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Gossiping is an information dissemination problem in which e a c h n o d e o f a c o m m unication network has a unique piece of information that must be transmitted to all the other nodes. A bus network is a network of processing elements that communicate by sending messages along buses in a sequence of calls. We assume that (i) each node can participate to at most one call at a time, (ii) a node can either read or write on a bus, (iii) no more than one node can write on a given bus at a given time, and (iv) communicating a message on a bus takes a unit of time. This model extends the telegraph model in allowing the number of nodes connected to each bus to be as large as needed, instead on being bounded by 2 . In this paper, we are interested in minimizing the \hardware" of a bus network in keeping optimal the communication performances for solving the gossiping problem. More precisely, w e compute the minimum number of buses required for a gossiping to be optimal. Similarly, w e g i v e upper bounds on the minimum length of buses required for a gossiping to be optimal. Finally, w e combine the two approaches in trying to minimize both parameters: length and number of buses.

Introduction

Let us consider the following problem: how to compute on a distributed memory parallel computer with n processors the sequence Z (k+1) = H(Z (k) ) where Z (k) 2 C n for any k 0, and H is a map from C n to C n ? A simple solution consists in evenly distributing the components of the vectors among the processors and, for i = 1 : : : n , processor i computes Z (k+1) i = H i (Z (k) ). Of course, after each iteration, all the processors need to exchange their new data to be able to complete the next iteration. This is the gossip problem 3].

More precisely, gossiping is an information dissemination problem in which e a c h n o d e o f a communication network has a unique piece of information that must be transmitted to all the other nodes. The example above is studied in 4] and there are many other examples of problems where the key to obtain good performances depends on an appropriate solution for the gossip problem (see for instance 17]).

The gossip problem has been intensively studied in the literature (see the surveys in 8] and 10]). In particular, many solutions have been proposed depending on the communication model and the network topology. There exists another approach that consists in minimizing the \hardware" available in keeping optimal the complexity of the algorithm. For instance, under the telephone model (constant time, 1-port, full-duplex), it is not possible to broadcast a message in less than dlog 2 ne steps, and a minimum broadcast graph (MBG) is a graph of n vertices that allows to broadcast in dlog 2 ne steps with a minimum number of edges 7]. Similarly, a minimum gossip graph (MGG) is a graph of n vertices that allows to gossip in an optimal time with a minimum number of edges 14].

Finding MBG's or MGG's is known to be hard, but numerous methods have been given to construct sparse broadcast graphs or sparse gossip graphs (see 2, 14]). Much more di cult seems to be the gossip problem under the telegraph model (constant time, 1-port, half-duplex). Indeed, the lower bound for gossiping turns to be 2 + dlog n 2 e where = 1+ p 5 2 , and optimal gossip algorithms are very tricky 5, 6 , 1 5 , 1 8 ].

In this paper, we loosen the constraint of the telegraph model that allows a node to either send or receive at most one message from one of its neighbors, in letting a node that wants to send a message to send it simultaneously to many other nodes (all these nodes can be supposed to be connected by a bus). Hypergraphs are the natural underlying structure for that model, however, since we will not use the mathematical properties of hypergraph for solving our problems, we prefer to use the terminology of bus networks.

Again, bus networks have been studied in the literature (see for instance some references in 11]) but the topology is always xed in advance. In this paper we look for the sparsest topology with the best communication performances. Indeed, we i n vestigate minimum gossip bus network with a double goal. First, trying to understand why c o m m unication problems are more di cult under the half-duplex model than under the full-duplex model, and also trying to derive solutions that may apply in practical situations (for instance our model applies for real distributed memory parallel machines where communications between processors are supported by buses, and applies also for communication between nodes that exchange messages by radio).

In the next section, we describe our model in detail and give the rst de nitions. Then, in Section 3, we compute the exact number of buses that interconnect a minimum gossip bus network. This result is surprising in comparison with the same problem for graphs where one even does not know if the minimum number of edges increases with the order of the graph 9]: for bus networks, one can nd the exact value of the gossip function that returns the minimum number of buses as a function of the number of vertices. However, our bus networks which m a t c h the lower bounds have a bus of length n which might be not realistic. Therefore, in Section 4, we a r e i n terested in minimizing also the length of the buses. It appears that, in general, a minimum gossip bus network possesses at least a bus of length n. T h us, constructions of Section 3 can be considered as optimal both regarding the number of buses and the maximum length of these buses. We nally focus in the reverse problem, that is nding the minimum length of the buses of a gossip bus network. This question is studied in Section 5 and appears to be much more complicate. Nevertheless, we d e r i v e an upper bound of p n + 1 for n 6 = 2 d and n 6 = 2 d ; 1 (the exact values are known in these two cases). We conjecture that this order is also a lower bound but we w ere unable to prove that fact. Section 6 resumes our results and contains some concluding remarks.

Statement of the problem

As said before, the underlying structure for our problem is the structure of hypergraph 1]. A bus network is a network of processing nodes interconnected by buses. A processing node is modeled by a v ertex of an hypergraph G, and buses are modeled by the hyper-edges of G. See Figure 1 for examples of bus networks. In this section, we describe the communication model, we de ne what is a gossip bus network and we give the main de nitions related to that concept. We refer to 13] for a generalization of the gossiping problem in hypergraphs. Let us now consider the following gossiping algorithm where the network is supposed to support as many buses as necessary:

1. Concentrate all the information in a vertex r (this can be done in dlog 2 ne steps under the B model { for instance using the broadcast algorithm under the telephone model in the reverse order)

2. Broadcast all the informations from r to all the other vertices (this can be done in one step under the B model by a bus of length n).

De nition 2 A gossip bus network of order n is a bus network whose gossiping time is dlog 2 ne+1 under the B model. An optimal gossiping algorithm on a gossip bus network of order n is a gossiping algorithm that performs in time dlog 2 ne + 1 under the B model.

Notations and de nitions

For a bus network G, let K(G) be the number of buses of G, and L(G) be the maximum length of the buses of G. W e denote by K(n) the minimum number of buses of a gossip bus network of order n, that is K(n) = min G K(G) G gossip bus network of order n.

De nition 3 A minimum gossip bus network of order n is a gossip bus network with K(n) buses.

We denote by L(n) the minimum over all the gossip bus networks G of order n of L(G). We also denote LK(n) the minimum over all the minimum gossip bus networks G of order n of L(G).

L(n) = min G L(G) G gossip bus network of order n LK(n) = min G L(G) G minimum gossip bus network of order n
In the rest of this paper, we will concentrate on these three functions. Mainly, w e will give analytic expressions for K and LK, and give an upper bound for L.

Minimum gossip bus networks

In this section, we a r e i n terested in minimizing the number of buses. A gossip bus network of two vertices has at least one bus, and this is enough to gossip in two steps: K(2) = 1. The gossiping time of a gossip bus network of order 3 or 4 is 3. A gossip bus network of 3 vertices has at least one bus, and this is enough to gossip in three steps: K(3) = 1. It is not possible to gossip in 3 steps in a bus network of order 4 with one bus because every vertex has to write on the bus, and this will take at least 4 steps. Now, the bus network of Figure 1(a) has two buses labeled 1 and 2 and it is possible to gossip in 3 steps in this network: (1) d sends its message to b on bus 1 while c sends its message to a on bus 2, (2) b sends to a the two messages of b and d on bus 1, (3) a broadcasts the four messages to the three other vertices on bus 1. Thus K(4) = 2. The next theorem gives the value of K(n) for any i n teger n.

Theorem 2 Let n be any integer, n > 1, and let d = dlog 2 ne, w e g e t

K(n) = ( d n 2 e ; 2 d;3 if 2 d;1 < n < 2 d;2 + 2 d;1 n ; 2 d;1 if 2 d;1 + 2 d;2 n 2 d
The proof of this theorem is based on the following de nitions and lemmas.

De nition 4 A gathering is an information dissemination problem that consists for all vertices of a bus network to send a message to a same vertex.

From Theorem 1, under the B model, the gathering time of any bus network of order n is at least dlog 2 ne and there exists a bus network of order n whose gathering time is dlog 2 ne.

De nition 5 During a gossiping algorithm in a bus network G, a vertex x of G is called expert at time t if it is aware of all the informations of all the other vertices at step t.

Remark 1. From Theorem 1, under the B model, during any optimal gossiping algorithm on a gossip bus netwo r k o f o r d e r n, there exists at least one expert at time dlog 2 ne and there cannot exist any expert before time dlog 2 ne.

Lemma 1 Let n be a n y i n t e ger, n > 1, and let d = dlog 2 ne, w e g e t K(n)

( d n 2 e ; 2 d;3 if 2 d;1 < n < 2 d;2 + 2 d;1 n ; 2 d;1 if 2 d;1 + 2 d;2 n 2 d
Proof. Let n be any p o s i t i v e i n teger greater than 1. The proof is based on the gossiping algorithm described in the proof of Theorem 1. The total number of buses is the number of buses used during the gathering phase of this algorithm. In this proof, we will consider only gathering algorithms based on broadcast trees (see 2]) where the labeling of the edges is reversed: label i is replaced by the label dlog 2 ne ; i + 1 .W e c a l l a gathering tree a broadcast tree labeled in the reverse order. See A gathering algorithm based on a gathering tree will require as many buses as the maximum number of edges having the same label in the tree. For any i n teger n, let us nd a gathering tree of n vertices that minimizes this number, and denote b(n) the corresponding minimum. For instance, on Figure 2, the gathering tree (b) uses 4 buses, while the gathering tree (c) uses only 3 buses.

A gathering tree of n vertices with dlog 2 ne di erent labels and at most k edges having the same label interconnects at most 2 dlog 2 ke + k(dlog 2 ne ; d log 2 ke) v ertices because, by considering the corresponding broadcast tree, during the dlog 2 ke rst steps of a broadcast in this tree, no more than 2 dlog 2 ke vertices can be informed, and during the dlog 2 ne ; d log 2 ke next steps, no more than k vertices can be informed at each s t e p .

Thus b(n) satis es 2 dlog 2 (b(n);1)e + ( b(n) ;1)(dlog 2 ne ; d log 2 (b(n) ;1)e) < n 2 dlog 2 b(n)e + b(n)(dlog 2 ne ; d log 2 b(n)e):

(1)

Conversely, f o r a n y i n teger b that satis es the inequalities (1) for b(n) = b, there exists a gathering tree of n vertices with dlog 2 ne di erent labels and with no more than b edges having the same label, and b is minimum for this property. The parameter b is in fact the minimum number of buses that a gathering algorithm performing in time dlog 2 ne and based on a gathering tree can use. This is an upper bound of K(n) because, as said before, under the B model one can gossip in time dlog 2 ne + 1 in rst gathering all the messages in time dlog 2 ne and then broadcasting them to all the vertices in one step.

We let the reader check that the values given in the statement of this lemma satisfy the inequalities (1).

Lemma 2 Under the B model, from any gathering algorithm performing in time dlog 2 ne on a bus network G of order n, o n e c an extract a gathering algorithm on the same bus network G performing in the same time and based on a gathering tree.

Proof. Let A be any gathering algorithm on a bus network G = ( V E) that gathers the informations of all vertices in a vertex r in time dlog 2 ne. During A, from any v ertex x 6 = r, the message m x of x follows a path C x = f(x 0 x 1 ) = ( x x 1 ) (x 1 x 2 ) : : : (x k;1 x k ) = ( x k;1 r )g

(2) from x to r: v ertex x i receives m x from x i;1 and forwards it later to x i+1 .

Let us consider the directed graph H = ( V X) 1 ] w h e r e X = x6 =r C x . W e construct dlog 2 ne+1 anti-arborescences T i i = 0 : : : dlog 2 ne as follows. Set T 0 = ( frg ). There is only one arc of the form (x r) 2 X that represents a communication at time dlog 2 ne of A. S e t T 1 = T 0 (fxg f(x r)g)

where, in all this proof, if G 1 = ( V 1 X 1 ) is an induced subgraph of G = ( V X), and G 2 is a couple

(V 2 X 2 ) satisfying V 2 V and X 2 (V 1 V 2 ) (V 1 V 2 ) ( G 2 is not necessarily a graph), then G 1 G 2 is de ned by G 1 G 2 = ( V 1 V 2 X 1 X 2 ).
In general, given T i;1 , l e t S be the set of vertices x 2 V such that 1. x = 2 V (T i;1 ) 2. 9y 2 V (T i;1 ) such that (x y) 2 X and (x y) represents a communication in A at time dlog 2 ne ; i + 1 .

