� Building T from n

linearly independent vectors of �� permits to transform the loops into n fully permutable loops�
The notion of timing vector is in the heart of the hyperplane method and its variants �see �Lam���

DKR����� which are particularly interesting for exposing �ne�grain parallelism� whereas the notion
of fully permutable loops is the base of all tiling techniques �IT��� SD��� BDRR��� WL���� which
are used for exposing coarse�grain parallelism� As said before� both formulations are equivalent
when reasoning on ���

When the cone � is not pointed� �� has a dimension r� �
 r � n� r � n � s where s is the
dimension of the lineality space of �� With r linearly independent vectors of ��� one can transform
the loop nest so that the r outermost loops are fully permutable� Then� one can recursively apply
the same technique for transforming the n�r innermost loops� by considering the direction vectors
not already carried by at least one of the r outermost loops �i�e that belong to the lineality space
of ��� This is the general idea of Wolf and Lam�s algorithm even if it is not explicitely described in
these terms in �WL���� This can be summarized by algorithm WOLF�LAM given below� Algorithm
WOLF�LAM takes as input a set of direction vectors D and a sequence of linearly independent
vectors E �initialized to void� from which the transformation matrix is built�

WOLF�LAM
D� E�

� De�ne � as the closure of the cone generated by the direction vectors of D�

� De�ne �� � fy j x � �� y�x � �g and let r be the dimension of ���

�

� Complete E into a set E� of r linearly independent vectors of �� �by construction� E � ����

� Let D� be the subset of D de�ned by d � D� � v � E�� v�d � � �i�e� D� � D � E�� �
D � lin�space�����

� Call WOLF�LAM�D�� E ���

Now� building the desired unimodular matrix T can be done as follows�

� Let D be the set of direction vectors� Set E � � and call WOLF�LAM�D� E��

� Build a non singular matrix T� whose �rst rows are the vectors of E �in the same order�� Let
T� � pT��

� where p is chosen so that T� is an integral matrix�

� Compute the left Hermite form of T�� T� � QH � where H is non negative� lower triangular
and Q is unimodular�

� Q�� is the desired transformation matrix �since pQ��D � HT�D��

Remark� This algorithm is not exactly the original Wolf and Lam�s algorithm� but the general
principle is similar� Wolf and Lam build the matrix T � step by step� during the algorithm� as a
product of unimodular matrices� Furthermore� they do not compute exactly �� but they propose
heuristics and special algorithms for some particular cases�

Example �

DO i � �� n
DO j � �� n
DO k � �� n
a�i� j� k� � a�i � �� j 	 i� k� 	 a�i� j� k � �� 	 a�i� j � �� k 	 ��

CONTINUE

1
−
0

 0
 1
−1

0
0
1

Figure � Reduced Dependence Graph for Example � �with direction vectors�

The set of direction vectors is D � f����� ��� ��� �� ��� ��� �����g �see �gure �� The lineality
space of ��D� is two�dimensional �generated by ��� �� �� and ��� �� ���� Thus� ���D� is one dimen�
sional and generated by E� � f��� �� ��g� Then D� � f��� �� ��� ��� �����g and ��D�� is pointed� We
complete E� by two vectors of ���D��� for example by E� � f��� �� ��� ��� �� ��g� In this particular
example� the transformation matrix whose rows are E�� E� is already unimodular and corresponds
to a simple loop skewing� For exposing DOALL loops� we choose the �rst vector of E� in the
relative interior of ��� for example E� � f���
� ��� ��� �� ��g� This corresponds in terms of loops
transformations to skew the loop k by factor
 and then to interchange loops j and k�

�

DOSEQ i � �� n
DOSEQ k � �� � � n

DOALL j � max��� dk�n
�

e��min�n� bk��
�

c�
a�i� j� k �
 � j� � a�i� �� j 	 i� k �
 � j� 	 a�i� j� k �
 � j � �� 	 a�i� j � �� k �
 � j 	 ��

CONTINUE

Wolf and Lam showed that this methodology is optimal �Theorem B��� in �WL����� �an algo�
rithm that �nds the maximum coarse grain parallelism� and then recursively calls itself on the inner
loops� produces the maximum degree of parallelism possible � Strangely� they gave no hypothesis
for such a theorem� However� once again� this theorem has to be understood with respect to the
dependence analysis that is used� here� direction vectors but with no information on the structure
of the dependence graph� A correct formulation is the following�

Property � Algorithm WOLF�LAM is optimal among all parallelism detection algorithms whose
input is a set of direction vectors �implicitely� one thus considers that the loop nest has only one
statement or that all statements form an atomic block��

Proof� Once again� we use the optimality of Darte and Vivien�s algorithm� on a loop nest whose
body has only one statement� and whose dependences are represented by direction vectors� Darte
and Vivien�s algorithm has the same behaviour as algorithm WOLF�LAM� �

Therefore� as for algorithm ALLEN�KENNEDY� the sub�optimality of algorithm WOLF�LAM
in the general case has to be found� not in the algorithm methodology� but in the weakness of its
input� the fact that the structure of the RDG in terms of strongly connected components is not
exploited results in a loss of parallelism� For example� algorithm WOLF�LAM �nds no parallelism
in example � �whose RDG is given by �gure �� because of the typical structure of the direction
vectors ����� ��� ��� ����� ��� �� ���

1
0
0

0
1
0

0
0
1

1
−
0

0
1
−

Figure �� Reduced Dependence Graph for Example � �with direction vectors�

��� Darte and Vivien�s algorithm

One can imagine to combine algorithms WOLF�LAM and ALLEN�KENNEDY� so as to exploit
simultaneously the structure of the RDG and the structure of the direction vectors� �rst� compute
the cone generated by the direction vectors and transform the loop nest to expose the largest
outermost fully permutable loop nest� then� consider the subgraph of the RDG� formed by the
direction vectors that are not carried by the outermost loops and compute its strongly connected
components� �nally� apply a loop distribution in order to separate these components and apply the
same technique� recursively on each component�

��

Such a strategy permits to expose more parallelism by combining unimodular transformations
and loop distribution� However� it is not optimal as example � illustrates� We will indeed see that
the key concept is not the cone generated by the direction vectors �i�e� the weights of the edges
of the RDG�� but the cone generated by the weights of the cycles of the RDG� This remark leads
to the multi�dimensional scheduling algorithm of Darte and Vivien �DV��� that can be seen as a
combination of unimodular tranformations� loop distribution� and index�shift method�

Example �

DO i � �� n
DO j � �� n
DO k � �� n
a�i� j� k� � b�i � �� j 	 i� k� 	 b�i� j � �� k 	
�
b�i� j� k� � a�i� j � �� k 	 j� 	 a�i� j� k � ��

CONTINUE

0
1
−

0
0
1

1
−
0

 0
 1
−2

Figure �� Reduced Dependence Graph for Example � �with direction vectors�

On this example �whose RDG is given on �gure ��� combining algorithms ALLEN�KENNEDY
and WOLF�LAM� as proposed above� �nds only one degree of parallelism �since at the second
phase the RDG remains strongly connected�� This is not better than the basic algorithm ALLEN�
KENNEDY� However� one can �nd two degrees of parallelism in example � �see below��

Darte and Vivien�s �rst motivation was to �nd an algorithm�

� that is �exible enough to support all representations of distance vectors based on a polyhedral
representation�

� that detects the maximal degree of parallelism contained in the RDG�

��� Canonical representation of the RDG

The �rst point is that any RDG� whose edges are labelled by a polyhedral representation of the
distance vectors� can be simulated by a RDG� whose edges are labelled by dependence vectors�

Consider the particular case of a dependence between two statements S� and S� whose associated
distance vectors are represented by a polyhedron with a single vertex w and a single ray r� This
means that� in the RDG� one considers that all distance vectors of the form w � �r �with � � ��
exist� and that� in the EDG� there is a dependence path of length �� from S��I� to S��I � w� �r��
for all � � � and for all I in P �the iteration domain� such that �I � w � �r� belongs to P �

��

Thus� the situation is the same as if there were a virtual statement V � with a uniform self�
dependence r� and two uniform dependences� w from S� to V and � from V to S�� For simulating
the distance vector w��r� use once the edge from S� to V � then turn � times around V � and �nally
go to S�� However� this simulation corresponds to a dependence path of length ��
 instead of ��
To suppress this di�erence� one assigns a delay to each edge� � to the edge labelled by w and � to
the others� The length of a simulated path is then the sum of the delays along the edges it uses�

This simulation is the base of Darte and Vivien�s algorithm whose �rst phase consists in trans�
forming a RDG� whose edges are labelled by polyhedra� into an equivalent RDG� whose edges are
labelled by weights �dependence vectors� and delays �� or ��� and whose vertices form two classes�
the actual vertices and the virtual vertices� This phase is done by the algorithm TRANSFORM�

TRANSFORM
G�

� Mark all vertices of G as actual vertices�

� For all edges e � �xe� ye� of G� create a virtual vertex Ve�

� If e is labelled by a polyhedron with vertices v�� � � � � vi� rays r�� � � � � rj and lines l�� � � � � lk�

� suppress the edge e�

� create i edges from xe to Ve labelled by v�� � � � � vi� with a delay ��

� create j self�loops around Ve labelled by r�� � � � � rj� with a delay ��

� create
k self�loops around Ve labelled by l�� � � � � lk and �l�� � � � ��lk� with a delay ��

� create one edge from Ve to ye labelled by the null vector �� with a delay ��

� Return the transformed graph�

Remark� when the polyhedron that labels an edge e has neither rays� nor lines� it is not necessary
to create a virtual vertex� One can create edges directly from xe to ye�

For example� a representation of dependences by level correspond to a particular represen�
tation by direction vectors� a dependence at level p
 n is equivalent to the direction vector

�

p��z �� �
�� � � � � �� ��

n�pz �� �
�� � � � � ��� A representation by direction vectors is equivalent to a representation with

uniform dependences and virtual vertices� For example� the direction vector ��� �� ��� corresponds
to a polyhedron with one vertex ��� �� �� and one ray ��� ������ whereas the polyhedron that cor�
responds to ���
�� �� has one vertex ���
� ��� one ray ��� �� �� and one line ��� �� ���

��� Scheduling a system of uniform recurrence equations

Note that a RDG built by the algorithm TRANSFORM does not always correspond to the RDG
of a loop nest since dependence vectors are not anymore lexicographically non negative� In fact� �if
one forgets that some vertices are virtual and that some edges have delay ��� this is the RDG of a
system of uniform recurrence equations �SURE�� introduced� in a seminal paper� by Karp� Miller
and Winograd �KMW����

Karp� Miller and Winograd studied the problem of computability of a SURE� they showed that
it is linked to the problem of detecting cycles of null weight in the reduced dependence graph G�
and that it can be solved by a recursive decomposition of the graph� based on the detection of
multi�cycles �i�e� union of cycles� of null weight� The key structure of their algorithm is G�� the
subgraph of G generated by the edges that belong to a multi�cycle of null weight�

�

Darte and Vivien showed that G� can be e�ciently built by the resolution of a simple linear
program �program
 or its dual program �� This resolution permits to design a parallelization
algorithm� whose principle is dual to Karp� Miller and Winograd�s algorithm�

min
n P

e ve j q � �� v � �� w � �� q � v � � � w� Bq � �
o

�
�

max
n P

e ze j z � �� �
 ze
 �� Xw�e� � �ye � �xe � ze
o

��

Without entering the details� X is a n�dimensional vector and there is one variable � per vertex of
the RDG and one variable z per edge of the RDG� The edges of G� �resp� G n G�� are the edges
e � �xe� ye� for which ze � � �resp� ze � �� in the optimal solution of the dual �program �� and
equivalently� for which ve � � �resp� ve � �� in the primal �program
�� When summing inequations
Xw�e� � �ye � �xe � ze on a cycle C of G� one �nds that Xw�C� � � if C is a cycle of G� and
Xw�C� � l�C� � � otherwise �l�C� is the length of the cycle C��

In other words and to see the link with algorithm WOLF�LAM� when considering the cone �
generated by the weights of the cycles �and not the weights of the edges�� G� is the subgraph whose
cycle weights generate the lineality space lin�space��� of � and X is a vector of the relative interior
of ��� However� there is no need to build � e�ectively for building G�� This is one of the interest
of linear programs
 and �

These are the main ideas of Darte and Vivien�s algorithm� The rest are technical modi�cations
that are needed to distinguish between virtual and actual vertices� to take into account the delay
of the edges and the nature of the edges �vertices� rays or lines of a dependence polyhedron�� The
general principle of Darte and Vivien�s algorithm is the following�

� Apply a global loop distribution for separating the di�erent strongly connected components
Gi of the RDG G�

� For each component Gi that has at least one edge� compute its transformed graph Hi �
TRANSFORM�Gi� and call DARTE�VIVIEN�Hi� ���

Algorithm DARTE�VIVIEN is given below� It takes as input a transformed RDG� strongly con�
nected� with at least one edge� and it returns a so called multi�dimensional schedule� i�e� for each
actual vertex v� a set of dv n�dimensional vectorsXv

� � � � � � X
v
dv

and dv constants �
v
�� � � � � �

v
dv
� such that

computing the iteration I of the statement Sv at the multi�dimensional step �Xv
� �I��v�� � � � � X

v
dv
�I�

�vdv� leads to a valid schedule �if these steps are lexicographically ordered��

DARTE�VIVIEN
G� k�

� Build G�� the subgraph of G generated by the edges that belong to a multi�cycle of null weight�

� For a given dependence polyhedron� add in G� all the edges that simulate this polyhedron� if at
least one of the edges that correspond to its vertices is already in G� �technical modi�cation��

� Find a vector X and constants �v� such that��
Xw�e� � �ye � �xe � � for all edges e � �xe� ye� � G�

Xw�e� � �ye � �xe � de for all edges e � �xe� ye� �� G� with delay de

For all actual vertices v of G� let �vk � �v and Xv
k � X �

� If G� is empty� return�

�

� If G� is strongly connected and has at least one actual vertex� G is not computable �and the
initial RDG is not consistent��

� Otherwise� decompose G� into its strongly connected components Gi and for each Gi that has
at least one actual vertex� call DARTE�VIVIEN�Gi� k � ���

0
0
1

 0
 1
−2

 0
 1
−1

0
0
0

0
0
0

 0
−1
 0

 0
 0
−1

 1
−1
0

Figure �� Transformed Reduced Dependence Graph for Example �

We now go back to example �� The transformed RDG is given on �gure �� It has � vertices
�two of them are virtual�� The weights of elementary cycles are ��� ����� and ������ �� for the
self�loops and ��� ������ ������ ��� ���
���� ��� ����� for the other elementary cycles� Therefore�
� is pointed and one can �nd a one�dimensional schedule� for example given by X � ��� ���
��
�a � � and �b � � Two degrees of parallelism can be exposed and the resulting code is then�

k �
� n

DOALL � i � max��� dk��
�

e��min�n� bn�k
�

c�
DOALL � j � �� n
a�i� j� �k 	
 � i� � b�i � �� j 	 i� �k 	
 � i� 	 b�i� j � �� �k 	
 � i	
�

� CONTINUE

DOSEQ
 k � �� n�
 � n� �
DOALL � i � max��� dk��

�
e��min�n� bn�k

�
c�

DOALL � j � �� n
a�i� j� �k 	
 � i� � b�i� �� j 	 i� �k 	
 � i� 	 b�i� j � �� �k 	
 � i 	
�

� CONTINUE
DOALL � i � max��� dk

�
e��min�n� bn�k��

�
c�

DOALL � j � �� n
b�i� j� �k 	
 � i	 �� � a�i� j � �� �k 	
 � i 	 j 	 �� 	 a�i� j� �k 	
 � i�

� CONTINUE

��

 CONTINUE

k �
 � n

DOALL i � max��� dk
�
e��min�n� bn�k��

�
c�

DOALL j � �� n
b�i� j� �k 	
 � i 	 �� � a�i� j � �� �k 	
 � i	 j 	 �� 	 a�i� j� �k 	
 � i�

 CONTINUE

Property � Algorithm DARTE�VIVIEN is optimal among all parallelism detection algorithms
whose input is a graph whose edges are labelled by a polyhedral representation of distance vectors�

Proof� Consider a loop nest whose reduced dependence graph is G� Let H � TRANSFORM�G�
and d � maxfdv j v actual vertex of Hg where dv has been given by algorithm DARTE�VIVIEN
for each actual vertex of H � thus for each vertex of G� d is the recursion depth of algorithm
DARTE�VIVIEN� The transformed code contains at most d nested sequential loops ��n � d� de�
grees of parallelism are exposed�� Furthermore� for a loop nest whose iteration domain contains
�resp� is contained in� a n�dimensional cube of size N �resp� �N for some � � ��� one can build a
dependence path of length ��Nd� in the EDG that corresponds to G �this is the di�cult part of
the proof�� Therefore� any parallelization algorithm would expose a sequentiality of ��Nd�� Since
the sequentiality exposed by algorithm DARTE�VIVIEN is O�Nd�� it is optimal� �

Studying the transformed RDG of examples � to � permits to better understand why parallelism
were �or were not� found by the previous algorithms� The dependences that are responsible for the
inherent sequentiality of the loop nest are exactly those that correspond to edges of G�� This has
two consequences�

� If G� has only �ow dependences� there is no need to transform the code into single assignment
form since this would not increase the degree of parallelism in the code�

� If the dependence analysis is not exact� G� shows which edges deserve a more accurate de�
pendence analysis for detecting more parallelism� There is no need to give a more precise
description of edges in G nG� since they are not responsible for the loss of parallelism�

��� Limitations of Darte and Vivien�s algorithm

Darte and Vivien�s algorithm is optimal for any polyhedral representation of distance vectors �Prop�
erty �� However� it may not be optimal if more information is given on the pairs of iteration
vectors that induce a dependence� This comes from the fact that the set of distance vectors
f�J � I� j S��I� � S��J�g is the projection of the set f�J � I� J� j S��I� � S��J�g �which is as
precise as the set of pairs f�I� J� j S��I� � S��J�g�� Therefore� the projection makes us believe
that the distance vectors can take place anywhere in the iteration domain even if this is not true�
This loss of precision may be the cause of a loss of parallelism as example � illustrates�

Example �

DO i � �� n
DO j � i� n

a�i� j� � b�i� �� j 	 i� 	 a�i� j � ��
b�i� j� � a�i� �� j � i� 	 b�i� j � ��

CONTINUE

��

1
+

1
−

0
1 0

1

Figure �� Reduced Dependence Graph for Example � �with direction vectors�

If the dependences are described by distance vectors� the RDG �see �gure �� has two self�
dependences ��� �� and two edges labelled by polyhedra� both with one vertex and one ray �re�
spectively ��� �� and �������� Therefore� there exists a multi�cycle of null weight� Furthermore�
the two actual vertices belong to G�� Thus� the depth of algorithm DARTE�VIVIEN is
 and no
parallelism can be found� However� computing iteration �i� j� of the �rst statement �resp� the
second statement� at step
i� j �resp� i� j�� leads to a valid schedule that exposes one degree of
parallelism ��

The technique used here consists in looking for multi�dimensional schedules whose linear parts
�the vectors X� may be di�erent for di�erent statements even if they belong to the same strongly
connected component� This is the base of Feautrier�s algorithm �Fea�
b� whose fundamental mathe�
matical tool is the a�ne form of Farkas lemma� Property however� shows that there is no need to
look for di�erent linear parts �whose construction is more expensive and lead to more complicated
rewriting processes� in a given strongly connected component of the current subgraph G�� as long
as dependences are given by distances vectors� On the other hand� example � shows that it can be
useful when a more accurate dependence analysis is available� Now� the only remaining open ques�
tion concerns the optimality of Feautrier�s algorithm� for which representation of the dependences
is Feautrier�s algorithm optimal!

� Conclusion

Our study o�ers a classi�cation of loops parallelization algorithms� Our main results are the
following� Allen and Kennedy�s algorithm is optimal for a representation of dependences by level
and Wolf and Lam�s algorithm is optimal for a representation by direction vectors �but for a loop
nest with only one statement�� Neither of them subsumes the other one� since each uses information
that can not be exploited by the other �graph structure for the �rst one� direction vectors structure
for the second one�� However� both are subsumed by Darte and Vivien�s algorithm that is optimal
for any polyhedral representation of distance vectors� Feautrier�s algorithm is an extension of this
latter� but the characterization of its optimality remains open�

We believe this classi�cation of practical interest� since it permits a compiler�parallelizer to
choose� depending on the dependence analysis at its disposal� the simplest and cheapest paral�
lelization algorithm that remains optimal� i�e the algorithm that is the most appropriate to the
available representation of dependences� Future work will try to answer the remaining open ques�
tion concerning the optimality of Feautrier�s algorithm�

�The schedules b �
�
i 	 j 	 �

�
c and b �

�
i 	 jc minimize the latency but the code is more complicated to write�

��

References

�AK��� J�R� Allen and Ken Kennedy� Automatic translations of fortran programs to vector
form� ACM Toplas� �����"��
� �����

�Ban��� Utpal Banerjee� A theory of loop permutations� In Gelernter� Nicolau� and Padua�
editors� Languages and Compilers for Parallel Computing� The MIT Press� Cambridge�
Massachusetts� �����

�BDRR��� Pierre Boulet� Alain Darte� Tanguy Risset� and Yves Robert� �pen��ultimate tiling !
Integration� the VLSI Journal� ���"��� �����

�Ber��� A� J� Bernstein� Analysis of programs for parallel processing� In IEEE Trans� on El�
Computers� EC���� �����

�CFR��� Jean�Fran#cois Collard� Paul Feautrier� and Tanguy Risset� Construction of do loops
from systems of a�ne constraints� Parallel Processing Letters� ����� to appear�

�Col��� Jean�Fran#cois Collard� Code generation in automatic parallelizers� In Claude Girault�
editor� Proc� Int� Conf� on Application in Parallel and Distributed Computing� IFIP
WG ����� pages ���"���� North Holland� April �����

�DKR��� Alain Darte� Leonid Khachiyan� and Yves Robert� Linear scheduling is nearly optimal�
Parallel Processing Letters� ��
���"��� �����

�DR��� Alain Darte and Yves Robert� Mapping uniform loop nests onto distributed memory
architectures� Parallel Computing�
�����"���� �����

�DV��� Alain Darte and Fr�ed�eric Vivien� Automatic parallelization based on multi�dimensional
scheduling� Technical Report ���
�� Laboratoire de l�Informatique du Parall�elisme�
Ecole Normale Sup�erieure de Lyon� France� September �����

�Fea��� Paul Feautrier� Data�ow analysis of array and scalar references� Int� J� Parallel Pro�
gramming�
�����
"��� �����

�Fea�
a� Paul Feautrier� Some e�cient solutions to the a�ne scheduling problem� part I� one�
dimensional time� Int� J� Parallel Programming�
������"��� October ���
� Available
as Technical Report �
�
�� Laboratoire MASI� Universit�e Pierre et Marie Curie� Paris�
May ���
�

�Fea�
b� Paul Feautrier� Some e�cient solutions to the a�ne scheduling problem� part II� multi�
dimensional time� Int� J� Parallel Programming�
�������"�
�� December ���
� Avail�
able as Technical Report �
���� Laboratoire MASI� Universit�e Pierre et Marie Curie�
Paris� October ���
�

�IT��� F� Irigoin and R� Triolet� Computing dependence direction vectors and dependence
cones with linear systems� Technical Report ENSMP�CAI����E��� Ecole des Mines de
Paris� Fontainebleau �France�� �����

�IT��� F� Irigoin and R� Triolet� Supernode partitioning� In Proc� ��th Annual ACM Symp�
Principles of Programming Languages� pages ��"
�� San Diego� CA� January �����

��

�KMW��� R�M� Karp� R�E� Miller� and S� Winograd� The organization of computations for uniform
recurrence equations� Journal of the ACM� �������"���� July �����

�Lam��� Leslie Lamport� The parallel execution of DO loops� Communications of the ACM�
���
���"�� February �����

�Sch��� Alexander Schrijver� Theory of Linear and Integer Programming� John Wiley and Sons�
New York� �����

�SD��� R� Schreiber and Jack J� Dongarra� Automatic blocking of nested loops� Technical
Report ����� The University of Tennessee� Knoxville� TN� August �����

�WL��� Michael E� Wolf and Monica S� Lam� A loop transformation theory and an algorithm to
maximize parallelism� IEEE Trans� Parallel Distributed Systems�
������
"���� October
�����

�Xue��� Jingling Xue� Automatic non�unimodular transformations of loop nests� Parallel Com�
puting�
��������"�
�� May �����

�ZC��� Hans Zima and Barbara Chapman� Supercompilers for Parallel and Vector Computers�
ACM Press� �����

��

