
HAL Id: hal-02102082
https://hal-lara.archives-ouvertes.fr/hal-02102082

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The bouclettes loop parallelizer.
Pierre Boulet

To cite this version:
Pierre Boulet. The bouclettes loop parallelizer.. [Research Report] LIP RR-1995-40, Laboratoire de
l’informatique du parallélisme. 1995, 2+13p. �hal-02102082�

https://hal-lara.archives-ouvertes.fr/hal-02102082
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

The Bouclettes loop parallelizer

Pierre BOULET November ����

Research Report No �����

Ecole Normale Supérieure de Lyon

Adresse électronique : lip@lip.ens−lyon.fr
Téléphone : (+33) 72.72.80.00 Télécopieur : (+33) 72.72.80.80

46 Allée d’Italie, 69364 Lyon Cedex 07, France

The Bouclettes loop parallelizer

Pierre BOULET

November ����

Abstract

Bouclettes is a source to source loop nest parallelizer� It takes as
input Fortran uniform� perfectly nested loops and gives as output
an HPF �High Performance Fortran� program with data distribution
and parallel ��HPF� INDEPENDENT� loops� This paper presents the
tool and the underlying parallelization methodology�

Keywords� automatic parallelization� loop nest� HPF� compiler

R�sum�

Bouclettes est un parall�liseur source � source de nids de boucles�
Il prend en entr�e des boucles Fortran uniformes et parfaitement
imbriqu�es et retourne en sortie un programme HPF �High Per�
formance Fortran� avec une distribution des donn�es et des boucles
parall�les ��HPF� INDEPENDENT�� Ce papier pr�sente l�outil et les
m�thodes employ�es�

Mots�cl�s� parall�lisation automatique� nid de boucles� HPF� compilation

The Bouclettes loop parallelizer

Pierre BOULET �Pierre�Boulet�lip�ens�lyon�fr	

� Introduction

In the data parallel programming paradigme� the user usually speci	es the
parallelism explicitely� In some situations� it is di
cult to 	nd the parallelism
and to express it� Some automatic parallelization tools have been written to
address this problem� Bouclettes is such a tool� It takes as input some sort of
Fortran loop nest and gives as output an HPF �High Performance Fortran� with
explicit parallel constructs� This tool is presented here�

��� What is Bouclettes�

Bouclettes has been written to validate some scheduling and mapping techniques
based on extensions of the hyperplane method� These techniques are brie�y
sketched in section �� The goal pursued when building Bouclettes was to have
a completely automatic parallelization tool� This goal has been reached and
the input of the user is only required to choose the parallelization methodology
which he wants to apply�

We have chosen HPF as the output language because we believe it can be�
come a standard for parallel programming �and thus be widely used�� Further�
more� data parallelism is a programmation paradigm that provides a simple way
of describing data distributions and of managing the communications induced
by the computations� It thus relieves the programmer �or the parallelization
tool� from generating the low�level communications inside the parallel program�

This paper is organized as follows
 after the introduction� we present the
di�erent transformation stages� We then present a detailed parallelization ex�
ample in section �� The tool and its possibilities are described in section � and
we 	nally conclude in section ��

��� Related work

Automatic parallelization has been studied by many people and some tools
for automatic parallelization have been written
 SUIF ����� at Stanford Uni�
versity� California� PIPS ���� at the �cole Nationale Sup�rieure des Mines de
Paris� France� the Omega Library ���� at the University of Maryland� Mary�
land� LooPo ���� at the University of Passau� Germany� and PAF ���� at the
University of Versailles� France� among others�

The particularities of Bouclettes in regards of these other tools are the em�
ployed methodologies �see section �� and the output language �HPF��

�

� Data analysis and parallelism extraction

The parallelization process can be decomposed into several inter�dependent
tasks� See 	gure ��

Scheduling

Code Generation

Mapping

Dependence Analysis

Figure �
 The parallelization stages

The dependence analysis consists in building a graph representing the con�
straints on the execution order of the instances of the statements� The schedul�
ing uses the dependences to build a function that associates an execution time
to an instance of a statement� The mapping stage maps the data arrays and
the instances of the statements to a virtual set of processors� The two previous
stages �the scheduling and the mapping� are inter�dependent
 we want that the
global transformation of the original loop nest respects the data dependences�
The last stage is the code generation� We generate here code with parallel loops
�INDEPENDENT loops� and a data allocation �DISTRIBUTE and ALIGN directives��

The Bouclettes system is organized as a succession of stages

�� the input program is analyzed and translated into an internal representa�
tion

�� this representation is used to compute the data dependences� in our case�
data dependences are uniform� so a simple custom dependence analyzer
is powerful enough to determine the exact data dependences

�� from these data dependences� a linear or shifted linear schedule is com�
puted

�� the schedule and the internal representation are used to compute a map�
ping compatible with the schedule�

�� 	nally� the HPF code is generated following the previously computed
transformation�

��� Dependence analysis

The dependence analysis is quite simple in the restricted context we have here�
It basically consists in 	nding all the data dependences between the inner state�

�

ments� The three kinds of dependences �direct� anti and output dependences�
can be computed in the same way
 the dependence vectors are di�erences be�
tween two data acess functions that address the same array� and reciprocally�
all the di�erences between two data acess functions that address the same array
are dependence vectors�

��� Scheduling

Darte and Robert have presented techniques to compute schedules for a given
uniform loop nest ��� ��� These techniques are part of the theoretical basis of
Bouclettes ��

Currently� the user has the choice between linear scheduling and shifted
linear scheduling�

the linear schedule is a linear function that associates a time t to an iteration
point �i ��i � �i� j� k� if the loop nest is three dimensional� as follows

t��i� �

�
p

q
���i

�

where p� q are integers and � is a vector of integers whose components
are relatively prime of dimension the depth d of the loop nest with all
components prime with each other�

the shifted linear schedule is an extension of the linear schedule where each
statement of the loop nest body has its own scheduling function� All these
functions share the same linear part and some �possibly di�erent� shifting
constant are added for each statement� The time tk for statement k is
computed as follows

tk��i� �

�
p

q
���i�

ck

q

�

where p� q� ck are integers and � is a vector of integers of dimension d with
all components prime with each other�

The computation of these schedules is done by techniques which guarantee that
the result is optimal in the considered class of schedules� Here �optimal� means
that the total latency is minimized�

��� Mapping

Darte and Robert have presented a technique to build a mapping of data and
computation on a virtual processor grid ���� It is this technique that is used in
Bouclettes ��

Based on the computation of the so called �communication graph�� a struc�
ture that represents all the communications that can occur in the given loop

�Some of the scheduling techniques have been extended by Darte and Vivien ��� from
linear scheduling to multi�dimensional schedules� These techniques will be included in a future
version of Bouclettes�

�Dion and Robert have extended this technique to a�ne loop nests ���� This will be
implemented in a future version of Bouclettes�

�

nest� a projection M and some alignment constants are computed� The basic
idea is to project the arrays �and the computations� on a virtual processor grid
of dimension d� �� Then� the arrays and the computations are aligned �by the
alignment constants� to suppress some computations�

More precisely� M � the projection matrix� is a �d � �� � d full�rank matrix
of integers and the constants �x are vectors of integers and of dimension d� ��
Each array or statement x is then associated with an allocation function de	ned
by

allocx��i� � M�i� �x

As the considered loop nests are uniform� choosing a di�erent matrix for
di�erent arrays or statements would not improve the mapping� The schedule has
to be taken into account to choose the matrix M � E�ectively� the transformed
loop nest iteration domain will be the image of the initial iteration domain by
the transformation

�i ��

�
�

M

�
�i

It is mandatory to have this iteration domain mapped onto Nd� because other�
wise we would need rationally indexed processors� As the choice of M does not
have a high impact on the number of communications that remain� � �M � is just
computed as the unimodular completion of vector ��

Once M has been computed� the alignment constants are determined in
order to minimize the number of communications� Here the user can choose if
he wants to respect the owner computes rule �as in HPF� or not� If he chooses
not to respect this rule� some temporary arrays may be generated in the next
stage to take this into account�

��� The code generation

Many problems appear here� In all cases� the code generation involves rewrit�
ing the loop nest according to a unimodular transformation� This rewriting
technique is described in ��� and involves calls to the PIP ��� �Parallel Integer
Programming� software� A complete description of the rewriting process can
be found in ����

The code generation basically produces a sequential loop� representing the
iteration over the time given by the schedule� surrounding d�� parallel �INDE�
PENDENT� loops scanning the active processors� The arrays are distributed and
aligned by HPF directives to respect the mapping previously computed�

Some complications are induced in many cases

the owner computes rule� when the mapping does not verify this rule� some
temporary arrays are used to simulate it�

the projection direction� the expressiveness of the DISTRIBUTE HPF direc�
tive is restricted to projections along axes of the iteration domain� When
the mapping projects the data in another direction� we redistribute the
data� This redistribution is done by copying the arrays in new temporary
arrays �which are projected along one axis of the domain�� computing

�

the loop nest with these new arrays and 	nally copying back the results
into the original arrays�

the rationals and the time shifting constants� these parameters compli�
cate a lot the generated code� and we would need some control parallelism
to fully express the parallelism obtained by this kind of schedule�

The distribution strategy� The best data distribution would be to distri�
bute the arrays in a block�cyclic manner with the size of the blocks de�
pending on the target machine� This would partition the data such as to
equilibrate the computation load and in the same time allow the compiler
to group some communications so that they take less time� Bouclettes

can generate any distribution� As current HPF compilers only under�
stand block distributions� to be able to test the output of Bouclettes� we
generate block distributions�

� A detailed example

We will study here the parallelization process on an example�

��� The input program

The example that we consider �see program �� is a two dimensional loop nest
with two inner statements� This is not a real world code but has been designed
to show the parallelization process�

Program � Input program
parameter �n�����

integer i�j

real a�n�n�

real b�n�n�

do i� �� n��

do j� 	� n�

c Statement �

a�i�j��a�i�j����b�i���j�
��a�i���j���

c Statement �

b�i���j����a�i�j���

enddo

enddo

There are four data dependences which are

From To Dependence
statement statement vector

� � ������
� � �	� ��
� � ����
�
� � �	� ��

�

The 	rst line means that the data item produced by the instance �i� j� of
statement � is used by the instance �i� �� j � �� statement ��

��� Linear scheduling without redistribution

The optimal linear scheduling vector is ��� ��� The projection matrix is ��� 	�
and the alignment constants are

array shift statement shift
a � � �
b � � �

We can easily check that the owner computes rule is respected here� Actually
forcing to respect this rule here gives another equivalent mapping� As the owner
computes rule is respected� we will not see any temporary arrays in the produced
code to enforce this rule� As the projection matrix is ��� 	�� the projection of
the two�dimensional arrays is done on the 	rst dimension following the second
direction� Hence the redistribution is not necessary�

The resulting code is program ���

Program � HPF program with linear schedule and no redistribution
PROGRAM boucle

INTEGER P�

INTEGER T

PARAMETER �n � ����

REAL a�n�n�

REAL b�n�n�

HPF� TEMPLATE BCLT���template�n���n�
�

HPF� DISTRIBUTE BCLT���template�BLOCK���

HPF� ALIGN a�i��i�� WITH BCLT���template�i��i��
�

HPF� ALIGN b�i��i�� WITH BCLT���template�i����i��

DO T � ��� ��n���

HPF� INDEPENDENT

DO P� � ceiling�max���n�T��
��������� floor�min��T��
�����n����

a�P��T�
�P�� � �a�P��T�
�P������b�P����T�
�P��
��a�P����T�
�P������

b�P����T�
�P���� � a�P��T�
�P����

END DO

END DO

END

Following the declarations� there are the distribution and alignment direc�
tives� They are generated from the mapping projection and the shifting con�
stants� The DISTRIBUTE directive uses a BLOCK strategy to map the template
on the processors� As mentionned before� any strategy could be used here and a
block�cyclic approach with a block size depending on the target machine would
probably be a better solution�

�The variables have been renamed for improved readability

�

The loop nest consists in a sequential loop �index T� surrounding a parallel
loop �index P��� T and P� are obtained from the initial loop indices as
�

T

P�

�
�

�
� �
� 	

��
i

j

�

��� Linear scheduling with redistribution

The user can choose to enforce a redistribution� In this case� the data arrays are
copied into temporary arrays for which the resulting loop nest may be simpler
to analyze by an HPF compiler� This is because when doing this redistribution�
the complicated array acces functions are moved out of the main loop nest to the
surrounding FORALL loops that realize the redistribution� Thus� the array access
functions become translations that are better optimized by HPF compilers� The
resulting HPF program is program ��

The FORALL statements express the redistribution before and after the com�
putation of the transformed loop nest using the temporary arrays� Note that
the array access functions are translations in this case and are more complicated
without the redistribution�

��� Shifted linear scheduling case

We study here shifted linear scheduling without redistribution� It is possible to
redistribute the arrays as in the previous section but it would not show anything
new and would only complicate the code here�

The shifted linear scheduling functions� are
��
�
schedule��I� �

j
�

�
���� ���I�

k
schedule��I� �

j
�

�
���� ���I �
�

k
The mapping of the arrays �and the computations� is the same as the one

obtained for linear scheduling and the resulting code is decomposed in three
stages

�� The initial stage �see program �� is limited to one unit of time �T � ��
and we can see the max function in the lower bound of the loops over
the virtual time VT� This function ensures that the computations start at
the right time considering the time shifting constants� Each statement is
inside a loop nest of depth two
 the VT index iterates over the instances
of the statement that are scheduled at the same time �here T � ��� and
the P� index iterates over the �virtual� processors�

�� The steady�state stage �see program �� is the main stage when there is no
time boundary problem and every thing is regular� Once again we have
the two parallel loop nests inside the sequential loop over the time�

�� The 	nal stage �see program �� matches the initial stage to deal with the
end of the computations in respect of the shifting constants�

�schedulei�I� is the scheduling function of statement i

�

Program � HPF program with linear schedule and redistribution
PROGRAM boucle

INTEGER I�

INTEGER I�

INTEGER P�

INTEGER T

PARAMETER �n � ����

REAL a�n�n�

REAL b�n�n�

REAL ROTa���n�
�n�

REAL ROTb���n�
�n�

HPF� TEMPLATE BCLT���template���n�n����

HPF� DISTRIBUTE BCLT���template���BLOCK�

HPF� ALIGN ROTa�i��i�� WITH BCLT���template�i��
�i��

HPF� ALIGN ROTb�i��i�� WITH BCLT���template�i��i�����

FORALL �I� � ����n�
�I� � ��n�

ROTa�I��I�� � �

END FORALL

FORALL �I� � ����n�
�I� � ��n�

ROTb�I��I�� � �

END FORALL

FORALL �I� � ��n�I� � ��n�

ROTa�
�I��I��
�I�� � a�I��I��

END FORALL

FORALL �I� � ��n�I� � ��n�

ROTb�
�I��I��
�I�� � b�I��I��

END FORALL

DO T � ��� ��n���

HPF� INDEPENDENT

DO P� � ceiling�max���n�T��
��������� floor�min��T��
�����n����

ROTa�T�
�P�� � �ROTa�T���P����ROTb�T�
�P�����ROTa�T���P������

ROTb�T���P���� � ROTa�T���P��

END DO

END DO

FORALL �I� � ��n�I� � ��n�

a�I��I�� � ROTa�
�I��I��
�I��

END FORALL

FORALL �I� � ��n�I� � ��n�

b�I��I�� � ROTb�
�I��I��
�I��

END FORALL

END

�

Program � The initialization stage
PROGRAM boucle

INTEGER T

INTEGER VT

INTEGER P�

PARAMETER �n � ����

REAL a�n�n�

REAL b�n�n�

HPF� TEMPLATE BCLT���template�n���n���

HPF� DISTRIBUTE BCLT���template�BLOCK���

HPF� ALIGN a�i��i�� WITH BCLT���template�i��i����

HPF� ALIGN b�i��i�� WITH BCLT���template�i����i��

T � �

HPF� INDEPENDENT

DO VT � max������T�� ��T��

HPF� INDEPENDENT

DO P� � ceiling�max���n�VT�
���������� floor�min��VT�	������n����

a�P��VT���P�� � �a�P��VT���P�����

� �b�P����VT���P��
��a�P����VT���P������

END DO

END DO

HPF� INDEPENDENT

DO VT � max������T���� ��T

HPF� INDEPENDENT

DO P� � ceiling�max���n�VT�
���������� floor�min��VT�	������n����

b�P����VT���P���� � a�P��VT���P����

END DO

END DO

Program � The steady�state stage
DO T � �� �floor����n�
����������

HPF� INDEPENDENT

DO VT � ��T� ��T��

HPF� INDEPENDENT

DO P� � ceiling�max���n�VT�
���������� floor�min��VT�	������n����

a�P��VT���P�� � �a�P��VT���P�����

� �b�P����VT���P��
��a�P����VT���P������

END DO

END DO

HPF� INDEPENDENT

DO VT � ��T��� ��T

HPF� INDEPENDENT

DO P� � ceiling�max���n�VT�
���������� floor�min��VT�	������n����

b�P����VT���P���� � a�P��VT���P����

END DO

END DO

END DO

�

Program � The 	nal stage
DO T � floor����n�
�������� floor����n�
�������

HPF� INDEPENDENT

DO VT � ��T� min���n�
����T���

HPF� INDEPENDENT

DO P� � ceiling�max���n�VT�
���������� floor�min��VT�	������n����

a�P��VT���P�� � �a�P��VT���P�����

� �b�P����VT���P��
��a�P����VT���P������

END DO

END DO

HPF� INDEPENDENT

DO VT � ��T��� min���n�
����T�

HPF� INDEPENDENT

DO P� � ceiling�max���n�VT�
���������� floor�min��VT�	������n����

b�P����VT���P���� � a�P��VT���P����

END DO

END DO

END DO

END

� The tool and its possibilities

��� The implementation

Bouclettes has been written using the Caml Light � language ���� ���� We have
choosen Caml Light because it is makes it very easy to handle complex data
structures such as abstract syntax trees or symbolic expressions� and to do sym�
bolic computations� As lexical and syntactical analyzers are also easy to write in
Caml Light� it is very well suited to write compilers� To make Bouclettes� we have
developped some utility modules such as modules to do rationnal computation�
symbolic general and a
ne expression manipulation� or matrix computations
and an interface to the PIP software to do the parametric integer programming�
We have interfaced Caml Light with the C programs that compute the schedules
using 	les� And the graphical user interface has been written using the Caml
Tk library allowing a nicely integrated program�

��� The user interface

Bouclettes comes in two forms
 a command line program that accept options
and does all the processing in one step and a graphical user interface that
allows the user to see the di�erent stages of the transformation one at a time
and interactively set or change the options�

The available options are the following

� the choice of the schedule type
 linear or shifted linear

� the choice to enforce or not the owner computes rule

� the choice to redistribute the data even when it is not necessary

�Caml Light is an implementation of ML made by INRIA

��

There is one more option in Bouclettes
 the user can choose the output
language for testing purposes� All the outputs other than the standard HPF

one include the initial 	lling of the arrays and the computation of the sum of
all the elements of the arrays after the computation of the transformed loop
nest� The di�erent output formats are

� the input program in Fortran ���

� the output program in Fortran ��� All the HPF directives are removed and
the INDEPENDENT and FORALL loops are translated into seqential DO loops�
thus allowing to check if the result computed by the output program is
the same as the one computed by the input program

� the output program in a subset of HPF that is understood by current
HPF compilers� Indeed� all the current HPF compilers only implement a
subset of the HPF � standard ���� In particular� the INDEPENDENT loops
and FORALL constructs are translated into FORALL statements� This is also
the reason why a block distribution has been chosen�

� Conclusion

We have presented here a loop nest parallelization tool� Bouclettes that has
been realized at the LIP of the ENS Lyon� This tool parallelizes some kind
of Fortran loop nests into HPF� It uses some scheduling techniques derived
from the hyperplane method� namely the linear schedule and shifted linear
scheduling� and some mapping techniques to distribute the data and reduce the
communications� The code is then 	nally rewritten in HPF�

More information about Bouclettes �installation guide� reference manual�
papers presenting the theoretical methodologies� can be found at the URL

http���www�ens�lyon�fr�	pboulet�bclt�bouclettes�html

Acknowledgment

We would like to thank all the people who have contributed to the writing of
this tool
 Mich�le Dion� Tanguy Risset and Fr�d�ric Vivien�

References

��� Pierre Boulet and Mich�le Dion� The code generation in bouclettes� Tech�
nical report� Laboratoire de l�Informatique du Parall�lisme� �����

��� Jean�Fran�ois Collard� Paul Feautrier� and Tanguy Risset� Construction
of do loops from systems of a
ne constraints� Technical Report ������
Laboratoire de l�Informatique du Parall�lisme� may �����

��� Alain Darte� Leonid Khachiyan� and Yves Robert� Linear scheduling is
nearly optimal� Parallel Processing Letters� ����
�� ��� �����

��

��� Alain Darte and Yves Robert� The alignment problem for perfect uni�
form loop nest
 Np�completeness and heuristics� In J�J� Dongarra and
B� Tourancheau eds� editors� Environments and Tools for Parallel Scien�

ti�c Computing II� SIAM Press� pages �� ��� �����

��� Alain Darte and Yves Robert� Constructive methods for scheduling uni�
form loop nests� IEEE Trans� Parallel Distributed Systems� ����
��� ����
�����

��� Alain Darte and Fr�d�ric Vivien� Automatic parallelization based on
multi�dimensional scheduling� Technical Report ������ Laboratoire de
l�Informatique du Parall�lisme� Ecole Normale Sup�rieure de Lyon� France�
September �����

��� Mich�le Dion and Yves Robert� Mapping a
ne loop nests
 New results� In
Bob Hertzberger and Guiseppe Serazzi� editors� High�Performance Com�

puting and Networking� International Conference and Exhibition� volume
LCNS ���� pages ��� ���� Springer�Verlag� ����� Extended version avail�
able as Technical Report ������ LIP� ENS Lyon �anonymous ftp to lip�ens�
lyon�fr��

��� Paul Feautrier and Nadia Tawbi� R�solution de syst�mes d�in�quations
lin�aires� mode d�emploi du logiciel PIP� Technical Report ����� Institut
Blaise Pascal� Laboratoire MASI �Paris�� January �����

��� Hich Performance Fortran Forum� High performance fortran language spec�
i	cation� Technical report� Rice University� January �����

���� Stanford Compiler Group� Suif compiler system� World Wide Web docu�
ment� URL

http���suif�stanford�edu�suif�suif�html�

���� The group of Pr� Lengauer� The loopo project� World WideWeb document�
URL

http���brahms�fmi�uni�passau�de�cl�loopo�index�html�

���� Xavier Leroy and Pierre Weis� Manuel de R�f�rence du Langage Caml�
Inter Editions� �����

���� projet Cristal� The caml language� World Wide Web document� URL

http���pauillac�inria�fr�caml��

���� William Pugh and the Omega Team� The omega project� World Wide
Web document� URL

http���www�cs�umd�edu�projects�omega�index�html�

���� PIPS Team� Pips �interprocedural parallelizer for scienti	c programs��
World Wide Web document� URL

http���www�cri�ensmp�fr�	pips�index�html�

��

���� PRiSM SCPDP Team� Systematic construction of parallel and distributed
programs� World Wide Web document� URL

http���www�prism�uvsq�fr�english�parallel�paf�autom
us�html�

��

