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Abstract

We present a new elementary function library, called CR-LIBM. This library
implements the various functions defined by the Ansi99 C standard. It pro-
vides correctly rounded functions. When writing this library, our primarily
goal was to certify correct rounding, and make it reasonably fast, and with a
low utilisation of memory. Hence, our library can be used without any prob-
lem on real-scale problems.
We are also giving the proof and the elements to understand the implementa-
tion of the exponential function of CR-LIBM.

Keywords: Elementary Functions, Exponential, CRlibm, correct rounding.

Résumé

Nous présentons une nouvelle bibliothèque d’évaluation de fonctions élémen-
taires, appelée CR-LIBM. Cette bibliothèque implémente les différentes fonc-
tions définies par le standard Ansi C99. Sa principale caracteristique est de
fournir l’arrondi correct pour la double précision et les quatre modes d’ar-
rondi. Lors de l’écriture de cette bibliothèque, nos principaux objectifs étaient
de certifier l’arrondi correct en ne dégradant pas les performances, et en li-
mitant l’utilisation de mémoire. De ce fait, les fonctions de notre bibliothèque
peuvent être utilisées sans problèmes dans des applications réelles.
Nous donnons également pour l’implémentation de l’exponentielle, la preuve
pour certifier l’arrondi correct, et les éléments nécessaires pour comprendre
les choix faits.

Mots-clés: Fonctions élémentaires, Exponentielle, CRlibm, arrondi correct.
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1 Introduction

The need for accurate elementary functions is important in many critical programs. Methods for com-
puting these functions include table-based methods[13, 26], polynomial approximations and mixed
methods[7]. See the books by Muller[24] or Markstein[22] for recent surveys on the subject.

The IEEE-754 standard for floating-point arithmetic[16] defines the usual floating-point formats (sin-
gle and double precision). It also specifies the behavior of the four basic operators (+,−,×,÷) and the
square root in four rounding modes (to the nearest, towards +∞, towards −∞ and towards 0). Its
adoption and widespread use have increased the numerical quality of, and confidence in floating-point
code. In particular, it has improved portability of such code and allowed construction of proofs on its
numerical behavior. Directed rounding modes (towards +∞, −∞ and 0) also enabled efficient interval
arithmetic[23, 17].

However, the IEEE-754 standard specifies nothing about elementary functions, which limits these
advances to code excluding such functions. Currently, several options exist: on one hand, we can use
today’s mathematical libraries that are efficient but without any warranty on the correctness of the re-
sults. When strict guarantees are needed, some multiple-precision packages like MPFR [3] offer correct
rounding in all rounding modes, but are several orders of magnitude slower than the usual mathemat-
ical libraries for the same precision. The recently released IBM Ultimate Math Library[1] claims to offer
correct rounding to the nearest, and this library is both portable and fast, if bulky. However, for reasons
detailed below, this claim is not proven. Besides, this library still lacks directed rounding modes needed
for interval arithmetic, and has other drawbacks that we analyze in the sequel.

The purpose of this paper is to show that the combination of several recent advances allows us to
design a correctly rounded mathematical library which is fast enough to replace the existing libraries,
at a minor cost in terms of performance and resources. Section 2 presents the context of this library.
Section 3 presents the state of the library. Section 4 give some notations and results use in the sequel of
this paper. Section 5 to 10 describe the exponential and prove the correct rounding of the exponential
function. Section 11 analyzes this function, and shows that it is comparable in size and speed to other
mathematical libraries.

2 A methodology for efficient correctly-rounded functions

2.1 The Table Maker’s Dilemma

With a few exceptions, the image y of a floating-point number x by a transcendental function f is a
transcendental number, and can therefore not be represented exactly in standard numeration systems.
The only hope is to compute the floating-point number that is closest to (resp. immediately above or
immediately below) the mathematical value, which we call the result correctly rounded to the nearest
(resp. towards +∞ or towards −∞).

It is only possible to compute an approximation ŷ to the real number y with precision ε. This ensures
that the real value y belongs to the interval [ŷ − ε, ŷ + ε]. Sometimes however, this information is not
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enough to decide correct rounding. For example, if [ŷ − ε, ŷ + ε] contains the middle of two consecutive
floating-point numbers, it is impossible to decide which of these two numbers is the correctly rounded
to the nearest of y. This is known as the Table Maker’s Dilemma (TMD).

2.2 The onion peeling strategy

A method described by Ziv [27] is to increase the precision ε of the approximation until the correctly
rounded value can be decided. Given a function f and an argument x, the value of f(x) is first eval-
uated using a quick approximation of precision ε1. Knowing ε1, it is possible to decide if rounding
is possible, or if more precision is required, in which case the computation is restarted using a slower
approximation of precision ε2 greater than ε1, and so on. This approach makes sense even in terms of
average performance, as the slower steps are rarely taken.

However there was until recently no practical bound on the termination time of such an algorithm.
This iteration has been proven to terminate, but the actual maximal precision required in the worst case
is unknown. This might prevent using this method in critical application.

2.3 An overview of available mathematical libraries

Many high-quality mathematical libraries are freely available, including fdlibm, written by Sun[2] and
libultim written by IBM[1], which are portable assuming IEEE-754 arithmetic, and processor-specific
libraries by Intel[15, 4] and HP[22, 21] among other. Operating systems often include several mathe-
matical libraries, some of which are derivatives of one of the previous.

Among these libraries, two offer correct correct rounding:

• Thelibultim library also called MathLib, is developed at IBM by Ziv and others [1]. It provides
correct rounding, under the assumption that 800 bits are enough in all case. This approach suffers
two weaknesses. The first is the absence of proof that 800 bits are enough: all there is is a very
high probability. The second is that, as we will see in the sequel, for challenging cases, 800 bits are
much of an overkill, which can increase the execution time up to 20,000 times a normal execution.
This will prevent such a library from being used in real-time applications. Besides, to prevent
this worst case from degrading average performance, there is usually some intermediate levels
of precision in MathLib’s elementary functions, which makes the code larger, more complex, and
more difficult to prove.

In addition this library provides correct rounding only to nearest. This is the most used round-
ing mode, but it might not be the most important as far as correct rounding is concerned: correct
rounding provides a precision improvement over current mathematical libraries of only a fraction
of a unit in the last place (ulp). Conversely, the three other rounding modes are needed to guaran-
tee intervals in interval arithmetic. Without correct rounding in these directed rounding modes,
interval arithmetic looses up to one ulp of precision in each computation.

• MPFR is a multiprecision package safer than libultilm as it uses arbitrary multiprecision. It pro-
vides most of elementary functions for the four rounding modes defined by the IEEE-754 stan-
dard. However this library is not optimized for double precision arithmetic. In addition, as its
exponent range is much wider than that of IEEE-754, the subtleties of denormal numbers are
difficult to handle properly using such a multiprecision package.

3 The Correctly Rounded Mathematical Library

We have designed our own library called crlibm (correctly rounded mathematical library). It is based
on the work of Lefèvre[20, 19] who computed the worst-case ε required for correctly rounding several
functions in double-precision over selected intervals in the four IEEE-754 rounding modes. For exam-
ple, he proved that 157 bits are enough to ensure correct rounding of the exponential function on all of
its domain for the four IEEE-754 rounding modes.
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3.1 Two steps are enough

Thanks to such results, we are able to guarantee correct rounding in two iterations only, which we
may then optimize separately. The first of these iterations is relatively fast and provides between 60
and 80 bits of accuracy (depending on the function), which is sufficient in most cases. It will be referred
throughout the paper as the Quick phase of the algorithm. The second phase, referred to as the Accurate
phase, is dedicated to challenging cases. It is slower but has a reasonably bounded execution time,
tightly targeted at Lefèvre’s worst cases.

Having a proven worst-case execution time lifts the last obstacle to a generalization of correctly
rounded transcendentals. Besides, having only two steps allows us to publish, along with each function,
a proof of its correctly rounding behavior.

3.2 Portable IEEE-754 FP for fast first step

The computation of a tight bound on the approximation error of the first step (ε1) is crucial for the ef-
ficiency of the onion peeling strategy: overestimating ε1 means going more often than needed through
the second step. As we want the proof to be portable as well as the code, our first steps are written
in strict IEEE-754 arithmetic. On some systems, this means preventing the compiler/processor com-
bination to use advanced floating-point features such as fused multiply-and-add or extended double
precision. It also means that the performance of our portable library will be lower than optimized
libraries using these features.

To ease these proofs, our first steps make wide use of classical, well proven techniques. In particular,
when a result is needed in a precision higher than double precision (as is the case of ŷ1, the result of
the first step), it is represented as as the sum of two floating-point numbers. There are well-known
algorithms for computing on such sums (for instance Sterbenz’ lemma, the Fast2Sum algorithm, the
Dekker algorithm[18]) with mechanically checked proofs.

A sequence of simple tests on ŷ1 allows to decide whether to go for the second step. The sequence
corresponding to each rounding mode is shared by most functions and has also been carefully proven.

3.3 Software Carry-Save for an accurate second step

For the second step, we designed an ad-hoc multiple-precision library called Software Carry-Save li-
brary (scslib) which is lighter and faster than other available libraries for this specific application [11, 10].
This choice is motivated by considerations of code size and performance, but also by the need to be in-
dependent of other libraries: Again, we need a library on which we may rely at the proof level. This
library is independent from the mathematical library and distributed separately [5].

3.4 Current state of crlibm

The library crlibm (correctly rounded mathematical library) currently offers accurate parts for the expo-
nential, logarithm in radix 2, 10 and e, sine, cosine, tangent, arctangent, plus trigonometric argument
reduction. The first quick part and its proof have only been written for the exponential thus far. The
difficulty is to prove both the algorithm and the C program. The proof relies heavily on several shared
lemmas, assuming the good behavior of the system composed of the compiler and the processor. An-
other difficulty is that performance is important. Therefore many parts of this proof could be done only
by hand.

4 Notations and useful results

Throughout the paper, we will note +, − and × the usual mathematical operations, and ⊕, � and ⊗ the
corresponding floating-point operations in IEEE-754 double precision, in the IEEE-754 round to nearest
mode. To characterize the error we will use the following definition :

Definition 1 (εn) For any integer n, we will define by εn a value α such that:

|α| ≤ 2n
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For a floating-point number x, we will classically denote ulp(x) the value of the least significant bit
of its mantissa.

We will make use of the following well-known results:

Theorem 1 (Sterbenz Lemma [25, 14]) If x and y are floating-point numbers, and if y/2 ≤ x ≤ 2y then x�y
is computed exactly, without any rounding error.

A double precision floating-point number is coded on 64 bits, that is two times the size of an integer,
usually represented with 32 bits in current processors. The order in which the two 32 bits words are
stored in memory depends on the architecture. An architecture is said Little Endian if the lower part of
the number is stored in memory at the smallest address; x86 processor use this representation. Con-
versely, an architecture with the higher part of the number stored in memory at the smallest address is
said Big Endian; PowerPC processor use this representation.

The following code extracts the upper and lower parts of a double precision number x in a classical
and relatively portable way.

Listing 1: Extract upper and lower part of a double precision number x

1 /∗ LITTLE_ENDIAN/BIG_ENDIAN a r e d e f i n e by t h e u s e r or ∗ /
2 /∗ a u t o m a t i c a l l y by t o o l s such as a u t o c o n f / automake . ∗ /
3

4 # i f d e f LITTLE_ENDIAN
5 # define HI ( x ) ∗ ( 1 + ( i n t ∗ )&x )
6 # define LO( x ) ∗ ( i n t ∗ )&x
7 # e l i f BIG_ENDIAN
8 # define HI ( x ) ∗ ( i n t ∗ )&x
9 # define LO( x ) ∗ ( 1 + ( i n t ∗ )&x )

10 # endif

The previous code is also efficient on many architectures where FP and integer pipelines are her-
metic, requiring conversions from one format to the other to be done through memory. There are prob-
ably architectures where a more efficient implementation can be found.Our code uses exclusively the
previous two function for converting FP to integer and back, wich ensures a quick implementation of
such an architecture-specific optimization.

Theorem 2 (Fast2sum algorithm [18]) For a and b two floating-point numbers, the following method com-
putes two floating-point numbers s and r, such that s + r = a + b exactly, and s is the floating-point number
which is closest to a + b.

Listing 2: Fast2SumCond
1 # de f ine Fast2SumCond ( s , r , a , b ) \
2 { double z , _a=a , _b=b ; \
3 s = _a + _b ; \
4 i f ( ( HI ( _a )&0x7FF00000 ) > ( HI ( _b )&0x7FF00000 ) ) { \
5 z = s − _a ; \
6 r = _b − z ; \
7 } e l s e { \
8 z = s − _b ; \
9 r = _a − z ; \

10 }

This algorithm requires 3 floating-point additions, 2 masks and 1 test over integer.

In the case we know that the exponent of a is greater than the one of b, then the previous algorithm
to perform an exact addition of 2 floating-point numbers becomes:

Listing 3: Fast2Sum
1 # define Fast2Sum( s , r , a , b ) \
2 { double z , _a=a , _b=b ; \
3 s = _a + _b ; \
4 z = s − _a ; \
5 r = _b − z ; }

The cost of this algorithm is 3 floating-point additions.
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Theorem 3 (double multiplication[12, 18]) Let a and b be two floating-point numbers, with p ≥ 2 the size of
their mantissa. Let c = 2

�p�
2 + 1. The following method computes the two floating-point numbers r1 and r2 such

that r1 + r2 = a + b with r1 = a ⊗ b in the case p = 53 (double precision):

Listing 4: DekkerCond
1 void i n l i n e DekkerCond ( double ∗ r1 , double ∗ r2 , double a , double b ) {
2 double two_m53 = 1 .1102230246251565404 e −16; /∗ 0 x3CA00000 , 0 x00000000 ∗ /
3 double two_53 = 9007199254740992 . ; /∗ 0 x43400000 , 0 x00000000 ∗ /
4 double c = 1 3 4 2 1 7 7 2 9 . ; /∗ 0 x41A00000 , 0 x02000000 ∗ /
5 double u , up , u1 , u2 , v , vp , v1 , v2 , r1 , r2 ;
6

7 i f ( HI ( a ) >0x7C900000 ) u = a∗two_m53 ;
8 e l s e u = a ;
9 i f ( HI ( b ) >0x7C900000 ) v = b∗two_m53 ;

10 e l s e v = b ;
11

12 up = u∗ c ; vp = v∗ c ;
13 u1 = ( u−up )+up ; v1 = ( v−vp )+vp ;
14 u2 = u−u1 ; v2 = v−v1 ;
15

16 ∗ r1 = u∗v ;
17 ∗ r2 = ( ( ( u1∗v1−∗r1 ) +(u1∗v2 ) ) +(u2∗v1 ) ) +(u2∗v2 )
18

19 i f ( HI ( a ) >0x7C900000 ) { ∗ r1 ∗= two_e53 ; ∗ r2 ∗= two_53 ; }
20 i f ( HI ( b ) >0x7C900000 ) { ∗ r1 ∗= two_e53 ; ∗ r2 ∗= two_53 ; }
21 }

We have to test a and b before and after the core of the algorithms in order to avoid overflow by multiplying
by c. The global cost in the worst case is 4 tests over integers, 10 floating-point additions and 13 floating-point
multiplications.

If we are know that a and b are less then 2970 we can skip this test, and get the following algorithm:

Listing 5: Dekker
1 void i n l i n e Dekker ( double ∗ r1 , double ∗ r2 , double u , double v ) {
2 double c = 1 3 4 2 1 7 7 2 9 . ; /∗ 0 x41A00000 , 0 x02000000 ∗ /
3 double up , u1 , u2 , vp , v1 , v2 ;
4

5 up = u∗c ; vp = v∗c ;
6 u1 = ( u−up)+up ; v1 = ( v−vp)+vp ;
7 u2 = u−u1 ; v2 = v−v1 ;
8

9 ∗ r1 = u∗v ;
10 ∗ r2 = ( ( ( u1∗v1−∗r1 ) +(u1∗v2 ) ) +(u2∗v1 ) ) +(u2∗v2 )
11 }

which reduces the cost of this algorithm to 10 floating-point additions and 7 floating-point multiplica-
tions.

It should be noted that the availability of fused multiply-and-add (FMA), with only one rounding,
on architectures like PowerPC and IA-64, allows the implementation of the Dekker algorithm in only
two operations: *r1 = u*v ; *r2 = FMA(u*v-r1) ; Again, this is an architecture-dependent optimization.

Theorem 4 (Conversion from floating-point to integer [6]) The following algorithm convert a floating-point
number d into an integer i with rounding to nearest mode.

Listing 6: Solution 2
1 # de f ine DOUBLE2INT( i , d ) \
2 { double t =( d +6755399441055744.0 ) ; i =LO( t ) ; }

This algorithm add the constant 252 + 251 to the floating-point number to put the integer part of x, in
the lower part of the floating-point number. We use 252 + 251 and not 252, because the value 251 is used
to contain possible carry propagations with negative numbers.
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5 Overview of the method for the exponential

We are now going to present and proof the correct rounding of the evaluation scheme chosen for the
exponential within crlibm. We will use a property deduced from the enumeration of worst cases done
for the exponential function by Lefèvre [19]

Property 1 (Correct rounding of the exponential) Let y be the result of the exponential of a floating-point
number x in double precison. Let y∗ be an approximation of y such that the distance between mantissa of y and
y∗ is bounded by ε.

If ε ≤ 2157 then rounding y∗ is equivalent to rounding y for the four rounding modes.

We have done the evaluation of the exponential in two steps. First, we use the quick phase of the
algorithm to get an approximation good to 68 bits of the result. Then we perform a test to check whether
we need to use the accurate phase, based on multiprecision operators from SCSlib [5] .

To increase the trust in the code, with have included constants in hexadecimal format (big endian
only for concision). However to help the reader we are giving the corresponding decimal values.

6 Quick phase

Here is the general scheme chosen for the first step of the evaluation of the exponential:

1. “Mathematical” range reduction
We compute the reduced argument

(r_hi + r_lo) ∈ [− ln(2)/2, + ln(2)/2]

such that:
x = k. ln(2) + (r_hi + r_lo)

therefore
exp(x) = exp(r_hi + r_lo).2k

2. Tabular range reduction
Let index_flt be the first 8 bits of (r_hi + r_lo) and (rp_hi + rp_lo) = (r_hi + r_lo) − index_flt,
such that (rp_hi + rp_lo) ∈ [−2−9, +29]. We have

exp(r_hi + r_lo) = exp(index_flt) × exp(rp_hi + rp_lo)

where exp(index_flt) = (ex_hi + ex_lo) will be looked up in a table.

3. Polynomial evaluation
We evaluate the polynom P_r of degree 3 such that:

exp(rp_hi + rp_lo) ≈ 1 + (rp_hi + rp_lo) +
1
2
.(rp_hi + rp_lo)2 + (rp_hi + rp_lo)3.(P_r)

with P_r = c0 + c1.rp_hi + c2.rp_hi2 + c3.rp_hi3 and rp_hi ∈ [−2−9, +29]

4. Reconstruction

exp(x) = 2k.(ex_hi + ex_lo).
(1 + (rp_hi + rp_lo) + 1

2 .(rp_hi + rp_lo)2 + (rp_hi + rp_lo)3.P_r).(1 + ε−68)
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6.1 Handling special cases

6.1.1 Methods to raise IEEE-754 flags

The IEEE standard requires, in certain cases, to raise flags and exceptions for the operators +, ×, ÷, √ .
Therefore, it is legitimate to require the same for elementary functions. For portability, these exceptions
and flags will be generated using the following techniques:

• underflow: The multiplication ±smallest × smallest where smallest correspond to the smallest
denormal number,

• overflow: The multiplication ±largest × largest where largest correspond to the largest normal
number,

• division by zero: The division ±1.0/0.0,

• inexact: The addition (x + smallest)− smallest where x is the result,

• invalid: The division ±0.0/0.0.

6.1.2 Avoiding overflows and underflows

In the sequel of this paper, we will consider input numbers in the range [u_bound, o_bound], where
u_bound and o_bound are:

u_bound = � (ln ((1 − 2−53
)
.2−1075

))
= −745.1332 . . .

o_bound = � (ln ((1 − 2−53
)
.21024

))
= 709.7827 . . .

where �(x) and �(x) respectively correspond to the rounding toward +∞ and −∞ of x.
In the rounding mode to nearest, the exponential of a number greater than o_bound is an overflow,

whereas the exponential of a number less than u_bound is rounded to 0, and raises an inexact flag.
However, subtler under/overflow situations may arise in two cases, which we should avoid:

• An intermediate computation may raise an overflow although the final result is representable as
an IEEE-754 floating-point number.

• In IEEE-754 arithmetic, when a result is between 2−1023 and 2−1074, a gradual underflow exception
arises to signal that the precision of the result is reduced in a drastic way.

In both cases, as we will show in the following, it is possible to avoid the exception by predicting
that it will occur, and appropriately scaling the input number in the range reduction phase.

6.1.3 Rounding to nearest

Listing 7: Handling special cases in rounding to nearest
1 s t a t i c const union { i n t i [ 2 ] ; double d ; }
2 # i f d e f BIG_ENDIAN
3 _ l a r g e s t = {0 x 7 f e f f f f f , 0 x f f f f f f f f } ,
4 _ sma l l e s t = {0 x00000000 , 0 x00000001 } ,
5 _u_bound = {0 xC0874910 , 0 xD52D3052 } , /∗ −7.45133219101941222107e +02 ∗ /
6 _o_bound = {0 x40862E42 , 0 xFEFA39F0 } ; /∗ 7.09782712893384086783 e +02 ∗ /
7 # else
8 . . .
9 # endif

10 # define l a r g e s t _ l a r g e s t . d
11 # define sma l l e s t _ sma l l e s t . d
12 # define u_bound _u_bound . d
13 # define o_bound _o_bound . d
14

15 unsigned i n t hx ;
16

17 hx = HI ( x ) ;
18 hx &= 0 x 7 f f f f f f f ;
19
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20 /∗ F i l t e r s p e c i a l c a s e s ∗ /
21 i f ( hx >= 0 x40862E42 ) {
22 i f ( hx >= 0 x7f f00000 ) {
23 i f ( ( ( hx&0 x 0 0 0 f f f f f )|LO( x ) ) !=0 )
24 return x+x ; /∗ NaN ∗ /
25 else return ( ( hx&0x80000000 ) ==0) ? x : 0 . 0 ; /∗ exp (+/− i n f ) = in f , 0 ∗ /
26 }
27 i f ( x > o_bound ) return l a r g e s t ∗ l a r g e s t ; /∗ o v e r f l o w ∗ /
28 i f ( x < u_bound) return sma l l e s t∗ sma l l e s t ; /∗ unde r f l ow ∗ /
29 }
30

31

32 i f ( hx <= 0 x3C900000 ) return 1 . ; /∗ i f ( hx <= 2^( −54) ) ∗ /


 Proof.

line 17 Put the high part of x in hx. (cf. prog. 1)
line 18 Remove the sign information within hx. It will make tests on special cases simpler.
line 21 Test equivalent to if(|x| >= 709.7822265625). This test is true if x > u_bound,

x < o_bound, x = ±inf or x = NaN . This test is performed with integers to make it
faster.

line (22-24) Test if x = ±inf or x = NaN and give the corresponding results (exact +∞ or 0).
line 27 Under the assumption that the compiler correctly translates the floating-point num-

ber we have o_bound = 390207173010335/549755813888. If x > o_bound then
exp(x) = + inf . The multiplication largest ∗ largest leaves to the compiler the gen-
eration of an overflow and the corresponding flags.

line 28 Under the assumption that the compiler correctly translates the floating-point num-
ber we have u_bound = −3277130554578985/4398046511104. If x < u_bound then
exp(x) = +0. The multiplication largest ∗ largest leaves to the compiler the genera-
tion of an underflow and the corresponding flags.

line 32 Test equivalent to if(|x| ≤ 2−54). This test is performed with integers to make it
faster and is valid because x /∈ {NaN,∞}. In addition, this test allows to handle
cases when x is a denormal number. We have the following property:

<1> |x| > 2−54 and x /∈ {NaN,∞} •
Indeed, in rounding to nearest, if |x| ≤ 2−54 then exp(x) = 1.0. This test prevents to
encounter a denormal number in the rest of the program.

�

6.1.4 Rounding toward +∞

Listing 8: Handling special cases in rounding toward +∞
1 s t a t i c const union { i n t i [ 2 ] ; double d ; }
2 # i f d e f BIG_ENDIAN
3 _ l a r g e s t = {0 x 7 f e f f f f f , 0 x f f f f f f f f } ,
4 _ sma l l e s t = {0 x00000000 , 0 x00000001 } ,
5 _u_bound = {0 xC0874910 , 0 xD52D3052 } , /∗ −7.45133219101941222107e +02 ∗ /
6 _o_bound = {0 x40862E42 , 0 xFEFA39F0 } , /∗ 7.09782712893384086783 e +02 ∗ /
7 _two_m52_56 = { 0 x3CB10000 , 0 x00000000 } ; /∗ 2.35922392732845764840 e −16 ∗ /
8 # else
9 . . .

10 # endif
11 # define l a r g e s t _ l a r g e s t . d
12 # define sma l l e s t _ sma l l e s t . d
13 # define u_bound _u_bound . d
14 # define o_bound _o_bound . d
15 # define two_m52_56 _two_m52_56 . d
16

17

18 unsigned i n t hx ;
19
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20 hx = HI ( x ) ;
21 hx &= 0 x 7 f f f f f f f ;
22

23 /∗ F i l t e r s p e c i a l c a s e s ∗ /
24 i f ( hx >= 0 x40862E42 ) {
25 i f ( hx >= 0 x7f f00000 ) {
26 i f ( ( ( hx&0 x 0 0 0 f f f f f )|LO( x ) ) !=0 )
27 return x+x ; /∗ NaN ∗ /
28 else return ( ( hx&0x80000000 ) ==0) ? x : 0 . 0 ; /∗ exp (+/− i n f ) = in f , 0 ∗ /
29 }
30 i f ( x > o_bound ) return l a r g e s t ∗ l a r g e s t ; /∗ o v e r f l o w ∗ /
31 i f ( x < u_bound) return sma l l e s t ∗ 1 . 0 ; /∗ 2^( −1074) ∗ /
32 }
33

34 i f ( hx < 0 x3CA00000 ) { /∗ i f ( hx <= 2^( −53) ) ∗ /
35 i f ( HI ( x ) < 0 )
36 return 1 . + sma l l e s t ; /∗ 1 and i n e x a c t ∗ /
37 else
38 return 1 . + two_m52_56 ; /∗ 1 + 2^( −52) and i n e x a c t ∗ /
39 }


 Proof. This program is similar to the one used in rounding to nearest mode with the following excep-
tions:

• When (x < u_bound), in rounding toward +∞, we have to return as result the smallest repre-
sentable number (2−1074) with the inexact flag raised.

• When (|x| < 2−53), in rounding toward +∞, we have to return as result 1.0 if x < 0 with the
inexact flag raised or 1 + 2−52 with the inexact flag raised if x > 0.

�

6.1.5 Rounding toward −∞

Listing 9: Handling special cases in rounding toward −∞
1 s t a t i c const union { i n t i [ 2 ] ; double d ; }
2 # i f d e f BIG_ENDIAN
3 _ l a r g e s t = {0 x 7 f e f f f f f , 0 x f f f f f f f f } ,
4 _ sma l l e s t = {0 x00000000 , 0 x00000001 } ,
5 _u_bound = {0 xC0874910 , 0 xD52D3052 } , /∗ −7.45133219101941222107e +02 ∗ /
6 _o_bound = {0 x40862E42 , 0 xFEFA39F0 } , /∗ 7.09782712893384086783 e +02 ∗ /
7 _two_m52_56 = { 0 x3CB10000 , 0 x00000000 } ; /∗ 2.35922392732845764840 e −16 ∗ /
8 # else
9 . . .

10 # endif
11 # define l a r g e s t _ l a r g e s t . d
12 # define sma l l e s t _ sma l l e s t . d
13 # define u_bound _u_bound . d
14 # define o_bound _o_bound . d
15 # define two_m52_56 _two_m52_56 . d
16

17 unsigned i n t hx ;
18

19 hx = HI ( x ) ;
20 hx &= 0 x 7 f f f f f f f ;
21

22 /∗ F i l t e r s p e c i a l c a s e s ∗ /
23 i f ( hx >= 0 x40862E42 ) {
24 i f ( hx >= 0 x7f f00000 ) {
25 i f ( ( ( hx&0 x 0 0 0 f f f f f )|LO( x ) ) !=0 )
26 return x+x ; /∗ NaN ∗ /
27 else return ( ( hx&0x80000000 ) ==0) ? x : 0 . 0 ; /∗ exp (+/− i n f ) = in f , 0 ∗ /
28 }
29 i f ( x > o_bound ) return l a r g e s t ∗ 1 . 0 ; /∗ (1−2^(−53) ) ∗2^1024 ∗ /
30 i f ( x < u_bound) return sma l l e s t∗ sma l l e s t ; /∗ unde r f l ow ∗ /
31 }
32

33 i f ( hx < 0 x3CA00000 ) { /∗ i f ( hx <= 2^( −53) ) ∗ /
34 i f ( HI ( x ) < 0 )
35 return 1 . − two_m52_56 ; /∗ 1−2^(−52) and i n e x a c t ∗ /
36 else
37 return 1 . + sma l l e s t ; /∗ 1 and i n e x a c t ∗ /
38 }
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 Proof. This program is similar to the one used in rounding to nearest mode with the following excep-
tions:

• When (x > o_bound), in rounding toward −∞, we have to return as result the largest repre-
sentable number ((1 − 2−53).21024) with the inexact flag raised.

• When (|x| < 2−53), in rounding toward −∞, we have to return as result 1.0 − 2−52 if x < 0 with
the inexact flag raised or 1.0 with the inexact flag raised if x > 0.

�

6.1.6 Rounding toward 0

The exponential function is continuous and positive, therefore rounding toward 0 is equivalent to
rounding toward −∞.

6.2 The range reduction

6.2.1 First reduction step

The purpose of this first range reduction is to replace the input number x ∈ [u_bound, o_bound] with
two floating-point numbers r_hi, r_lo and an integer k such that:

x = k. ln(2) + (r_hi + r_lo).(1 + ε)

with |r_hi + r_lo| < 1
2 ln(2)

This “additive” range reduction may generate a cancellation if x is close to a multiple of ln(2). A
method from Kahan based on continuous fractions (see Muller [24] pp 154) allows us to compute the
worst cases for the range reduction. Examples of results are given in Table 2.

Interval Worst cases Number of bits lost
]21024, 21024[ 5261692873635770× 2499 66, 8
[−1024, 1024] 7804143460206699× 2−51 57, 5

Table 2: Worst cases corresponding to the closest number multiple to ln(2), for the additive range re-
duction of the exponential. The maximum number of bits lost by cancellation is also indicated .

The interval [u_bound, o_bound] on which we are evaluating the exponential is included within
[−1024, 1024]. Therefore at most 58 bits can be cancelled during the subtraction of the closest multi-
ple of ln(2) to the input number x.

Theorem 5 The sequence of instructions of the program 10 computes two floating-point numbers in double
precision r_hi, r_lo and an integer k such that

r_hi + r_lo = (x − k × ln 2) + ε−69

with k the closest integer to x/ ln 2.

Listing 10: First range reduction
39 s t a t i c const union { i n t i [ 2 ] ; double d ; }
40 # i f d e f BIG_ENDIAN
41 _ ln2_hi = {0 x3FE62E42 , 0 xFEFA3800 } , /∗ 6.93147180559890330187 e −01 ∗ /
42 _ln2_me = {0 x3D2EF357 , 0 x93C76000 } , /∗ 5.49792301870720995198 e −14 ∗ /
43 _ ln2_ lo = {0 x3A8CC01F , 0 x97B57A08 } , /∗ 1.16122272293625324218 e −26 ∗ /
44 _ inv_ln2 = {0 x3FF71547 , 0 x6533245F } ; /∗ 1.44269504088896338700 e +00 ∗ /
45 # else
46 . . .
47 # endif
48 # define ln2_hi _ ln2_hi . d
49 # define ln2_me _ln2_me . d
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50 # define ln2_ lo _ ln2_ lo . d
51 # define inv_ln2 _inv_ln2 . d
52

53 double r_hi , r_lo , rp_hi , rp_lo ;
54 double u , tmp ;
55 i n t k ;
56

57 DOUBLE2INT( k , x ∗ inv_ln2 )
58

59 i f ( k ! = 0 ) {
60 /∗ r _ h i+ r _ l o = x − ( l n2_h i + ln2_me + l n 2 _ l o ) ∗k ∗ /
61 rp_hi = x−ln2_hi ∗k ;
62 rp_lo = −ln2_me∗k ;
63 Fast2SumCond ( r_hi , u , rp_hi , rp_lo ) ;
64 r _ lo = u − ln2_ lo ∗k ;
65 } else {
66 r_h i = x ; r _ lo = 0 . ;
67 }


 Proof.

line (41-43)

<2> By construction: ln2_hi + ln2_me + ln2_lo = ln(2)(1 + ε−140) •

<3> |ln2_hi| ≤ 20 |ln2_me| ≤ 2−44 |ln2_hi| ≤ 2−86 •

<4> ln2_hi and ln2_me hold at most 42 bits of precision •

line 57 Put in k the closest integer of x∗ inv_ln2. We use the property of DOUBLE2INT that
converts a floating-point number in rounding to nearest mode (program 6, page 6).
In addition k satisfies the following property:

<5> �x × inv_ln2� ≤ k ≤ �x × inv_ln2� et |k| ≤ x
2 × inv_ln2 •

We have seen in Section 6.1.2: −745.1332 . . . < x < 709.7827 . . ., then:

<6> −1075 ≤ k ≤ 1025 and |k| is an integer on at most 11 bits •
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line 63 Properties <4> and <6> give us:

<7> ln2_hi ⊗ k = ln2_hi × k and ln2_me ⊗ k = ln2_me × k exactly •
By property <5> we have:

(x × inv_ln2 − 1) × ln2_hi ≤ k × ln2_hi ≤ (x × inv_ln2 + 1) × ln2_hi

x/2 ≤ k × ln2_hi ≤ 2.x

By the Sterbenz theorem (theorem 1, page 5), we have

x � (ln2_hi ⊗ k) = x − (ln2_hi ⊗ k)

Combined with property <7> we have:

<8> x � (ln2_hi ⊗ k) = x − (ln2_hi × k) exactly •
We use conditional Fast2Sum algorithm (with tests on entries), because x−ln2_hi×k
can be equal to zero (due to the 58 bits of cancellation). The conditional Fast2Sum
algorithm (program 2, page 5) leads to

r_hi + u = (x � ln2_hi ⊗ k) + (−ln2_me ⊗ k)

With properties <7> and <8> we have:

<9> r_hi + u = (x − ln2_hi × k) + (−ln2_me × k) exactly •

line 64 By the property <6> we have:

<10> |ln2_lo × k| ≤ 2−75,
ln2_lo ⊗ k = (ln2_lo × k).(1 + ε−54) •

r_lo = u � (ln2_lo ⊗ k)
= (u − (ln2_lo ⊗ k)).(1 + ε−54)
= (u − (ln2_lo × k).(1 + ε−54)).(1 + ε−54) <10>
= (u − (ln2_lo × k)).(1 + ε−54) + ε−129 + ε−183

That gives us:

<11> r_lo = (u − (ln2_lo × k)).(1 + ε−54) + ε−129 + ε−183 •

We have:

r_hi + r_lo = r_hi + (u − (ln2_lo × k)).(1 + ε−54) + ε−129 + ε−183 <11>
= (x − ln2_hi × k) + (−ln2_me × k) − (ln2_lo × k)

+(u − (ln2_lo × k)).ε−54 + ε−129 + ε−183 <9>
= (x − k. ln(2)) + k.ε−140 + (u − (ln2_lo × k)).ε−54+

ε−129 + ε−183 <2>
= (x − k. ln(2)) + (u − (ln2_lo × k)).ε−54 + ε−128 + ε−183

In the worst case, we are losing at most 58 bits by cancellation (Table 2). By property
<9>, we deduce that u = 0 in this case, property <10> (|ln2_lo× k| ≤ 2−75) gives us:

<12> r_hi + r_lo = (x − k × ln 2) + ε−127+58=−69 •

In addition 69 bits is a precision that can be represented as the sum of 2 floating-
point numbers in double precision.
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line 66 If k = 0 then no subtraction is necessary, then r_hi + r_lo = x exactly.

�

At the end of this first rang reduction we have:

exp(x) = 2k. exp(r_hi + r_lo + ε−69) = 2k. exp(r_hi + r_lo).(1 + ε−69)

6.2.2 Second range reduction

The number (r_hi+r_lo) is still too big to be used in a polynomial evaluation. A second range reduction
needs to be done. This second range reduction is based on the additive property of the exponential
ea+b = eaeb, and on the tabulation of some values of the exponential.

Let index_flt be the � first bits of (r_hi + r_lo), then we have:
exp(r_hi + r_lo) = exp(index_flt). exp(r_hi + r_lo − index_flt)

≈ (ex_hi + ex_lo). exp(rp_hi + rp_lo)
where ex_hi and ex_lo are double precision floating-point numbers extracted from a table addressed by
index_flt, such that ex_hi + ex_lo ≈ exp(index_flt). The input argument after this reduction step will
be represented as the sum of two double precision floating-point numbers rp_hi and rp_lo such that

rp_hi + rp_lo = r_hi + r_lo − index_flt

Tests show that the optimal table size for the range reduction is 4KBytes [8]. If we want to store
these values and keep enough precision (at least 69bits), we need two floating-point numbers (16 bytes)
per value.

Let � be the parameter such that [−2−�−1, 2−�−1] is the range after reduction, we want:

�ln 2.2��16 ≤ (212 = 4096)

With � = 8 we have �ln(2).28�16 bytes = 2848 bytes, and the evaluation range is reduced to [−2−9, 2−9].
After this reduction step, we have |rp_hi + rp_lo| ≤ 2−9.
The corresponding sequence of instructions performing this second range reduction is:

Listing 11: Second range reduction
68 /∗ Cons t an t s d e f i n i t i o n ∗ /
69 s t a t i c const union { i n t i [ 2 ] ; double d ; }
70 # i f d e f BIG_ENDIAN
71 _two_44_43 = {0 x42B80000 , 0 x00000000 } ; /∗ 26388279066624 . ∗ /
72 # else
73 . . .
74 # endif
75 # define two_44_43 _two_44_43 . d
76 # define bias 8 9 ;
77

78 double ex_hi , ex_lo , i n d e x _ f l t ;
79 i n t index ;
80

81 i n d e x _ f l t = ( r_hi + two_44_43 ) ;
82 index = LO( i n d e x _ f l t ) ;
83 i ndex_ f l t −= two_44_43 ;
84 index += bias ;
85 r_h i −= i n d e x _ f l t ;
86

87 /∗ R e s u l t s n o r m a l i z a t i o n ∗ /
88 Fast2Sum( rp_hi , rp_lo , r_hi , r _ lo )
89

90 /∗ Tab l e l o o kup ∗ /
91 ex_hi = tab_exp [ index ] [ 0 ] ;
92 ex_lo = tab_exp [ index ] [ 1 ] ;


 Proof.
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line 71 The constant two_44_43 = 244 + 243 is used in rounding to nearest mode to extract
the � = 8 leading bits of r_hi + r_lo.

line 76 In the C language, tables have positive indices. We consider positive values as well
as negative ones for index, therefore we need to use a bias equal to 178/2 = 89.

line (81, 85) This sequence of instructions is similar to the one used within DOUBLE2INT (pro-
gram 6, page 6). It puts in index variable, bits of weight 20 to 2−8, minus the value
of the bias. Meanwhile, it puts in index_flt the floating-point value corresponding
to the first 8 bits of r_hi.
In line 85 we have:

<13> r_hi = r_hi − index_flt exactly •

line 88 The Fast2Sum algorithm guarantee:

<14> |rp_hi| ≤ 2−9 and |rp_lo| ≤ 2−63,
rp_hi + rp_lo = r_hi + r_lo exactly •

line 91, 92 We perform table lookup of the 2 values ex_hi and ex_lo. The table is built such that
only one cache miss can be encountered in these two table lookups.
By construction of the table tab_exp we have:

<15> |ex_hi| ≤ 2−1 and |ex_lo| ≤ 2−55

ex_hi + ex_lo = exp(index_flt).(1 + ε−109) •

�
At the end of this second range reduction we have:

exp(x) = 2k.(ex_hi + ex_lo). exp(rp_hi + rp_lo).(1 + ε−69).(1 + ε−109)

7 Polynomial evaluation

Let r = (rp_hi + rp_lo), we need to evaluate exp(r) with r ∈ [−2−9, 2−9]. We will evaluate f(r) =
(exp(r) − 1 − r − r2

2 )/r3 with the following polynom of degree 3:

P (r) = c0 + c1r + c2r
2 + c3r

3

where

• c0 = 6004799503160629/36028797018963968 ≤ 2−2

• c1 = 750599937895079/18014398509481984≤ 2−4

• c2 = 300240009245077/36028797018963968≤ 2−6

• c3 = 3202560062254639/2305843009213693952 ≤ 2−9

with c0, c1, c2, c3 exactly representable by double precision floating-point numbers.
By using infnorm function from Maple we get the following error:

<16> exp(r) = (1 + r + 1
2r2 + r3.P (r)).(1 + ε−78) with r ∈ [−2−9, 2−9] •

For efficiency reason, we will evaluate P (rp_hi) instead of P (rp_hi+rp_lo). The error corresponding
to this approximation is:

P (rp_hi + rp_lo) − P (rp_hi) = c1.rp_lo+
c2.(rp_lo2 + 2.rp_hi.rp_lo)+
c3.(rp_lo3 + 3.rp_hi2.rp_lo + 3.rp_hi.rp_lo2) <14>

≤ ε−67 + ε−75

The property <16> becomes:
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<17> exp(r) = (1 + r + 1
2r2 + r3.P (rp_hi)) + ε−78 + ε−86 with r ∈ [−2−9, 2−9] •

P_r = P (rp_hi) is evaluated by the following sequences of instructions:

Listing 12: Polynomial evaluation
93 s t a t i c const union { i n t i [ 2 ] ; double d ; }
94 # i f d e f BIG_ENDIAN
95 _c0 = {0 x3FC55555 , 0 x55555535 } , /∗ 1.66666666666665769236 e −01 ∗ /
96 _c1 = {0 x3FA55555 , 0 x55555538 } , /∗ 4.16666666666664631257 e −02 ∗ /
97 _c2 = {0 x3F811111 , 0 x31931950 } , /∗ 8.33333427943885873823 e −03 ∗ /
98 _c3 = {0 x3F56C16C , 0 x3DC3DC5E } ; /∗ 1.38888903080471677251 e −03 ∗ /
99 # else

100 . . .
101 # endif
102 # define c0 _c0 . d
103 # define c1 _c1 . d
104 # define c2 _c2 . d
105 # define c3 _c3 . d
106 double P_r ;
107

108 P_r = ( c_0 + rp_hi ∗ ( c_1 + rp_hi ∗ ( c_2 + ( rp_hi ∗ c_3 ) ) ) ) ;


 Proof.
We have:
•P0 = c_3 ⊗ rp_hi then |P0| ≤ 2−18 and P0 = (c_3 × rp_hi) + ε−72

•P1 = c_2 ⊕ P0 then |P1| ≤ 2−6 and P1 = (c_2 + P0) + ε−60

•P2 = P1 ⊗ rp_hi then |P2| ≤ 2−15 and P2 = (P1 × rp_hi) + ε−69

•P3 = c_1 ⊕ P2 then |P3| ≤ 2−4 and P3 = (c_1 + P2) + ε−58

•P4 = P3 ⊗ rp_hi then |P4| ≤ 2−13 and P4 = (P3 × rp_hi) + ε−67

•P5 = c_0 ⊕ P4 then |P5| ≤ 2−2 and P5 = (c_0 + P4) + ε−56

By combining all these errors we get:

<18> |P_r| ≤ 2−2

P_r = (c_0 + rp_hi × (c_1 + rp_hi × (c_2 + (rp_hi × c_3)))) + ε−55 + ε−65

P_r = P (rp_hi) + ε−55 + ε−65 •
By the properties <17> and <18>:

<19> exp(r) = (1 + r + 1
2r2 + r3.P_r) + ε−78 + ε−81 with r ∈ [−2−9, 2−9] •

�

At the end of the polynomial evaluation scheme we have:

exp(x) = 2k.(ex_hi + ex_lo).(1 + r +
1
2
r2 + r3.P_r + ε−78 + ε−81).(1 + ε−69).(1 + ε−109)

8 Reconstruction

Along previous step of the algorithm we get the following results:

• k, r_hi and r_lo during the additive range reduction,

• ex_hi, ex_lo, rp_hi and rp_lo during the table range reduction,

• P_r with the polynomial range reduction.

The reconstruction step consist in merging all these results in order to get exp(x). This step is based
on the following mathematical formula:

exp(x) = 2k.(ex_hi + ex_lo).(1 + (rp_hi + rp_lo) +
1
2
.(rp_hi + rp_lo)2 + (rp_hi + rp_lo)3.P_r)
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However, some terms in this equation are too small compared to dominants terms, and should not
be taken into account: We approximate:

Rec = (ex_hi + ex_lo).(1 + (rp_hi + rp_lo) +
1
2
.(rp_hi + rp_lo)2 + (rp_hi + rp_lo)3.P_r)

by

Rec∗ = ex_hi × (1 + rp_hi + rp_lo +
1
2
(rp_hi)2 + P_r × (rp_hi)3) + ex_lo × (1 + rp_hi +

1
2
(rp_hi)2)

The corresponding error is given by:

Rec − Rec∗ =
(ex_hi + ex_lo).(rp_hi.rp_lo + 1

2rp_lo2)+
ex_hi.rp_lo.(3.rp_hi2 + 3.rp_hi.rp_lo + rp_lo2)+
ex_lo.rp_hi.(3.rp_lo2 + 3.rp_hi.rp_lo + rp_hi2) + ex_lo.rp_lo3+
ex_lo.rp_lo
≤ 2−74 + 2−82 + 2−88

Hence the following property:

<20> The error done when approximating Rec by Rec∗ is:

Rec = Rec∗ + ε−74 + ε−81

•
The order in which are executed the instructions is choosen in order to minimize the error. These

terms and the intermediate computations with their order of magnitude are given in Figure 1, page 21.

Listing 13: Reconstruction
109 double R1 , R2 , R3_hi , R3_lo , R4 , R5_hi , R5_lo , R6 , R7 , R8 , R9 , R10 , R11 , crp_hi ;
110

111

112 R1 = rp_hi ∗ rp_hi ;
113

114 crp_hi = R1 ∗ rp_hi ;
115 /∗ Corre spond t o R1 / = 2 ; ∗ /
116 HI (R1 ) = HI ( R1 )−0x00100000 ;
117

118 R2 = P_r ∗ crp_hi ;
119

120 Dekker ( R3_hi , R3_lo , ex_hi , rp_hi ) ;
121 R4 = ex_hi ∗ rp_lo ;
122

123 Dekker ( R5_hi , R5_lo , ex_hi , R1 ) ;
124 R6 = R4 + ( ex_lo ∗ ( R1 + rp_hi ) ) ;
125

126 R7 = ex_hi ∗ R2 ;
127 R7 + = ( R6 + R5_lo ) + ( R3_lo + ex_lo ) ;
128

129 Fast2Sum(R9 , R8 , R7 , R5_hi ) ;
130

131 Fast2Sum( R10 , tmp , R3_hi , R9 ) ;
132 R8 += tmp ;
133

134 Fast2Sum( R11 , tmp , ex_hi , R10 ) ;
135 R8 += tmp ;
136

137 Fast2Sum( R11 , R8 , R11 , R8 ) ;


 Proof.
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line 112 |rp_hi| ≤ 2−9, therefore:

<21> |R1| ≤ 2−18,
R1 = (rp_hi)2.(1 + ε−54) •

line 114 By using property <21> and |rp_hi| ≤ 2−9 we get:

<22> |crp_hi| ≤ 2−27,
crp_hi = (rp_hi)3.(1 + ε−53) •

line 116 This operation is a division by 2, done by subtracting 1 to the exposant. This oepra-
tion is valid and exact if R1 is not a denormal number, which is the case (property
<1> |x| ≥ 2−54), and the table 2 showing that we have at most 58 bits of cancella-
tion).

<23> |R1| ≤ 2−19,
R1 = 1

2 (rp_hi)2.(1 + ε−54) •

line 118 By using properties <18> and <22>:

<24> |R2| ≤ 2−29,
R2 = P_r × (crp_hi).(1 + ε−54) ,
R2 = P_r × (rp_hi)3.(1 + ε−52) •

line 120 By using Dekker algorithm (programme 4, page 6) and properties <14> and <15>
we have:

<25> |R3_hi| ≤ 2−10 and |R3_lo| ≤ 2−64,
R3_hi + R3_lo = ex_hi × rp_hi exactly •

line 121 By using properties <14> and <15>:

<26> |R4| ≤ 2−64,
R4 = ex_hi × rp_lo.(1 + ε−54) •

line 123 By using Dekker algorithm and properties <15> and <23> we have:

<27> |R5_hi| ≤ 2−20 and |R5_lo| ≤ 2−74,
(R5_hi + R5_lo) = ex_hi × R1 exactly,
(R5_hi + R5_lo) = (ex_hi × 1

2 (rp_hi)2).(1 + ε−54) •

line 124 By using properties <15> and <23>:
|R1 + rp_hi| ≤ 2−8,
R1 ⊕ rp_hi = R1 + rp_hi + ε−62,
|ex_lo × (R1 + rp_hi)| ≤ 2−63,
ex_lo ⊗ (R1 ⊕ rp_hi) = ex_lo × ( 1

2 (rp_hi)2 + rp_hi) + ε−116.
which combined with property <26> gives us:

<28> |R6| ≤ 2−62,
R6 = R4 +

(
ex_lo × ( 1

2 (rp_hi)2 + rp_hi
)

+ ε−116

)
+ ε−116

R6 = (ex_hi × rp_lo) +
(
ex_lo × ( 1

2 (rp_hi)2 + rp_hi
))

+ ε−115 + ε−118 •
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line 126 By using properties <15> and <24> we get:

<29> |R7| ≤ 2−30,
R7 = (ex_hi × R2).(1 + ε−54),
R7 = (ex_hi × P_r × (rp_hi)3).(1 + ε−52 + ε−53) •

line 127 By using properties <27> and <28> we get:

<30> |R6 + R5_lo| ≤ 2−61,
R6 ⊕ R5_lo = R6 + R5_lo + ε−115 ou
R6 ⊕ R5_lo = (ex_hi × rp_lo) + (ex_lo × ( 1

2 (rp_hi)2 + rp_hi)) + R5_lo + ε−113 •
By using properties <15> and <25> we get:

<31> |R3_lo + ex_lo| ≤ 2−54,
R3_lo ⊕ ex_lo = R3_lo + ex_lo + ε−108 •
By using properties <30> and <31> we get:
|R6 + R5_lo + R3_lo + ex_lo| ≤ 2−53 et
(R6 ⊕ R5_lo) ⊕ (R3_lo ⊕ ex_lo) = (R6 ⊕ R5_lo) + (R3_lo ⊕ ex_lo) + ε−107.
which combined with property <29> gives us:

<32> |R7| ≤ 2−29,
R7 = (ex_hi × P_r × (rp_hi)3).(1 + ε−52 + ε−53)+

((ex_hi × rp_lo) + (ex_lo × ( 1
2 (rp_hi)2 + rp_hi)) + R5_lo + ε−113)+

(R3_lo + ex_lo + ε−108)
= ex_hi × (rp_lo + P_r × (rp_hi)3)+

ex_lo × (1 + rp_hi + 1
2 (rp_hi)2)+

R5_lo + R3_lo + ε−80

•

line 129 Fast2Sum algorithm guarantees:

<33> |R9| ≤ 2−19 and |R8| ≤ 2−73,
R7 + R5_hi = R9 + R8 exactly •

line 131 Fast2Sum algorithm guarantee:

<34> |R10| ≤ 2−9 and |tmp| ≤ 2−63,
R3_hi + R9 = R10 + tmp exactly •

line 132 By using properties <33> and <34>:

<35> |R8 + tmp| ≤ 2−62,
R8 = R8 + tmp + ε−116 •

line 134 Fast2Sum algorithm guarantees:

<36> |R11| ≤ 20 and |tmp| ≤ 2−54,
R11 + tmp = ex_hi + R10 exactly •

line 135 By using properties <35> and <36>:

<37> |R8 + tmp| ≤ 2−53,
R8 = R8 + tmp + ε−107 •

line 137 Fast2Sum algorithm guarantees:

<38> |R11| ≤ 21 and |R8| ≤ 2−53,
R11 + R8 = R11 + R8 exactly •
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�

Therefore we have:

R11 + R8 = R11 + tmp + R8 + ε−107 <37>
= ex_hi + R10 + R8 + ε−107 <36>
= ex_hi + R10 + tmp + R8 + ε−107 + ε−116 <35>
= ex_hi + R3_hi + R9 + R8 + ε−106 <34>
= ex_hi + R3_hi + R7 + R5_hi + ε−106 <33>
= ex_hi + R3_hi + R5_hi+

ex_hi × (rp_lo + P_r × (rp_hi)3)+
ex_lo × (1 + rp_hi + 1

2 (rp_hi)2)+
R5_lo + R3_lo + ε−80 + ε−106 <32>

= (R3_hi + R3_lo) + (R5_hi + R5_lo)+
ex_hi × (1 + rp_lo + P_r × (rp_hi)3)+
ex_lo × (1 + rp_hi + 1

2 (rp_hi)2) + ε−80 + ε−106

= (R3_hi + R3_lo)+
ex_hi × (1 + rp_lo + 1

2 (rp_hi)2 + P_r × (rp_hi)3)+
ex_lo × (1 + rp_hi + 1

2 (rp_hi)2) + ε−74 + ε−79 <27>
= ex_hi × (1 + rp_hi + rp_lo + 1

2 (rp_hi)2 + P_r × (rp_hi)3)+
ex_lo × (1 + rp_hi + 1

2 (rp_hi)2)+
ε−74 + ε−79 <25>

Using property <20> we get:

R11 + R8 = (ex_hi + ex_lo).(1 + r + 1
2 .r2 + r3.P_r)

+ε−73 + ε−78

By construction of values (ex_hi + ex_lo), we have (ex_hi + ex_lo) > exp(−1) > 2−2, therefore

<39> |R11 + R8| > 2−2

and
exp(x) = 2k.(R11 + R8 + ε−73 + ε−78).(1 + ε−69).(1 + ε−109) •
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9 Test if correct rounding is possible

We now have to round correctly the result and multiply it by 2k, with k an integer. This multiplication
is exact, therefore we have:

exp(x) = ◦ (2k.(R11 + R8 + ε−73 + ε−78).(1 + ε−69).(1 + ε−109)
)

= 2k. ◦ ((R11 + R8 + ε−73 + ε−78).(1 + ε−69).(1 + ε−109))

if the result is not a denormal number.
However, if the final result belongs to denormal numbers, then the precision of the result is less than

the 53 bits of a normal number. Let us take an exemple. Let a = 1.75 be a floating-point number exactly
representable in double precision format (we have ◦(a) = a). Let us multiply this number by 2−1074.
The exact result is 1.75×2−1074 which is different from the result rounded to nearest in double precision
◦(1.75 × 2−1074) = 2−1073.

Therefore, in the case when the result is a denormal number, we have to use a special procedure.

9.1 Rounding to nearest

Listing 14: Test if rounding to nearest is possible
138 s t a t i c const union { i n t i [ 2 ] ; double d ; }
139 # i f d e f BIG_ENDIAN
140 _two1000 = {0 x7E700000 , 0 x00000000 } , /∗ 1.07150860718626732095 e301 ∗ /
141 _twom1000 = {0 x01700000 , 0 x00000000 } , /∗ 9.33263618503218878990 e −302 ∗ /
142 _errn = {0 x3FF00080 , 0 x00000000 } , /∗ 1.00012207031250000000 e0 ∗ /
143 _twom75 = {0 x3B400000 , 0 x00000000 } ; /∗ 2.64697796016968855958 e −23 ∗ /
144 # else
145 . . .
146 # endif
147 # define two1000 _two1000 . d
148 # define twom1000 _twom1000 . d
149 # define errn _errn . d
150 # define twom75 _twom75 . d
151

152 i n t errd = 71303168 ; /∗ 6 8 ∗ 2 ^ 2 0 ∗ /
153

154 double R11_new , R11_err , R13 , st2mem ;
155 i n t exp_R11 ;
156

157 union { i n t i [ 2 ] ; long long i n t l ; double d ; } R12 ;
158

159

160 /∗ Résu l t = ( R11 + R8 ) ∗ /
161 i f ( R11 = = ( R11 + R8 ∗ errn ) ) {
162 i f ( k > −1020) {
163 i f ( k < 1020 ) {
164 HI ( R11 ) + = ( k<<20) ;
165 return R11 ;
166 } else {
167 /∗ we a r e c l o s e t o + I n f ∗ /
168 HI ( R11 ) + = ( ( k−1000) <<20) ;
169 return R11∗ two1000 ;
170 }
171 } else {
172 /∗ We c o n s i d e r denorma l number ∗ /
173 HI ( R11_new ) = HI ( R11 ) + ( ( k+1000) <<20) ;
174 LO( R11_new ) = LO( R11 ) ;
175 R12 . d = R11_new ∗ twom1000 ;
176

177 HI ( st2mem) = R12 . i [HI_ENDIAN ] ;
178 LO( st2mem) = R12 . i [LO_ENDIAN] ;
179

180 R11_err −= st2mem ∗ two1000 ;
181 HI ( R13 ) = HI ( R11_err ) & 0 x 7 f f f f f f f ;
182 LO( R13 ) = LO( R11_err ) ;
183

184 i f ( R13 == two_m75 ) {
185 exp_R11 = ( HI ( R11 ) & 0 x7f f00000 ) − errd ;
186 i f ( ( HI ( R8 ) & 0 x7f f00000 ) < exp_R11 ) {
187 /∗ D i f f i c u l t round ing ! ∗ /
188 sn_exp ( x ) ;
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189 }
190 /∗ The e r r o r term i s e x a c t l y 1 / 2 u lp ∗ /
191 i f ( ( HI ( R11_err ) > 0 ) && (HI (R8 ) > 0 ) ) R12 . l + = 1 ;
192 else
193 i f ( ( HI ( R11_err ) < 0 ) && (HI (R8 ) < 0 ) ) R12 . l −=1;
194 }
195 return R12 . d ;
196 }
197 } else {
198 /∗ Cha l l eng ing c a s e ∗ /
199 sn_exp ( x ) ;
200 }


 Proof.

line 161 This test is used to know whether we can round the result or not. More details about
this trick can be found in [9].
By using property <39> we have:

|(R11 + R8) × 2k − exp(x)| ≤ 2−68

where x ∈ [A, B], that leads to errn = 1+2−68×255 = 1+2−13. This test is true if we
are able to round correctly the result, else we need to call multiprecision procedure.

line 162-170 We are able to round, now we need to perform the multiplication R11 × 2k exactly.
We do this multiplication by using integer addition on the exponent of R11. For this
operation to be valid and exact, we must be sure not to create a denormal or infinity.
This is the reason why we perform a test on the value of k.
(R11 + R8) > 2−2 then 2k.(R11 + R8) will not lead to a denormal number if k >
−1020.
(R11 + R8) < 23 then 2k.(R11 + R8) will not lead to an overflow if k < 1020. Then
we have R11 = R11 ⊕ R8
In the case when we may return an overflow as result, we make the value of k
smaller, by subtracting 1000 to it. This will prevent the apparition of exception
cases during the addition of k to the exponent. The result is then multiplied by
the floating-point number twom1000 = 2−1000. This multiplication is exact but in
case of underflow, in which case exceptions will be properly raised.

line 173 The result may be a denormal number. We need to use a specific test to check
whether if we are able to round properly the result.

R11 = R11 × 2k+1000

line 175 In rounding to nearest we get:

R12 = R11 ⊗ 2−1000 = R11 × 2−1000 + ε−1075

The error term ε−1075 comes from the possible truncation when the result is a de-
normal number.

line 177,178 Processors do not handle denormal number in ’hardware’, there are treated when
they are stored in memory. It means that number within register can’t be denor-
mal. Therefore, these lines prevent the compiler from performing “dangerous” op-
timizations, meanwhile preventing to have extra precision by forcing R12 to transit
through memory. These lines could be removed for exemple by using gcc and the
flag -ffloat-store that will have the same effect. However this flag forces each
floating-point instruction to transit through memory, and has as consequence to
severely degrade the performance of the resulting program. The solution to keep
good performance is to manually force a data to transit through memory, in order
to have an IEEE compliant behavior for denormal numbers.
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line 180 Let
R11_err = R11 � R12 ⊗ 21000

By the Sterbenz lemma, and by the fact that a multiplication by a power of 2 is exact
we have:

R11_err = R11 − R12 × 21000

This operation will put within R11_err the error done during the multiplication of
R11 by 2−1000 (line 175).

line 181,182 Remove the sign information of R11_err

R13 = |R11_err|

line 184 Test if R13 is exactly equal to the absolute error (which is also the relative error) done
during the rounding process, in rounding to nearest, whithin denormal number,
times 21000:

2−1075 × 21000 = 2−75

Now we want to prove that if error term is strictly less than 1/2ulp(R12) then R12
corresponds to the correct rounding of R11 + R8.
If |R11_err| < 1

2ulp(R12) then
|R11_err| ≤ 1

2ulp(R12)− ulp(R11) and |R8| ≤ 1
2ulp(R11) therefore:

|R11_err + R8| ≤ 1
2
ulp(R12)− ulp(R11) +

1
2
ulp(R11)

then:
|R11_err + R8| <

1
2
ulp(R12)

In that case R12 represents the correct rounding of R11 + R8 si |R11_err| <
1
2ulp(R12).
However, if |R11_err| = 1

2ulp(R12) = 2−75, during the multiplication R11× 2−1000,
the result is rounded to odd/even due to the presence of an ambiguous value. It
mean that R12 may not represent the rounding to nearest result of R11 + R8, we
need to perform a correction:

• If R8 > 0, and R11_err = − 1
2ulp(R12), then the round to odd/even was done

on the correct side.

• If R8 > 0, and R11_err = 1
2ulp(R12), then the round to odd/even wasn’t

done on the correct side. We need to perform a correction by adding 1ulp to
R12 (figure 2, case a)

• If R8 < 0, and R11_err = − 1
2ulp(R12), then the round to odd/even wasn’t

done on the correct side. We need to perform a correction by subtracting 1ulp
to R12 (figure 2, case b).

• If R8 < 0, and R11_err = 1
2ulp(R12), then the round to odd/even was done

on the correct side.

line 186 When we are in presence of a consecutive sequence of 0 or 1 straddling R11 and R8,
then the test done at line 161 will not detect a possible problem. This problem will
arise only with denormal numbers, when R11_err is close to 1

2ulp(R12).
Therefore we have to detect if in that case (denormal, |R11_err| = 1

2ulp(R12))
we have enough precision to correctly round the result. We use a test similar
to the one used to test wheteher we can round with rounding toward ±∞. In-
deed, problematic cases arise when 1

2ulp(R12) − 2−68.R11 ≤ |R11_err + R8| ≤
1
2ulp(R12) + 2−68.R11).



CR-LIBM: The evaluation of the exponential 25

line 191,193 Test if we are in presence of one of the cases described previously, and correct the
result by adding or subtracting 1ulp by using the “continuity” of the representation
of floating-point number.

�

X ... XX
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0 0 0
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2
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Figure 2: Description of problem with rounding to nearest of a denormal number.

9.2 Rounding toward +∞

Listing 15: Test if rounding toward +∞ is possible
201 s t a t i c const union { i n t i [ 2 ] ; double d ; }
202 # i f d e f BIG_ENDIAN
203 _two1000 = {0 x7E700000 , 0 x00000000 } , /∗ 1.07150860718626732095 e301 ∗ /
204 _twom1000 = {0 x01700000 , 0 x00000000 } , /∗ 9.33263618503218878990 e −302 ∗ /
205 # else
206 . . .
207 # endif
208 # define two1000 _two1000 . d
209 # define twom1000 _twom1000 . d
210

211

212 i n t errd = 71303168 ; /∗ 6 8 ∗ 2 ^ 2 0 ∗ /
213

214 i n t exp_R11 ;
215 union { i n t i [ 2 ] ; long long i n t l ; double d ; } R12 ;
216

217 /∗ Resu l t = ( R11 + R8 ) ∗ /
218

219 exp_R11 = ( HI ( R11 ) & 0 x7f f00000 ) − errd ;
220

221 i f ( ( HI ( R8 ) & 0 x7f f00000 ) > exp_R11 ) {
222 /∗ We a r e a b l e t o round t h e r e s u l t ∗ /
223 i f ( k > −1020) {
224 i f ( k < 1020 ) {
225 HI ( R11 ) + = ( k<<20) ;
226 } else {
227 /∗ We a r e c l o s e t o + I n f ∗ /
228 HI ( R11 ) + = ( ( k−1000) <<20) ;
229 R11 ∗= two1000 ;
230 }
231 i f ( HI ( R8 ) > 0 ) {
232 R12 . d = R11 ;
233 R12 . l + = 1 ;
234 R11 = R12 . d ;
235 }
236 return R11 ;
237 } else {
238 /∗ We a r e wi th denorma l number ∗ /
239 HI ( R11 ) + = ( ( k+1000) <<20) ;
240 R12 . d = R11 ∗ twom1000 ;
241

242 HI ( st2mem) = R12 . i [HI_ENDIAN ] ;
243 LO( st2mem) = R12 . i [LO_ENDIAN]
244

245 R11 −= st2mem ∗ two1000 ;
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246 i f ( ( HI ( R11 ) > 0 ) ||((HI ( R11 ) = = 0 )&&(HI ( R8 ) > 0 ) ) ) R12 . l + = 1 ;
247

248 return R12 . d ;
249 }
250 } else {
251 /∗ D i f f i c u l t c a s e ∗ /
252 su_exp ( x ) ;
253 }


 Proof.
The program used to check whether correct rounding toward +∞ is possible is similar to the one

used with rounding to nearest.

line 221 This test is valid even if the final result is a denormal number.
line 231 We add 1ulp to the result if R8 is positive.
line 245 Like for rounding to nearest, the quantity R11 represents the rounding error that

comes from the operation R11 ∗ twom1000 in line 240.
line 246 This test checks whether the error from line 240 is strictly positive or if it is equal to

zero and if R8 is strictly positive. If we are in one of these two cases, by definition
of rounding toward +∞, we need to add 1ulp to the result.

�

9.3 Rounding toward −∞

Listing 16: Test if rounding toward −∞ is possible
144 s t a t i c const union { i n t i [ 2 ] ; double d ; }
145 # i f d e f BIG_ENDIAN
146 _two1000 = {0 x7E700000 , 0 x00000000 } , /∗ 1.07150860718626732095 e301 ∗ /
147 _twom1000 = {0 x01700000 , 0 x00000000 } , /∗ 9.33263618503218878990 e −302 ∗ /
148 # else
149 . . .
150 # endif
151 # define two1000 _two1000 . d
152 # define twom1000 _twom1000 . d
153

154 i n t errd = 71303168 ; /∗ 6 8 ∗ 2 ^ 2 0 ∗ /
155

156 i n t exp_R11 ;
157 union { i n t i [ 2 ] ; long long i n t l ; double d } R12 ;
158

159 /∗ Résu l t = ( R11 + R8 ) ∗ /
160

161 exp_R11 = ( HI ( R11 ) & 0 x7f f00000 ) − errd ;
162

163 i f ( ( HI ( R8 ) & 0 x7f f00000 ) > exp_R11 ) {
164 /∗ We a r e a b l e t o round t h e r e s u l t ∗ /
165 i f ( k > −1020) {
166 i f ( k < 1020 ) {
167 HI ( R11 ) + = ( k<<20) ;
168 } else {
169 /∗ We a r e c l o s e t o + I n f ∗ /
170 HI ( R11 ) + = ( ( k−1000) <<20) ;
171 R11 ∗= two1000 ;
172 }
173 i f ( HI ( R8 ) > 0 ) {
174 R12 . d = R11 ;
175 R12 . l + = 1 ;
176 R11 = R12 . d ;
177 }
178 return R11 ;
179 } else {
180 /∗ We a r e wi th denorma l number ∗ /
181 HI ( R11 ) + = ( ( k+1000) <<20) ;
182 R12 . d = R11 ∗ twom1000 ;
183

184 HI ( st2mem) = R12 . i [HI_ENDIAN ] ;
185 LO( st2mem) = R12 . i [LO_ENDIAN] ;
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186

187 R11 −= st2mem ∗ two1000 ;
188 i f ( ( HI ( R11 ) < 0 ) ||((HI ( R11 ) = = 0 )&&(HI ( R8 ) < 0 ) ) ) R12 . l −= 1 ;
189

190 return R12 . d ;
191 }
192 } else {
193 /∗ D i f f i c u l t c a s e ∗ /
194 su_exp ( x ) ;
195 }


 Proof.
The program used to check whether correct rounding toward −∞ is possible is similar to the previ-

ous one.
�

9.4 Rounding toward 0

The program used to check whether correct rounding toward 0 is possible is identical to the one used
for rounding to −∞ because exp(x) is a positive function.

10 Accurate phase

When the previous computation failed, it means that the rounding of the result is difficult to decide. We
need to use more accurate methods:

• sn_exp with rounding to nearest,

• su_exp with rounding toward +∞,

• sd_exp with rounding toward −∞,

These methods are based on SCS library [5], with 30 bits of precision per digit and 8 digits per
vector. The guaranteed precision with this format is 211 bits at least. Even if there is no proof for these
operators yet, the proof for correct rounding of the exponential only requires the following properties,
which are easy to check and/or satisfy:

Property 2 (Addition) Let a � b represent the multiprecision operation performing an addition between a and b
with at least 210 bits of precision for the result. Like for double precision floating point number, the SCS addition
may lead to a cancellation. We have:

a + b = (a � b).(1 + ε−211)

Property 3 (Multiplication) Let a�b represent the multiprecision operation performing a multiplication between
a and b with at least 210 bits of precision for the result. This operation does not produce a cancellation.

a × b = (a � b).(1 + ε−211)

10.1 Overview of the algorithm

Here is the algorithm used for the second part of the evaluation:

1. No special case handling
Special caseshave been handled by the first part.

2. Range reduction
We compute the reduced argument r and the integer k such that:

r =
x − k. ln(2)

512
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with − ln(2)
1024 ≤ r ≤ − ln(2)

1024

such that

exp(x) = exp(r)512 × 2k

3. Polynomial evaluation
We compute the polynom P (r) of degree 11:

exp(r) = (1 + r + P (r)).(1 + ε−179)

4. Powering the result

exp(r)512 =









((((

exp(r)2
)2)2

)2
)2



2



2


2
2

5. Reconstruction

exp(x) = exp(r)512.2k.(1 + ε)

with |ε| ≤ 2−170

We have choosen this evaluation scheme, because the reconstruction step use the squaring multi-
precision operator. This operator facilitate the error computation and is very economic: its cost is 0.7
times that of a true multiprecision multiplication.

We will notice that there exists an alternative to the squaring solution. We can tabulate values 2
N
512

for N = 1, 2, . . . , 511 and use the formula exp(x) = exp(r)×2N ×2
M
512 with k = M +N/512. However we

prefer the squaring method that do not request the storage of SCS numbers and the associated quantity
of memory.

10.2 Function calls

With Lefèvre worst cases on table makers dilemma we get the following theorem:

Theorem 6 (Correct rounding for the exponential) Let y be the exact value of the exponential of a floating-point
number in double precision x. Let y∗ be an approximation of y such that the distance between y and y∗ be bounded
by ε. Then if ε ≤ 2−157, for each of the four rounding mode, rounding y∗ is equivalent to rounding y;

To round the multiprecision result in SCS format depending on the rounding mode, we use the
following procedure (scs_get_d, scs_get_d_pinf, scs_get_d_minf).

10.2.1 Rounding to nearest

Listing 17: Compute the rounding to nearest of the exponential in multiprecision
1 double sn_exp ( double x ) {
2 s c s _ t r e s_ s c s ;
3 scs_db_number res ;
4

5 exp_SC ( res_scs , x ) ;
6 scs_get_d(& res . d , r e s_ s c s ) ; res . d = x ;
7

8 return res . d ;
9 }



CR-LIBM: The evaluation of the exponential 29

10.2.2 Rounding toward +∞

Listing 18: Compute the rounding toward +∞ of the exponential in multiprecision
1 double su_exp ( double x ) {
2 s c s _ t r e s_ s c s ;
3 scs_db_number res ;
4

5 exp_SC ( res_scs , x ) ;
6 scs_get_d_pinf (& res . d , r e s_ s c s ) ;
7 return res . d ;
8 }

10.2.3 Rounding toward −∞

Listing 19: Compute the rounding toward −∞ of the exponential in multiprecision
1 double sd_exp ( double x ) {
2 s c s _ t r e s_ s c s ;
3 scs_db_number res ;
4

5 exp_SC ( res_scs , x ) ;
6 scs_get_d_minf(& res . d , r e s_ s c s ) ;
7 return res . d ;
8 }

10.3 Software

The function exp_SC approximate the exponential of x with 170 bits of precision and put the result in
res_scs.

Listing 20: Compute the exponential in multiprecision
1 void exp_SC( s c s_p t r res_scs , double x ) {
2 s c s _ t sc1 , red ;
3 scs_db_number db ;
4 i n t i , k ;
5

6

7 /∗ db . d = x / 5 1 2 (= 2^9 ) ∗ /
8

9 db . d = x ;
10 db . i [HI_ENDIAN] −= (9 < < 20) ;
11 scs_se t_d ( sc1 , db . d) ;
12

13

14 DOUBLE2INT( k , ( db . d ∗ i ln2_o512 . d) ) ;
15

16 /∗ 1 ) Range r e d u c t i o n ∗ /
17

18 s c s _ s e t ( red , sc_ ln2_o512_ptr_1 ) ; ;
19 s c s _ s e t ( red_low , sc_ ln2_o512_ptr_2 ) ;
20 i f ( k>0) {
21 scs_mul_ui ( red , ( unsigned i n t ) k ) ;
22 scs_mul_ui ( red_low , ( unsigned i n t ) k ) ;
23 } else {
24 scs_mul_ui ( red , ( unsigned i n t ) (−k ) ) ;
25 scs_mul_ui ( red_low , ( unsigned i n t ) (−k ) ) ;
26 red−>sign ∗= −1;
27 red_low−>sign ∗=−1;
28 }
29

30 scs_sub ( red , sc1 , red ) ;
31 scs_sub ( red , red , red_low ) ;
32

33

34 /∗ 2 ) Po lynomia l e v a l u a t i o n ∗ /
35

36 scs_mul ( res_scs , cons tant_poly_ptr [ 0 ] , red ) ;
37 for ( i = 1 ; i < 1 1 ; i ++) {
38 scs_add ( res_scs , cons tant_poly_ptr [ i ] , r e s_ s c s ) ;
39 scs_mul ( res_scs , red , r e s_ s c s ) ;
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40 }
41

42 scs_add ( res_scs , SCS_ONE , re s_ s c s ) ;
43 scs_mul ( res_scs , red , r e s_ s c s ) ;
44 scs_add ( res_scs , SCS_ONE , re s_ s c s ) ;
45

46 /∗ 3 ) Powering t h e r e s u l t exp ( r ) ^512 ∗ /
47

48 for ( i = 0 ; i < 9 ; i ++) {
49 scs_square ( res_scs , r e s_ s c s ) ;
50 }
51

52 /∗ 4 ) M u l t i p l i c a t i o n by 2^ k ∗ /
53

54 res_scs −>index + = ( i n t ) ( k/30) ;
55 i f ( ( k%30) > 0 )
56 scs_mul_ui ( res_scs , ( unsigned i n t ) (1 < <( ( k%30) ) ) ) ;
57 else i f ( ( k%30) < 0 ) {
58 res_scs −>index −−;
59 scs_mul_ui ( res_scs , ( unsigned i n t ) (1 < <( (30+( k%30) ) ) ) ) ;
60 }
61

62 }


 Proof.

line 9 db.d = x
line 10 This operation divides db.d by 512 = 29 and is valid under the condition that db.d,

and consequently x, do not represent a special values (denormal, infinity, NaN).
This condition is satisfied because special cases have been treated during the quick
phase.

line 11 sc1 is a 211 bits multiprecision number such that:

<40> sc1 = db.d = x
512 exactly •

line 14 iln2_o512.d is a double precision floating-point number such that: iln2_o512.d =
512
ln 2 (1+ε−54). This line puts in k the integer closest to db.d⊗ 512

ln 2 . We use the property
of DOUBLE2INT which converts a floating-point number into an integer with
rounding to nearest.
Moreover k satisfies the following property:

<41>
� x

ln 2
� ≤ k ≤ � x

ln 2
� et − 1075 ≤ |k| ≤ 1025

•
And k is a 11 bits integer.

line 18, 19 By construction we have:

red + red_low =
ln 2
512

(1 + ε−450)

and red is constructed in order to make the multiplication of red by k exact if |k| ≤
211.

line 28 At the end of the test on k we have: red + red_low = k � ln 2
512 (1 + ε−450)

with |k| < 211, then:

<42>
red + red_low = k × ln 2

512
(1 + ε−411)

•
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line 30,31 By the properties <40> and <42> we have:

<43> red = x
512 �

(
k × ln 2

512

)
(1 + ε−411) •

In addition we have seen in the quick phase that at most 58 bits could be cancelled
during this subtraction.

<44> |red| ≤ ln 2
1024 ≤ 2−10,

red = x
512 − k × ln 2

512 + ε−210 •
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line 34-44 We now perform the polynomial evaluation where the coefficient have the following
properties.

<45> |constant_poly_ptr[0] = c0| ≤ 2−28, |constant_poly_ptr[1] = c1| ≤ 2−25,
|constant_poly_ptr[2] = c2| ≤ 2−21, |constant_poly_ptr[3] = c3| ≤ 2−18,
|constant_poly_ptr[4] = c4| ≤ 2−15, |constant_poly_ptr[5] = c5| ≤ 2−12,
|constant_poly_ptr[6] = c6| ≤ 2−9, |constant_poly_ptr[7] = c7| ≤ 2−6,
|constant_poly_ptr[8] = c8| ≤ 2−4, |constant_poly_ptr[9] = c9| ≤ 2−2,
|constant_poly_ptr[10] = c10| ≤ 2−1 •
We have:

• P0 = c1 � (red � c0) therefore |P0| ≤ 2−24 et P0 = (c1 + (red× c0))(1 + ε−210 +
ε−244)

• P1 = c2 � (red�P0) therefore |P1| ≤ 2−20 et P1 = (c2 +(red×P0))(1+ ε−210 +
ε−240)

• P2 = c3 � (red�P1) therefore |P2| ≤ 2−17 et P2 = (c3 +(red×P1))(1+ ε−210 +
ε−236)

• P3 = c4 � (red�P2) therefore |P3| ≤ 2−14 et P3 = (c4 +(red×P2))(1+ ε−210 +
ε−233)

• P4 = c5 � (red�P3) therefore |P4| ≤ 2−11 et P4 = (c5 +(red×P3))(1+ ε−210 +
ε−230)

• P5 = c6 � (red � P4) therefore |P5| ≤ 2−8 et P5 = (c6 + (red×P4))(1 + ε−210 +
ε−228)

• P6 = c7 � (red � P5) therefore |P6| ≤ 2−5 et P6 = (c7 + (red×P5))(1 + ε−210 +
ε−224)

• P7 = c8 � (red � P6) therefore |P7| ≤ 2−3 et P7 = (c8 + (red×P6))(1 + ε−210 +
ε−221)

• P8 = c9 � (red � P7) therefore |P8| ≤ 2−1 et P8 = (c9 + (red×P7))(1 + ε−210 +
ε−219)

• P9 = c10 � (red � P8) therefore |P9| ≤ 1 + 2−10 et P9 = (c10 + (red × P8))(1 +
ε−210 + ε−217)

• P10 = 1 � (red � P9) therefore |P10| ≤ 1 + 2−9 et P10 = (1 + (red × P9))(1 +
ε−210 + ε−216)

• P11 = 1 � (red � P10)therefore |P11| ≤ 1 + 2−8 et P11 = (1 + (red × P10))(1 +
ε−210 + ε−216)

Therefore
res_scs = P11(1 + ε−209)

We build the polynomial such that

exp(r) = (1 + r + c10.r
2 + · · · + c0.r

12).(1 + ε−179)

Therefore
|res_scs| ≤ 1 + 2−8 with
exp(x) = 2k.(exp(r))512 = 2k.(res_scs.(1 + ε−209).(1 + ε−179))512
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line 48 We perform a squaring of the result 9 times, which corresponds to raising the result
to the power 512. At each iteration we perform a rounding error equal to ε−207.
Finally
|res_scs| ≤ 23 and
exp(x) = 2k.exp(r)512.(1 + ε−170)

line 54-60 With these lines we perform the multiplication of res_scs by 2k. This multiplication
is done by a shift on the index of k/30, where 30 correspond to the number of bits
used within a multiprecision number. This shift is exact. Then a multiplication of
res_scs by 2 to the power the rest of the euclidian division of k by 30 is done. At the
end of these instructions we have:

exp(x) = (res_scs).(1 + ε−170)

We are approximating the exponential with a relative error less than 2( − 170). This result combines
with property 1, gives us the proof of correct rounding for the four rounding modes.

�

11 Analysis of the exponential

11.1 Test conditions

Table 9 lists the combinations of processor, OS and default libm used for our tests.

Processor OS compiler default libm

Pentium III Debian GNU/Linux gcc-2.95 glibc, derived from fdlibm

UltraSPARC IIi SunOS 5.8 gcc-2.95 Sun optimized
Xeon (Pentium 4) Debian GNU/Linux gcc-2.95 glibc, derived from fdlibm

PowerPC G4 MacOS 10.2 gcc-2.95 Apple specific
Itanium Debian GNU/Linux gcc-2.95, gcc-3.2 Intel optimized

Table 9: The systems tested

The following presents tests performed under such conditions as to suppress most of the impact of
the memory hierarchy: A small loops performs 10 identical calls to the function, and the minimum tim-
ing is reported, ensuring that both code and data have been loaded in the cache, and that interruptions
by the operating system do not alter the timings.

These timings are taken on random values between −745 and +744, which is the practical range for
the exponential. We also report the timing for the worse case for the correct rounding in rounding to
nearest mode of the exponential, which is x = 7.5417527749959590085206221e− 10.

Our libray was tuned to take into account the adequation of the evaluation scheme to the memory
hierarchies of current processors (our program for the exponential evaluation uses 2.8Kbytes of table
for the four rounding modes, whereas the one from fdlibm use 13Kbytes). However we do not have
tested the impact over performance of this concern and is part of our futur works.

11.2 Results

Tables 10 gives a summary of the timings of the various libraries. The timings are normalized to the
average time of the default libm on each system, which should be taken with care as the libms used
by default on the tested systems are all different. Table 11 gives absolute times.
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default libm correctly rounded libraries
Processor # errors time crlibm MPFR libultim

1 1.21 45 0.9
Pentium III 1/587

1.81 39.8 93.8 3339

1 2.6 153 1.8
Itanium 1/491

13.7 46 165.3 14499

1 2.66 83 1.2
UltraSparc IIi 1/41

12.9 147 383 3576

1 0.91 13.5 0.93
PowerPC G4 1/4739

1.32 9.25 26.9 1477

Table 10: Accuracy and timings for the exponential function from various libraries. Timings are nor-
malized to the average time for the default libm. For each processor, the first line gives the average
time, and the second line gives the worst-case time.

Processor libm crlibm MPFR libultim

average time 462 562 21114 413
Pentium III (cycles) overall worst-case time 837 18413 43316 66050

correct rounding worst case time 448 15963 38969 1542415

average time 982 1178 24991 942
Xeon (cycles) overall worst-case time 3124 34236 138768 108920

correct rounding worst case time 1080 30384 50436 2592660

average time 202 518 30995 371
Itanium (cycles) overall worst-case time 2767 9349 70660 139415

correct rounding worst case time 131 6434 33388 2928718

average time 762 2033 63570 950
UltraSparc IIi (cycles) overall worst-case time 9823 112366 292129 157987

correct rounding worst case time 292 91190 126827 2724912

average time 2.27 2.07 30.7 2.1
PowerPC G4 (ms) overall worst-case time 3 21 61 116

correct rounding worst case time 2 20 59 3354

Table 11: Absolute timings for the exponential

11.3 Analysis

Processor-specific libraries

Documentation[15] from Intel labs claim to provide an exponential in only 48 cycles. This performance
is possible through the wide use of non portable tricks such as inverse approximation, fused multiply
and add and double extended precision. However, our tests show that the environmental cost (mainly
the cost of a function call) is about 80 clock cycles! Our tests have also shown that there exists a slower
path that takes up to 2767 clock cycles, which is 14 times slower. This path seems to be taken very often
since the average cost is 1.5 times more expensive than the smallest execution time.

The same conclusion can be done for the mathematical library used on Ultra-SPARC IIi system,
where there exists a path 13 times slower than a normal execution.

These two observations show that our two-step procedure, with a much slower second step, could
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be viable in the commercial world.
The mathematical library used on the PowerPC G4 with gcc is the one from Apple. This library do

not provide correct rounding and is 1.1 slower than the version provided with crlibm. It is, however,
the most accurate of the tested libraries.

The cost of correct rounding

The libutlim library provides correct rounding for an average cost between 0.9 (on a Pentium III) and
1.8 (on an Itanium) times the cost of the standard library. Our exponential return a result for an average
cost between 0.91 (on Power-PC) and 2.66 (on Ultra-SPARC IIi) times the cost of the standard library,
which is reasonable. On the other hand, MPFR provide correct rounding for an average cost between
13.5 (on Power-PC) and 153 (on Itanium) compared to the libm.

The main advantage of crlibm over libutlim is the upper bound on the execution time. On our tests,
this bound for crlibm is 147 times the average libm cost, whereas for libtultim this bound goes up to
14499 times the average libm cost. Our two steps strategy fully benefits from knowing bounds on correct
rounding worst cases.

We notice that our second step is in average 3 times faster than the multiprecision library MPFR. It
shows that our multiprecision operators from scslib, hand tuned for 200 bits of precision perfectly fulfill
the performance requirement of the second step.

Relations between the two steps of crlibm

For some of our test, we have disconnected the call to the second phase in the evaluation scheme and
counted one miss-rounding result over 2097152 (≈ 221). As we can see in the first column of table 10, it
mean that we are far more precise than others library.

Our second phase is 30 times slower than the first step and is called only once over 213. The cost of
the second step over the average cost is:

1 × (213 − 1) + 30 × 1
213

= 1.003540039

which corresponds to a 0.35% overhead. This small overhead in average means that a possible per-
formance improvment is to reduce the precision of the first step, and by the same way the number of
instructions, to increase to number of time that the second step is called. It will also make the proof
simpler.

12 CONCLUSION AND PERSPECTIVES

We have presented a library of elementary functions correctly rounded in double precision in the four
IEEE-754 rounding modes. Although only one function is complete, we have thus shown that correct
rounding can be obtained with performance (both average and worst-case) comparable to libraries
without this property. Improvements over previous works include

• proven correct rounding, thanks to recent theoretical results, with detailed proofs of the code
published along the code itself,

• availability of the directed rounding modes,

• bounded worst-case performance acceptable for real-time applications.

Future work include, of course, tuning and completing the library. It is obvious from our perfor-
mance measurements that our first step is too accurate and too slow for a balanced average time. We
will take this experience into consideration when writing first steps for other functions. The IBM li-
brary seems to get a better balance although its second and later steps are much slower. Its code,
unfortunately, is little documented and difficult to prove.

Writing the proofs is a very time-consuming task, which could be partially automated for one step
which is common to most function: The accumulation of error terms in order to compute the final error.

We hope that this work is a step towards making correctly rounded elementary functions a standard.
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