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Abstract

This paper describes efficient coarse-grained parallel algorithms and implemen-
tations for a suite of interval graph problems. Included are algorithms requiring
only a constant number of communication rounds for connected components,
mazimum weighted clique, and breadth-first-search and depth-first-search trees,
as well as O(log p) communication rounds algorithms for optimization problems
such as minimum interval covering, mazximum independent set and minimum
dominating set, where p is the number of processors in the parallel system. Im-
plementations of these algorithms are evaluated on parallel clusters, using both
Fast Ethernet and Myrinet interconnection networks, and on a CRAY T3E par-
allel multicomputer, with extensive experimental results being presented and
analyzed.

Keywords: parallel algorithms, interval graphs, coarse grain,
implementations, clusters, CRAY T3E

Résumé

Ce papier décrit des algorithmes paralléles a gros grain efficaces et leur im-
plantation pour un ensemble de problémes posés par les graphes d’intervalles.
Nous présentons des algorithmes ayant un nombre constant de rondes de com-
munication pour les composantes connezes, la clique de poids mazimum et les
arbres de recherche en profondeur et en largeur. Nous donnons des algorithmes
ayant O(logp) (p est le nombre de processeurs dans le systéme paralléle) rondes
de communication pour les problémes d’optimisation suivant : couverture mi-
nimum par intervalles, ensemble indépendent maximum et ensemble dominant
minimum. Les implantations de ces algorithmes sont évalués sur des grappes
utilisant les réseaux d’interconnexion Fast Ethernet et Myrinet et sur une ma-
chine paralléle CRAY T3E. Nous présentons et analysons les résultats expéri-
mentaux obtenus.

Mots-clés: algorithmes paralléles, graphes d’intervalles, gros grain,
implantations, grappes, T3E
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1 Introduction

In this paper we describe coarse-grained parallel algorithms and implementa-
tions for a suite of standard interval graph problems [25]. This suite includes
solutions to fundamental interval graph problems such as connected components
[3], maximum weighted clique [24], breadth-first-search trees (BFS), and depth-
first-search (DFS) trees [6, 21], as well as solutions for optimization problems
such as minimum interval covering, maximum independent set [24] and mini-
mum dominating set [26]. These problems on interval graphs have been shown
to be important in a number of applications in scheduling, circuit design, traffic
control, genetics, and other problem domains [1, 17, 25].

The implementations described in this work are portable over a range of
types of coarse grained parallel machines, which is demonstrated via experi-
mental results. Our primary focus here is on the use of PC clusters which offer
impressive computing and communication power at a reasonable price when in-
terconnected by high performance local networks with raw throughput close to



1Gb/s and latency smaller than 10us. Clusters, henceforth called PCCs, based
on off-the-shelf hardware (e.g. Myrinet and Fast Ethernet) can yield effective
parallel systems for a fraction of the price of machines using special purpose
hardware. For the sake of comparisons, we also experimentally analyze some
of our algorithms on the Cray T3E, whose implementation was straightforward
because of the portability of our codes.

Hereinafter, let n denote the number of vertices (or intervals) of our graphs;
m be the number of their edges; and p denote the number of computing elements
in the parallel system.

Previous work

Interval graphs have been studied extensively in the parallel setting and a num-
ber of fine-grained PRAM algorithms have been described [25], as shown in Table
1. In particular, for the problems we investigated, O(log(n)) time algorithms
exist [24, 26, 6, 21, 3.

| Problem | Time |

Maximum weighted clique [24] O( )
Maximum independent set [24] O(log(n))
Minimum clique cover [24, 26] O(log(n))
Minimum dominating set [24, 26] O(log(n))
Depth-first spanning tree [6, 21] O(log(n))
Breadth-first spanning tree [6, 21] O(log(n))
Connected components (PRAM CRCW) [3] O(log(n))

(using {[m + n]a(m,n)]/logn} processors,

where a(m, n) is the inverse of the Ackerman function)

Table 1: Interval graph problems and the required time for PRAM algo-
rithms with n processors, unless stated otherwise. The sequential complexity is
©(nlogn) in all cases. Note that for most of the PRAM algorithms, the number
of processors is the same as the problem size.

Whereas fine-grained PRAM algorithms are likely to be efficient on fine-
grained shared memory architectures, they tend to be impractical on PCCs
due to their failure to exploit locality. Therefore, there has been a growth of
interest in coarse-grained computational models [5, 9, 19, 28] and the design of
coarse-grained algorithms [7, 8, 9, 11, 12, 16, 22].

With respect to models, the BSP, described by Valiant [28], uses slackness
in the number of processors and memory mapping via hash functions to hide
communication latency and provide for the efficient execution of fine grained
PRAM algorithms on coarse-grained hardware. Culler et. al. introduced the
LogP model [5] which, using Valiant’s BSP model as a starting point, focuses
on the technological trend from fine grained parallel machines towards coarse-
grained systems and advocates portable parallel algorithm design. Other coarse
grained models focus more on utilizing local computation and minimizing global
operations. These include the CGM model [9] used in this paper. In this mixed
sequential /parallel setting, there are three important measures of any coarse-
grained algorithm, namely, the amount of local computation required, the num-



ber and type of global communication phases or rounds required and the scala-
bility of the algorithm, that is, the range of values for the ratio % for which the
algorithm is efficient and applicable.

Recently, Céceres et al. [2] showed that many problems in general graphs,
such as list ranking, connected components and others, can be solved in O(log p)
communication rounds in BSP and CGM. Note that while this work is of sig-
nificant theoretical interest, the proposed algorithms involve simulation of their
corresponding PRAM algorithm during logp communication phases, which is
both complex to implement and computationally expensive in practice. Hence,
whereas in theory these results yield algorithms for interval graphs on coarse-
grained machines, in practice a different approach is called for. Unlike general
graphs, interval graphs can be more easily partitioned and treated in the dis-
tributed memory setting. Since each interval is given by its two extreme points,
they can be sorted by left and/or right endpoints and distributed according
to this ordering. This partitioning allows us to design less complex parallel
algorithms; moreover, the derived algorithms are faster both in theory and in
practice, and easier to implement (see evidence of this in Section 4.2 and in [18]).

Our work

We describe constant communication round coarse-grained parallel algorithms
to solve a set of the standard problems arising in the context of interval graphs [25],
namely connected components [3], maximum weighted clique [24] and breadth-
first-search (BFS) and depth-first-search (DFS) trees [6, 21]. We also propose
O(logp) communication rounds algorithms for optimization problems such as
minimum interval covering, maximum independent set [24] and minimum dom-
inating set [26].

In order to demonstrate the practicability of our approach, we present the
implementation results of one of the above algorithms on two PCCs, one of which
interconnected by a Fast Ethernet backbone and the other interconnected by
a Myrinet network, and on a CRAY T3E parallel multicomputer. Because of
the paradigms used, the programs were easy to develop and are portable. The
results presented in this paper show that high performance can be achieved
with off-the-shelf PCCs along with the right model for algorithm design. We
can also draw a comparison of performances between the PCCs and the T3E.
Interestingly, super-linear speedups were observed in some cases due to memory
swapping effects in the PCCs. Indeed, using multiple processors allows us to
effectively utilize more RAM and therefore allows computation on data sets that
are simply too large to be effectively processed on single processor machines.

This paper is organized as follows. In Section 2 we review the coarse-grained
model adopted in this paper. In Section 3 the basic operations are described.
Then, in Section 4, solutions for interval graph problems are proposed, using the
basic operations from Section 3. In Section 5, we describe experiments on a Fast
Ethernet based PCC, on a Myrinet based PCC and on a CRAY T3E parallel
multicomputer. We close the paper with some conclusions and directions for
further research.



2 The coarse-grained model

In a“bulk synchronous” processing (BSP) model, an input of size n is distributed
evenly across a p-processors parallel computer. In a single computation round
or superstep each processor may send and receive h messages and then perform
an internal computation on its internal memory cells using the messages it has
just received. To avoid conflicts that might be caused by asynchronies in the
network (whose topology is left undefined) the messages sent out in a round ¢
by some processor cannot depend upon any message that the processor receives
in round t.

In this paper we use the Coarse-Grained Multicomputer model, or CGM(n, p)
for short, introduced in [9]. The CGM(n,p) is a BSP model consisting of a set
of p processors with O(2) local memory each. The term “coarse grained” refers
to the fact that (as in practice) O() is defined to be “considerably larger” then
O(1). The definition of “considerably larger” is % > p¢, where € depends on the
proposed algorithms; in this paper € = 1. In a superstep, each processor may
send or receive O(2) data.

From both theoretical and practical viewpoints, it is important to show that
the proposed algorithms are independent of the parallel machines communica-
tion topology and that they use only a small, preferable constant, number of
communication rounds. In the CGM setting this is achieved by designing al-
gorithms in terms of a small set of communications operations that themselves
have these properties.

3 Basic operations

Sorting can be used as a fundamental data movement operation in the parallel
setting. From a theoretical perspective it has been shown that sorting can be
done in the CGM model in a constant number of communication rounds.

Theorem 1 [16] Given a set S of n items stored O(n/p) per processor on a
CGM(n,p), n/p > p, sorting S takes a constant number of communication
rounds.

In practice, which sorting algorithm is most efficient depends on the parallel
machines communication topology and other system specific features. Also the
amount of data to be communicated may affect the selection of a basic sort
procedure. In the experimental results reported in this paper we use a number
of different sorting algorithms [4, 14]. In the remainder, let T's(n,p) denote the
time complexity of a global sort in the CGM.

In the CGM model, parallel prefix operations for associative function to be
performed in an array of elements can be done in O(1) communication steps,
since each processor can compute locally the function, and then with a total
exchange operation all the processors get to know the partial result of all the
other processors and can compute the final result for each element in the array.

We will also use the pointer-jump operation, to identify the elements in a
linked list. This operation can be done in O(logp) communication steps [2]: at
each step each processor keeps track of the pointers of its elements.



3.1 Interval operations

We consider a set of n intervals Z = {I, I»,...,I,} on a line.

In the following algorithms, two functions will be widely used, the minright
and mazright [1]. Given an interval I, mazright(I) (minright(I)) denotes, among
all intervals that intersect the right endpoint of I, the one whose right endpoint
is the furthest right (left) (see Fig.1). The formal definition is the following:

I; if b; = maX{bk|ak <b < bk}

mazright(L;) = {m’l, otherwise.

One way to compute the function mazright (and minright with the appro-
priate variations) is as follows:

Algorithm 1 : maxright

Input: n intervals I; (1 <i <n) (3 intervals on each processor)

Output: mazright(l;) (1 <i<n)

1 Global sort of the endpoints of the intervals in ascending order
2 foreach i € [1,2n] do
assign to endpoint ¢; the value d; defined by

d = bj, if ¢; =aj, for some 1 < j <m,
*7 10, ife;=0j, forsomel <j<n.

3 foreach i € [1,2n] do
assign to endpoint ¢; the value num; defined by

—J, if ¢; =aj, for some 1 < j <,
num; =4 . . .
Js if ¢; = b;, for some 1 < j <n.

4 Compute the prefix maximum on the d;, and let the result in
€1,€2,...,€z, and in the same time update the value num; according
the following rule: if e;;_1) > e; set

[ —lnum |, if ¢; = a; for some 1 <j <n
s = [num(;_1)|,  if ¢; = b; for some 1 < j < n.

5 foreach i € [1,2n] do
set maxright(I) = I;, if ¢; = by, and num; = j and k # j
set mazright(Iy) = nil, if ¢; = by and num; = j and k= j

After Step 1, we know that all the left endpoints of the intervals intersecting
I; (1 < i < n) are on the left of its right endpoint b;. Due to the definition of
d; (1 <i<n) and of the prefix maximum on d; at Step 4, we are sure that for
all the right endpoints b; (1 < i < n), e; gives the right endpoint the furthest
right of the intervals which intersect I; and that num; gives the number of the
associated interval, that is to say mazright(l;). We keep negative values for
num; (1 < i < 2n) for left endpoints in order to be able at Step 2 to distinguish
the left endpoints from the right endpoints.



Step 1 requires O(T's(n,p)) time, whereas all the other steps require O(%)
local computations. Step 1 and Step 4 use a constant number of communications
rounds. Then, mazright (and minright) can be computed with time complexity
O(Ts(n, p)).

We define also the parameter first(Z) as the segment I which “ends first”,
that is, whose right endpoint is the furthest left (see Fig.1):

first(I) = I, with b; = min{b;|1 < i <n}.

To compute it, we need only to compute the minimum of the sequence of
right endpoints of intervals in the family 7.

We will also use the function nezt(I) : T — 7 defined as

Ij if bj = mln{bk|bz < Gk},
nil, otherwise.

neat(I;) = {

That is, next(l;) is the interval that ends farthest to the left among all the
intervals beginning after the end of I; (see Fig.1). To compute next(I;), 1 <
i < n, we use the same algorithm used for mazright(I;), with a new Step 4.
Algorithm 2 computes the function nezt.

Algorithm 2 : next

n

Input: n intervals I; (1 <i<n) (3
Output: next(l;) (1 <i<n)

intervals on each processor)

Global sort of the endpoints of the intervals in ascending order
2 foreach i € [1,2n] do
assign to endpoint ¢; the value d; defined by

d = bj, if ¢; =aj, for some 1 < j <m,
*7 10, ife;=0j, forsomel <j<n.
3 foreach i € [1,2n] do
assign to endpoint ¢; the value num; defined by

—Jj, if¢; =aj, for some 1 <j < n,
num; =4 . . .
Js if ¢; = b;, for some 1 < j <n.

4 Compute the suffix minimum on the d;, and let the result in e, es, ..., ea,
and in the same time update the value num; according the following rule:
if e(i+1) < €; set

_ [ —Inumiy|, ifci =a; forsome1<j<n
i [num;1y|,  if ¢; = b; for some 1 < j < n.

5 foreach i € [1,2n] do
set next(I) = I, if ¢; = by and num; = j and k # j
set next(l;) = nil, if ¢; = b, and num; = j and k= j

It is easy to see that the given procedure implements the definition of
next(I;), with the same complexity as for computing mazright(I;).



maxright(1)=3, maxright(2)=5, maxright(3)=maxright(5)=4, maxright(4)=nil
minright(1)=2, minright(2)=3, minright(3)=>5, minright(4)=nil, minright(5)=4
first({1,2,3,4,5})=1

next(1) = 5, next(2) = 4, next(3) = next(4) = next(5) = nil

Figure 1: Example of the maxright, minright, first and next functions.

4 Interval graph problems and algorithms

Formally, given a set n of intervals 7 = {I1,I5,...,I,} on a line, the corre-
sponding interval graph G = (V, E) has the set of nodes V = {vy,...,v,}, and
there is an edge in E linking nodes v;, v; if and only if I; N I; # (. See Figure 2
for an example.

1

Figure 2: A set of 5 intervals and the corresponding interval graph.

In this section, solutions for some important problems in interval graphs are
proposed for the CGM model. Some of these algorithms use techniques de-
rived from their corresponding PRAM algorithms, while others require different
methods, e.g. to compute the connected components, as shown below.

4.1 Maximum weighted clique

A clique is a set of nodes that are mutually adjacent. In the mazimum weighted
cliqgue problem for an interval graph, we are given weights p(I;) > 0 on the
intervals and we want to find a clique for which the sum of its nodes weights
is maximum among all cliques. Finally, the nodes composing such a maximum
clique should be identified.

In Figure 3, each interval has an associated weight (above the interval) and
you can see the maximum weigthed clique of the example. Algorithm 3 computes
a maximum weigthed clique of an interval graph in the CGM model.

Theorem 2 The mazimum weighted clique problem in an interval graph of size



10

5 20

maximum weighted clique({1,2,3,4,5})={3,4,5}

Figure 3: Example of the maximum weighted clique problem.

Algorithm 3 : maximum weighted clique

Input: n intervals I; (1 <i <n) (3 intervals on each processor)

Output: The intervals belonging to the maximum weighted clique are
marked, the others not

Global sort of the endpoints of the segments that each processor receives
2 foreach i € [1,2n] do
assign to endpoint ¢; a weight w; defined by

wi — p(I;), if ¢; = aj, for some 1 < j < m,
"7 =p(L;), if ¢; =bj, for some 1 < j < n.

3 Compute the prefix sum of the resulting weighted sequence; let
di,...,ds, denote the resulting sequence

4 Consider the sequence ey, ...,es, obtained by replacing every d; cor-
responding to a right endpoint of an interval with -1 and compute the
rightmost maximum of the resulting sequence; this occurs at a

5 Broadcast ay. Every interval I, such that a, < ay < b, is marked to be
in the final maximum weighted clique

n can be solved on a CGM(n,p) in O(Ts(n,p) + n/p) time, with a constant
number of communication rounds.

Proof: Algorithm 3 uses techniques derived from the algorithm in [10]. After
Step 3, if ¢; = aj, for some 1 < j < n, then d; gives the sum of the weights of
all intervals containing the point ¢; (the weights of all intervals on the left of
¢; not containing the point ¢; are not counted in d; due to the negative weight
associated to the right endpoint of an interval). The set of all these intervals
containing ¢; with the interval I; is a clique, and d; is the weight of this clique.

After Step 4, the rightmost maximum d; corresponds to the weight of a
maximum weighted clique. The associated ¢; is equal to an a; (1 < k < n),
because if it was a b; (1 < j < n), d; would not be a maximum. This ay, is the
furthest right left endpoint in this maximum weighted clique, because otherwise
d; would not be a maximum. Thus, we are sure that all intervals belonging to
the maximum weighted clique have a left endpoint lower than aj. This shows
the correctness of the algorithm.

Step 1 requires time O(T’s(n,p)), Step 2 requires time O(n/p) and Steps 3, 4



and 5 require O(n/p) local computations and a constant number of communica-
tion rounds. To summarize we have a running time of O(Ts(n,p) + n/p), with
a constant number of communication rounds.

4.2 Connected components

The connected components of a graph G are the maximal connected subgraphs
of G. The connected components problem consists of assigning to each node the
label of the connected component that contains it.

Algorithm 4 solves this problem in the CGM model.

Algorithm 4 : connected components

Input: n intervals I; (1 <i <n) (3 intervals on each processor)

Output: Each interval has the number of the connected component it
belongs to (given by val)

1 Global sort of the endpoints in ascending order. Assign to each endpoint
the value of its interval

2 Assign the value 1 to each left endpoint and the value -1 to each right
endpoint

3 Compute the prefix sum of the endpoints. The result is stored in an
array L

4 foreach Processor P; do

| If there is a 0 in L then send your identification ¢ to all processors

5 Let j1,J2,...,7¢;¢ < p be the list of identifications received.
counter =0
foreach Processor P; do
for j =1 to 27” do
if L[j] ==0 then
‘ val[j] = counter.i; counter = counter + 1
else
| wal[j] = counter.i
while L[j] > 0 do vallk] = ji..0, where ji <i < jpt1; k=k—1

Theorem 3 The connected components problem in interval graphs can be solved
on a CGM(n,p) in O(Ts(n,p) +n/p) time, with a constant number of commu-
nication rounds.

Proof: The sort at Step 1 ensures that there can not be an endpoint of an
interval belonging to a connected component A between two endpoints of in-
tervals belonging to a connected component B, with A # B. Therefore, the
endpoints of intervals belonging to the same connected component are stored
in a continuous way. The prefix sum at Step 3 ensures that a 0 in L completes
a connected component and that the following element belongs to a new con-
nected component. Step 5 labels the components: the for-loop labels the local
components, whereas the while-loop labels the components that are divided on



several processors. This labelling ensures that the computed connected compo-
nents of the interval graph have different labels. At the end of the algorithm,
all connected components have a sole label.

With respect to the time complexity, the above algorithm requires O(T’s (n, p))
in Step 1, and O(%) in Steps 2, 3, 4 and 5. In total we have O(Ts(n,p) +n/p),
with a constant number of communication steps.

Figure 4 gives an example of the connected components problem. Each
interval belongs to a processor before the execution of Algorithm 4, as shown.
After Step 1, some endpoints may have changed of processor, which explains
the values of the connected components for intervals 4 and 5.

processor 1
1 \

processor 2
|

\
processor 3

connected component(1)=cc(2)=cc(3)=2.0
cc(4)=cc(5)= 3.0

Figure 4: Example of the connected components problem.

4.3 BFS and DFS tree

Figure 5 gives an example of Breadth First Search (BFS) and Depth First
Search (DFS) trees of an interval graph. Algorithm 5 solves the problem of
finding Breadth First Search tree in an interval graph.

1

4 4 4
/N
3 / \5 y 3 5\ 3—‘\> 5
1 ;N 2 1 2 1 T 2
Interval graph BFStree DFStree

Figure 5: Example of BFS and DFS trees.

Theorem 4 Given an interval graph G, BFS and DF'S trees can be found using
a CGM(n,p) in O(Ts(n,p) + n/p) time, with a constant number of communi-
cation rounds.

10



Algorithm 5 : BFS tree
Input: n intervals I; (1 <i <n) (3 intervals on each processor)

Output: a BFS tree
1 foreach i € [1,n] do
| compute mazright(I;)

2 foreach i € [1,n] do
| let father(I;) = maxright(I;)

3 The edges (I;, father(I;)) (1 <i < n) form a BFS tree

Proof: We use the same techniques given in [21]. The problem of finding
a Breadth First Search Tree in an interval graph reduces to the problem of
computing the function mazright described earlier. The tree given by the edges
(I;,mazright(I;)) is a BFS tree. Suppose we have a set of intervals S which
have the same result I}, (for some 1 < k < n) for mazright (and thus have the
same father in the tree we construct). It may exist some edges between some
intervals of S in the interval graph different from the edges with I,. Choosing
mazright for each interval as the father in the tree ensures that all these edges
are eliminated in the tree we construct and that all intervals of S are connected
to the same interval. Thus, we are sure that the constructed tree is a BFS tree.

The tree formed by the edges (I;,minright(I;)) is a DFS tree. Choosing
minright for each interval as its father in the tree, ensures that all the intervals
belonging to a clique will have a different father and thus the constructed tree
is a DFS tree. With the appropriate modifications, the previous algorithm may
be used to find a DFS tree.

The obtained BFS and DFS trees have their roots in the segments ending
farthest to the right in each connected component.

Given the complexity of mazright (or minright), each algorithm takes a
constant number of communication steps and requires a total running time of
O(Ts(n,p) +n/p).

4.4 Minimum interval covering

Given a family Z of intervals and a special interval J = (J,, J;), the problem
of the minimum interval covering is to find a subset J C Z such that J C
U(J), and |J| is minimum; i.e., to find the minimum number of intervals in 7
needed to cover J. To solve this problem we may only consider the intervals
I; = (a;,b;) € (Z) such that b; > J, and a; < Jp. Let Z; be the family of the
intervals in 7 satisfying this condition.

Figure 6 gives an example of the minimum interval covering problem. Algo-
rithm 6 solves this problem in the CGM model.

Theorem 5 The minimum interval covering problem in interval graphs can be
solved using a CGM(n,p) in O(Ts(n,p) + logp) time, with O(logp) communi-
cation rounds.

Proof: To confirm the correctness of Algorithm 6, suppose that there is another
family J' C Zj such that J C U(J'), and |J'| < |J|. Choose such a family

11



5

minimum interval covering(3)={2,5}

Figure 6: Example of the minimum interval covering problem.

Algorithm 6 : Minimum interval covering
Input: all the intervals belonging to Z; and the interval J to be covered
Output: only the intervals belonging to a minimum interval covering J
of J are marked

1 foreach i € [1,n] do
| compute mazright(I)

2 Find the interval I;;,;; such that b,;¢ = max{by|ar < Jo}
3 Mark all the intervals in the list given by mazright and beginning at I;;,;¢

J' where J N J' is maximum. Let J = {J1,...,Jn}and J' ={ J{,...,J, },
m > m'.
Let Ji be the first interval in 7 which is not in 7', i.e., k is such that

k = min{i|J, = J/, for all  such that 1 <1 <i}.

By definition, JyNJg—1 # 0 and J;NJ_1 # 0. Hence, since Omazright(Jy—1) =
Ji, the right endpoint of Jj, is to the left of the right endpoint of J; (if £ = 1,
then by definition of I;j;; we get the same conclusion). Note that we can now
replace J;, with Jj in J', which is a contradiction to the hypothesis that |7 NJ"|
is maximum.

Note that Step 1 requires O(Ts(n,p)) time, Step 2 requires O(T's(n, p)) time
and Step 3 uses pointer-jump and therefore O(logp) communication rounds.
The total time is thus O(Ts(N, p) + logp) with O(log p) communication rounds.

4.5 Maximum independent set and minimum dominating
set

The first problem consists of finding a largest set of mutually non-overlapping
intervals in the family Z, called the mazimum independent set. The second
problem consists of finding a minimum dominating set, i.e., a minimum set
of intervals which are adjacent to all remaining intervals in the family Z. To
solve these problems, we give a coarse-grained implementation of the algorithms
proposed in [26]. Both problems are based on first(Z) from which a convenient
linked list is built.

Figure 7 gives an example of maximum independent set and minimum domi-
nating set problems. Algorithm 7 solves the maximum independent set problem,
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while Algorithm 8 solves the minimum dominating set problem in the CGM
model.

Algorithm 7 : Maximum independent set

Input: n intervals I; (1 <i < n) (% intervals on each processor)

Output: only the intervals belonging to a maximum independent set are
marked

Compute first(7)
2 foreach i € [1,n] do
| compute next(l;)
3 foreach i € [1,n] do
| Let father(I;) = next(I;)

a4 Using the pointer-jump operation, mark all the intervals in the linked list
given by father and beginning at first(Z)

Algorithm 8 : Minimum dominating set

Input: n intervals I; (1 <i <n) (7 intervals on each processor)

Output: only the intervals belonging to a minimum dominating set are
marked

Compute first(Z)
2 foreach i € [1,n] do
| compute mazright(I;)
3 foreach i € [1,n] do
| compute next(l;)
4 foreach i€ [1,n] do
| Let father(I;) = mazright(next(I;))

5 Using the pointer-jump operation, mark all the intervals in the linked list
given by father and beginning at mazright(first(Z))

Theorem 6 The maximum independent set problem and the minimum domi-
nating set in interval graphs can be solved using a CGM(n,p) in O(Ts(n,p) +
logp) time, with O(logp) communication rounds.