Let Ũ be a set of arcs (x y), x 2 S y 2 V (T i;1 ) obtained from condition 2. Consider the set U Ũ such that for any v ertex x 2 S, there is one and only one arc (x y) 2 U. T h e B model implies that such a set U exists. Then, set T i = T i;1 (S U).

Clearly, each T i is an anti-arborescence. Moreover, T dlog 2 ne is a spanning anti-arborescence of H. Indeed, in any p a t h C x from x to r as presented in (2), for any i i = 0 : : : k ; 1, we get that if the arc (x i x i+1 ) represents a communication in A at time t i , then x i 2 T ti , and in particular x 2 T t0 .

Let us label the arcs of T dlog 2 ne such that an arc (x y) o f T dlog 2 ne is labeled dlog 2 ne ; i + 1 where i satis es (x y) = 2 T i;1 and (x y) 2 T i . By construction, for any x 2 V x6 = r, the label of its output arc is strictly greater than the label of any of its input arcs. Furthermore, due to the communication model B , t wo input arcs in the same vertex cannot have the same label. Therefore T dlog 2 ne is a gathering tree and clearly uses at most as many buses as A.

Proof of Theorem 2. Lemma 1 gives an upper bound on K(n). Lemma 2 shows that this upper bound is the best possible. Therefore this upper bound is also a lower bound because any optimal gossiping algorithm contains a gathering algorithm in dlog 2 ne steps. Indeed, from Remark 1, any optimal gossiping algorithm consists in two phases: rst phase is a gathering of all the information in one or more experts in dlog 2 ne steps, and the second phase is a broadcasting from all the experts to all the other vertices.

From Theorem 2, we k n o w the minimum number of bus that a gossip bus network can have. However, even if we k n o w h o w to construct gossip bus networks that match this value, one can be embarrassed by the fact that the bus networks that we constructed have a bus of length n (even if the other buses have a length that can be reduced to two). In fact, the next section shows that one cannot do better in general, that is there is necessarily a bus of length n in a minimum gossip bus network.

Length of buses of minimum gossip bus networks

In this section, we will compute the minimum LK(n) of the maximum buses length of a minimum gossip bus network of order n. Clearly, LK(2) = 2. Since K(3) = 1, we g e t LK(3) = 3. It is easy to see that it is not possible to get more than one expert after two steps in a bus netwo r k o f 4 vertices. Thus LK(4) = 4 and the bus network of Figure 1 is therefore optimal for that property. As it is shown below, the relation LK(n) = n generalizes for many o t h e r v alues of n.

Lemma 3 If n = 2 d , then during any optimal gossiping algorithm in a bus network of order n, there is exactly one expert at time d, and this expert does not send its information before s t e p d+1 .

Proof. From the proof of Theorem 1, if a vertex is aware of 2 t informations (including its own) after t steps, then this vertex has never sent its message. Therefore, being an expert after d steps implies that nobody else knows your information. Since there is necessarily an expert at time d, there is one and only one expert at time d.

Corollary 1 Let n be any integer such that 2 d;1 + 2 d;2 n 2 d , LK(n) = n.

Proof. For such a n i n teger n, K(n) = n ; 2 d;1 and thus after one step of a gossiping algorithm in a minimum gossip bus network, at least 2 d;1 vertices have not sent their message to anybody.

From Lemma 3, in d ; 1 steps there will be only one vertex among these 2 d;1 vertices that will be aware of all their messages and this vertex cannot have s e n t its message. Therefore a bus of length n is required for the last step of the gossiping.

Corollary 2 Let n be an even integer such that 2 d;1 < n < 2 d;1 + 2 d;2 , LK(n) = n.

Proof. For such a n i n teger n, K(n) = n 2 ;2 d;3 and thus after two steps of a gossiping algorithm in a minimum gossip bus network, at least n;2( n 2 ;2 d;3 ) = 2 d;2 vertices have not sent their message to anybody. The rest of the proof is similar to the one of Corollary 1. Now, for orders n that do not fall into the ranges of the two previous corollaries, the problem turns to be more tricky. F or instance, let us compute LK [START_REF] Cosnard | Finding the roots of a polynomial on an MIMD multicomputer[END_REF]. From Theorem 2, K(5) = 2. This implies a bus of length at least 3, otherwise the network would not be connected. If the two buses have length no more than 3, then there are 4 vertices connected to only one bus, and a vertex x connected to two buses (see Figure 1(b)). From remark 1, one needs at least two experts for the second phase which is a broadcast from expert vertices to the other (one expert only would imply a bus of length 5). It is not possible that all the experts be di erent from x and be connected to the same bus. Therefore there must be one expert y connected to bus 1 and another z connected to bus 2. In fact, either y or z must be x. Assume z = x. N o w, to gather the messages of vertices of bus 2 and send them to y in no more than 3 steps, x must receive o n b u s 2 a t s t e p 2 a n d m ust send on bus 1 at step 3. This implies that x is only free at step 1 to gather the two messages of the vertices connected only to bus 1: this is not possible. Therefore LK(5) = 3 leads to a contradiction, thus LK(5) > 3. Figure 1(c) is a gossip bus netwo r k o f 5 v ertices, with two buses of length at most 4. The gossip scheme is: (1) b ! c on bus 1, and e ! d on bus 2, (2) a ! c on bus 1, and d ! e on bus 2. (3) c ! d and e on bus 2, (4) d ! a b and c on bus 1. Thus LK(5) = 4. This small example shows that when the order n is an odd integer satisfying 2 d;1 < n < 2 d;1 + 2 d;2 , the behavior of LK(n) is di cult to handle. In the following, we d e r i v e a l o wer bound for LK(n). Lemma 4 If n = 2 d ; 1, then during any optimal gossiping algorithm in a bus network of order n, there is exactly one expert at time d, and this expert does not send its information before step d + 1 .

Proof. Since n = 2 d ; 1 , t h e r e i s a t m o s t 2 d;1 ; 1 v ertices that can send their information at the rst step. Thus, at least 2 d;1 vertices has not sent their information at the rst step. The rest of the proof is similar to the one of Lemma 3.

Corollary 3 Let n be a n o dd integer such that 2 d;1 < n < 2 d;1 + 2 d;2 , LK(n) p n.

Proof. For such a n i n teger n, K(n) = n+1 2 ; 2 d;3 and thus after two steps of an optimal gossiping algorithm in a minimum gossip bus network G, at least n ; 2( n+1 2 ; 2 d;3 ) = 2 d;2 ; 1 v ertices have not sent their message to anybody. Let S be the set of these vertices. From Lemma 4, at most one vertex of S can be an expert at time d. Assume no vertex of S becomes an expert. If there are e experts in G at time d, t h e s e t ; o f the e experts behaves like the single expert of a bus network of 2 d;2 vertices, that is at each s t e p from 3 to d, a v ertex in S sends a message to vertices of ;. This implies a bus of length at least e + 1 .

Assume there is a vertex x of S that becomes an expert at time d. By de nition of S, x has not sent its information at step 1 and 2. Now, since x is an expert and therefore must know all the messages of the vertices of S, x cannot send any information after step 3. It means that the only "free time" of x is at step 3. If there are e experts in G at time d, x must have s e n t its message to them in one step (at step 3), and this implies a bus of length at least e.

In both cases, e experts implies a bus of a length at least e. M o r e o ver, these e experts will require buses of length at least d n e e to inform the other vertices at the last step (step d + 1 ) . Altogether, LK(n) min e max(e d n e e) p n.

This corollary provides a lower bound on LK(n), but we guess that it can be reached. However, the best upper bound that we get is still far from this bound as it is stated below.

Proposition 1 Let n be a n o dd integer such that 2 d;1 < n < 2 d;1 + 2 d;2 , LK(n) K(n) + dlog 2 ne = d n 2 e ; 2 d;3 + dlog 2 ne. Proof. As in section 3 for Lemma 1, consider the following gossip algorithm (see Figure 3). At the rst step, K(n) v ertices inform K(n) o t h e r v ertices. We c a l l t h e K(n) senders, the initiators. A t the second step, these last K(n) v ertices inform K(n) n e w v ertices. Vertices that never sent their information form a set S of 2 d;2 ; 1 v ertices (in grey on Figure 3). The d ; 2 next steps consist in a gathering in S performed following a binomial tree BT(d ; 2) with a virtual root where, instead of informing this virtual root, the vertices of the rst level of BT(d ;2) inform the K(n) initiators.

The K(n) initiators are experts at time d. These experts inform the rest of the vertices at the last step.

Let us compute the length of the buses needed for such an algorithm.

The gathering phase uses a bus of length at most K(n) + d that connect the K(n) initiator, the d ; 2 v ertices at level 1 of BT(d ; 2) and two o t h e r v ertices that receive at the rst and the second steps. The other buses are of length at most 2d (d steps, each step involving two v ertices in each of these buses).

Since there is one expert on each bus (each of the K(n) initiators is connected to a di erent bus from the rst step), the broadcasting phase from the experts does not require additional material.

Note that in the proof of the previous proposition, creating more than K(n) experts implies a longer bus. On the other hand, creating less that K(n) experts might allow to decrease the length of the bus. However, the broadcasting phase might then require more material since there will no longer be one expert on each bus. This is the general problem for the determination of LK(n): the gathering phase and the broadcasting phase are here strongly related. network of order n. For any positive i n tegers n and e, 0 e e max (n), we denote L(n e) t h e minimum of L(G) o ver all the bus networks G of order n for which there exists a \multi-gathering" algorithm that allows to obtain at least e experts at time dlog 2 ne.

Proposition 2 For any positive integer n, L(n) = m i n e 1 e emax(n) max(L(n e) d n e e): Proof. At the last step of a gossiping algorithm in dlog 2 ne + 1 steps, experts inform non expert vertices. Assume there are e experts at the end of step dlog 2 ne. This can be done using buses of length L(n e), and the last step will need buses of length at most d n e e. T h us for any e 1 e e max (n), L(n) max(L(n e) d n e e).

Consider now a gossiping algorithm that performs using buses of length at most L(n). Necessarily some vertices are experts after step dlog 2 ne, s a y there are e experts. Thus L(n) L (n e).

Moreover, during the last step, these e experts inform the non expert vertices using buses of length at least d n e e). Thus there exists e 1 e e max (n), L(n) max(L(n e) d n e e), and the proof is completed.

Proposition 3 For any positive integer n di erent from a power of 2, let d = dlog 2 ne and p such that n = 2 d ; p, and let d 0 = blog 2 pc, w e g e t e max (n) n ; 2 d;d 0 + 2 .

Proof. We give an algorithm that allows to obtain n ; 2 d;d 0 + 2 experts in time dlog 2 ne.

Let us consider the binomial tree (see 12]) of dimension d. Recall that the binomial tree of dimension i, t h a t w e denote BT(i), can be recursively de ned by: BT(0) is reduced to one vertex and BT(i) is obtained from two B T ( i ; 1)'s by adding an edge between the two roots of the trees, one of the roots becoming the new root. One can label the edges of a binomial tree as follows: the label of BT(1) is one and, given a labeling of BT(i ; 1), the edge between the two roots is labeled i and the two B T ( i ; 1)'s keep the same labeling. See Figure 4. 5) that we will consider later). BT(d) consists in fact of a root r having d disjoint subtrees BT(i) i= 0 : : : d ; 1 attached to r. From BT(d), we construct a gathering tree of n vertices by deleting all the leaves of the subtrees BT(i) i = 0 : : : d 0 and p ; 2 d 0 leaves of the subtree BT(d 0 + 1). The tree obtained after these deletions is a gathering tree on n vertices. It consists of a root r having d disjoint subtrees PBT(i) i = 0 : : : d(for partial BT) where any PBT(i) i = 0 : : : d 0 has no more edges labeled 1, PBT(d 0 + 1 ) m a y h a ve some leaves removed, and PBT(i) = B T ( i) f o r i = d 0 + 2 : : : d . W e modify the labeling of the subtrees PBT(i) i= 0 : : : d 0 by subtracting 1 from all the labels (note that PBT(0) is reduced to ). The tree obtained by this second transformation is still a gathering tree (the labeling is consistent with a gathering). See Figure 5: the 6 right most vertices are removed from BT [START_REF] Cosnard | Finding the roots of a polynomial on an MIMD multicomputer[END_REF], then one subtracts 1 to all the labels of the 2 left most trees (PBT(0) is reduced to ). Let us show that from this gathering tree, one can deduce a gathering algorithm that allows to obtain n;2 d;d 0 +2 experts at time dlog 2 ne. Steps 1 to d 0 are directly induced by the gathering tree.

After step d 0 the root is aware of all the messages from vertices of the subtree PBT(i) i = 0 : : : d 0 . Moreover, in the gathering tree, the root is idle at step d 0 + 1. The root can therefore use this idle time to inform all the vertices that will be idle forever in the gathering tree after step d 0 . These vertices are composed of two subsets: S 1 : v ertices of the subtrees PBT(i) i = 0 : : : d 0 S 2 : v ertices of the subtrees PBT(i) i = d 0 + 1 : : : dthat are extremities of edges of label at most d 0 .

After step d 0 + 1 , e v ery time that a vertex informs the root r of some information, it also informs the vertices of S 1 S 2 by a bus of length at most jS 1 j + jS 2 j + 2 . T h us, after d steps, there are jS 1 j + jS 2 j + 1 experts.

There are 2 d 0 ; 1 v ertices in S 1 . I n S 2 , there are 2 d;1 ; p vertices that are both leaves and extremities of edges labeled 1. Now, for i d 0 + 1 , i f w e remove edges labeled by 1 , e a c h subtree PBT(i) i = d 0 + 1 : : : dbecomes respectively a BT(i ; 1). Thus the number of vertices of S 2 that are extremities of an edge of label 2 and some other edges of label less than 2 is 1 2 (2 d;1 ; 2 d 0 ).

Similarly, the number of vertices of S 2 that are extremities of an edge of label i and some other edges of label less than i is 1 2 i;1 (2 d;1 ; 2 d 0 ) for 2 i d 0 . Altogether S 2 contains n;2 d 0 ;2 d;d 0 +2vertices, and our gathering allows to obtain n;2 d;d 0 +2 experts at time dlog 2 ne.

Corollary 4 For any integer n 2 d;1 < n 2 d;1 + 2 d;2 , e max (n) = n ; 2.

Proof. From Proposition 3, e max (n) n ; 2, and of course e max (n) n ; 1. Let us show that e max (n) 6 = n ; 1. Otherwise, there exists a unique non expert vertex x after step d. During step d all the experts must have received because no vertex can be an expert before step d. T h us at step d, x has sent some messages to all the experts. If x has received informations from other vertices before step d, l e t y be the vertex that performs the last send to x, and assume this last send happens at step t. Before step d, y is awa r e o f a t m o s t 2 d;1 ; 2 t;1 messages, and x knows at most 2 t;1 messages that y does not know. Therefore, after step d, y can only be awa r e o f 2 d;1 messages and cannot be an expert.

Therefore, x has never received any information from another vertex before step d. Let y and z be two di erent v ertices, both distinct from x and such that y sent some information to z at step d ; 1. Vertex y only knows at most 2 d;2 messages before step d and can only receive a single message from x during this step. Thus y cannot be an expert after step d, a contradiction. Let : R 7 ! R such that (x) = 2 d ; 2 d;x ; 2 x+1 ; 2 d 2 . It is easy to see that on the interval 1 d ; 2], is minimum in 1 or d ; 2. Now

(1) = (d ; 2) = 2 d;1 ; 2 d 2 ; 4: Therefore, on 1 d ; 2], (x) 0 a s s o o n a s d We h a ve seen at the beginning of the section that that L(5) = 3. Let us show that L(6) = 3 which will complete the proof. Assume L(6) = 2. It means that we can obtain three experts at time 3.

Step 3 consists in three matching so that non expert vertices informs expert vertices. Two cases may happen for each matching: either both vertices have 3 messages, or one has 4 messages and the other has 2 messages. None of these combination can happen after 2 steps under the B model.

We let the reader check that it is possible to construct a gossip bus network with 6 vertices and bus of length at most 3. 

Conclusion

5 Figure 1 : 3 2. 1

 5131 Figure 1: Exemples of particular (gossip) bus networks

Figure 2 Figure 2 :

 22 Figure 2(a) for a broadcast tree, and Figure 2(b) for a gathering tree.

Figure 4 :

 4 Figure 4: A Binomial Tree of dimension 5 (the dotted lines indicate some particular arcs of BT(5) that we will consider later).

Figure 5 :

 5 Figure 5: A gathering tree of 26 vertices obtained from BT(5).

Corollary 5

 5 For any integers n = 2 d ;p and e, 1 e n ;2 d;d 0 + 2where d 0 = blog 2 pc, w e h a v e L(n e) e + 1 . Proof. Directly follows the construction given in the proof of Proposition 3. Theorem 4 L(2 d ) = 2 d , L(2 d ; 1) = 2 d ; 1 and for any integer n di erent from a power of 2, L(n) p n + 1 . Proof. It is clear from Proposition 2 and Lemmas 3 and 4 that L(2 d ) = 2 d and L(2 d ; 1) = 2 d ; 1 respectively. F or the other values, we get that L(n) = min e 1 e emax(n) max(L(n e) d n e e) min e 1 e emax(n) max(e + 1 n+1 e ) min e 1 e fmax(n) max(e + 1 n+1 e ) where f max (n) = n ; 2 d;d 0 + 2 w i t h n = 2 d ; p 1 p < 2 d;1 and d 0 = blog 2 pc. The value max(e+1 n+1 e ) i s m i n i m um when e+1= n+1 e , that is e min (n) = ;1+ p 1+4(n+1) 2 and this is acceptable if e min (n) f max (n).

  dlog (k) ne where (k) = k + p k 2 + 4 2 we get that L(n) 6 = (1) because the B m o d e l i s w eaker than the k-port telegraph model. Finally, w e w ould be interested in knowing the value of KL(n) = min GjL(G)=L(n) K(G) G gossip bus network of order n. As far as we k n o w, these problems are still unsolved (excepted for few cases as for instance KL(n) = K(n) for n = 2 d or n = 2 d ; 1).

Table 1

 1 summarizes the general results of this paper, and Table2gives the values of K, LK and L for small values of n.

	K(n) LK(n) L(n)	2 d;1 < n < 2 d;1 + 2 d;2 2 d;1 + 2 d;2 n 2 d ; 2 n = 2 d ; 1 n = 2 d d n 2 e ; 2 d;3 n ; 2 d;1 2 d;1 ; 1 2 d;1 ( n if n even p n if n odd n 2 d ; 1 2 d p n + 1 p n + 1 2 d ; 1 2 d

Table 1 :

 1 General expressions of K, LK and L for n 8.

	2 3 4 5 6 7 8 K(n) 1 1 2 2 2 3 4 LK(n) 2 3 4 4 6 7 8 L(n) 2 3 4 3 3 7 8

Table 2 :

 2 K, LK and L for 2 n 8. This table lets many problems open, in particular concerning L(n). Note that since it is shown in 6, 15, 1 8 ] that a lower bound for gossiping under the k-port telegraph model (half-duplex, constant time) is
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The following theorem summarizes the results obtained in this section:

Therefore, minimizing the number of bus might be not a good approach to minimize the \hardware" because the length of the bus will be high. So, in the next section, we are interested in minimizing the length, whatever is the number of buses of the obtained gossip bus networks. This approach seems promising because we will prove that L(n) LK(n) for almost any v alue of n.

Minimizing the length of the buses

We are no more interested in the number of buses (this number can be as large as needed), we only want to minimize the length of the buses. Clearly, L(2) = 2. Now, from Lemmas 3 and 4, L(3) = 3 and L(4) = 4 because, in both cases, one needs a bus of length n to broadcast from the unique expert to all the other vertices. If L(5) = 2 then each c o m m unication step corresponds to at most two m a t c hing. In particular, the third step can create at most two experts. Now, two experts implies a bus of length at least 3 at step 4. Thus L(5) 3. Now, Figure 1(d) is a gossip bus network of 5 vertices with buses of length no more than 3. The gossip scheme is: (1) a ! b on bus 1, and d ! e on bus 2, (2) c ! b on bus 3, and e ! d on bus 2, (3) b ! d and e on bus 5, (4) d ! b on bus 5, and e ! a and c on bus 4. As we will see, L(n) is strongly related to the number of experts. Let e max (n) be the maximum number of experts at time dlog 2 ne that we can obtain during a gossiping algorithm in any bus