Proof: The correctness of Algorithm 7 stems from a result in [15] that shows
that there exists a maximum size independent set S in Z such that first(Z) € S
and for every I; belonging to S, next(I;) also belongs to S.

For the complexity of Algorithm 7, Step 1 requires O(%) time, Step 2
and 3 require O(Ts(n,p)) time, whereas Step 3 uses pointer-jump and therefore
O(log p) communication rounds, giving us a total time complexity of O(Ts(n, p)+
logp) and O(log p) communication rounds.

The correctness of Algorithm 8 stems from the arguments in [26]. For the
complexity of Algorithm 8, Step 1 requires O(%) time, Step 2 and Step 3 re-
quire O(Ts(n,p)) time, Step 4 requires O(%) time and only one communication

13



5

maximum independent set({1,2,3,4,5})={1,5}

minimum dominating set({1,2,3,4,5})={3}

Figure 7: Example of maximum independent set and minimum dominating set
problems.

round, and Step 5 uses pointer jumping and therefore O(logp) communica-
tion rounds. So, the total time complexity is O(Ts(n,p) + logp) and there are
O(log p) communication rounds.

5 Experimental results

Our aim here is to demonstrate that these algorithms are not only theoretically
efficient but that they lead to simple fast codes in practice.

We implemented our connected components, maximal weighted clique and
breadth first search algorithms. Table 2 summarizes the main results of these
three algorithms.

| Algorithm | Portability | Predictivity | Efficiency (speedup) |
Connected components X X X (%)
Maximal weighted clique X X x (%)
Breadth first search X X x (%)

Table 2: Our main practical results

Table 2 shows that our three algorithms are portable because they were
implemented on three machines with different architectures as explained below.
For the three algorithms, as shown in column “Predictivity”, the results have
the expected behavior. We obtained efficient results for our three code: the
connected components and maximal weighted clique algorithms have a speedup
of around %, whereas the breadth first search algorithm has a speedup of
around £. The speedups are an average on p and n. Actually, the speedups are
a little larger for small p and a little smaller for large p. Note that it was also
possible to handle very large data with the three algorithms.

In the following we decided to explore the results of one of the algorithms.
We describe and analyze in detail the implementation of the maximal weighted
clique algorithm (Algorithm 3) for interval graphs. It was implemented on two
PCC platforms and a parallel multicomputer. The first PCC ([23]) consisted of
a set of 8 Pentium Pro 200 Mhz processors each with 64M of RAM that were
linked by a fast Myrinet network. We refer to it as POPC in the following.
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The second PCC ([27]) consisted of a set of 12 Pentium Pro 200 Mhz processors
each with 128M of RAM that were linked by a 100Mb/s Fast Ethernet net-
work. It is henceforth called PF. The processors of the two platforms ran the
Linux operating system. The parallel multicomputer used was a Cray T3E with
32 DEC « processors running at 300MHz [20]. The programs were written in
C' + + utilizing the portable PVM communication library [13] for all interpro-
cessor communications. The use of three different machines helped us explore
portability issues over a range of architectures and interconnection networks.

All the tests were carried out ten times for each input of the same size. The
given results are an average of the ten tests. All the execution times reported
are given in seconds. The times have been measured by the system function
gettimeofday, which we have found to be the most reliable. The communication
time corresponds to the time required for the complete communication rounds.
We do not only measure the time for data to be communicated, but also all the
time required supporting operations (e.g. buffer management or rearranging
data, etc). For this measure, we have added a synchronization barrier (which
is not necessary for the correct execution of the code) just before the starting
of the processors’ chronometer, and thus we are sure that all the processors
have finished their local computation round before entering the communication
round.

In all of the figures, the x-axis represents the number n of elements in the
input (the number of intervals), and the y-axis represents the execution time in
seconds (except for the speedup). The handled elements are integers.

Since Algorithm 3 relies on sorting, the choice of the sorting method was crit-
ical. In the following we first present the implemented sort and its performance
before describing the implementation and performance of our algorithm.

5.1 Global sort

The sorting algorithm implemented is described in [14]. It was selected due to its
excellent communications properties in practise and for the ease with which it
can be implemented. The algorithm requires a constant number of communica-
tion steps and its single drawback is that data may not be equally distributed at
the end of the sort. Nevertheless, a partial sum procedure and a routing can be
used to redistribute the data with a constant number of communication rounds
so that each processor stores % data in its memory. The sequential algorithm
used is the classical counting sort [4]. We give the results of this sequential
algorithm to give a baseline against which to evaluate the performance of our
parallel sort.

Figure 8 shows the execution time for the global sort on an array of integers
with 1,2,4 and 8 PCs for POPC and PF and for 12 PCs for PF in comparison
with the performance of the sequential sort. Each curve stops before the PCs’
swap limit. The measures begin with 1 million element in order to satisfy the
constraints of the algorithm given in [14]. This bound on the number of elements
is not really a drawback because the sort of less than 1 million elements is done
very quickly sequentially and does not require a parallel sort.

PF can handle twice as many elements as POPC because they have twice
the memory. Thus, POPC can sort a bit more than 20 million elements with 8
PCs, whereas PF can sort 40 million elements.
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The execution times decrease when 2,4, 8 and 12 PCs are used. The obtained
speedup is around 1.75 with 4 PCs, 3 with 8 PCs and 3.75 with 12 PCs.

The memory swapping effects increase significantly the execution time. On
the PF, one can sort reasonably 7 million elements sequentially, whereas 2 PCs
can sort 12 million elements, 4 PCs 23 million elements, 8 PCs 44 million ele-
ments and 12 PCs 60 million elements. The sort on 60 million elements is done
in less than 40 seconds. POPC has the same behaviour except it can handle
two times less data due to its memory size.

20 r 5 0 T
uential sort —+= sequential sort —+—
CGM sort with 2 PCs =<~ CGM sort with 2 PCs
8 CGM sort with 4 PCs x| 35| CGM sort with 4 PCs
CGM sort with 8PCs - CGM sort with 8 PCs
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Figure 8: Sorting on the PCCs (POPC and PF).
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Figure 9: Sorting on the T3E.

Figure 9 gives the execution times for 1,12, and 32 processors of the T3E.
It is exactly the same code on the T3E and on the PCCs. Each curve stops
before the memory becomes saturated. To satisfy the constraints given by the
algorithm of [14], the measures begin with 1 million elements for 12 processors
and with 8 million elements for 32 processors.

As for the PCC platforms, the more processors we have, the lower the execu-
tion times are. A speedup of about 3.5 is obtained with 12 processors. We can
not compare the sequential execution time and the execution time of 32 pro-
cessors because the processor’s memory is saturated after 4 million elements.
12 processors can sort 25 million elements whereas 32 processors can sort 110
million elements.
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5.2 Maximum weighted clique

The intervals encoding is done with an array of structures with two fields, the
first field corresponding to the left endpoint and the second one to the right
endpoint. Each processor owns an array of size % which contains a part of
intervals.

We used random permutations to generate inputs. For each test, we gener-
ated a permutation of size 2n and the endpoints of intervals are the elements
of this permutation. The elements are unsigned long integers. The intervals’
weights were chosen randomly. Quicksort was used for the sequential sorting
rather than counting sort due to the large key ranges involved.

5.2.1 PCC platforms

We give in parallel the results obtained on POPC and PF. The left figure cor-
responds to POPC and the right one to PF.
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Figure 10: Maximum weighted clique: Execution time on the PCCs (POPC and
PF).

Influence of p Figure 10 gives the execution times on 1,4 and 8 PCs of POPC
and on 1,4 and 12 PCs of PF. For POPC, n ranges from 500,000 to 6 million
intervals, whereas for PF n ranges from 500,000 to 20 million. Each curve
begins at 500,000 intervals because the sort is done on the two endpoints of
intervals, that is to say on 1 million data, which is one of the constraints of the
chosen sorting algorithm. Each curve stops before the swap limit of the PCs.

Firstly, we can see that the curves are almost linear in n, which is not
surprising because all the steps require only O(2) operations except for the
sequential quicksort. Moreover, the more PCs we have, the faster the program
is, which is in accordance with our expectations.

Table 3 shows the different speedups obtained for a problem with 1 million
intervals in relationship with to the number of processors used. For this problem,
the speedups are good (larger than £). Table 4 shows the speedups obtained
with 4 processors with n varying (from 500,000 to 1 million). They increase with
the input size. We can note that these speedups are better than those presented
for the parallel sort. It seems that this comes from the fact that we used the

quicksort as sequential sort and therefore the gain between the quicksort and the

17




P speedup P speedup
(n =1 million) | POPC || (n =1 million) PF

4 2.94 4 2.85

8 5.26 12 6.98

Table 3: Maximum weighted clique: Speedups on the PCCs (POPC and PF)
for n = 1 million.

n speedup || speedup
(p=4) POPC PF
500,000 2.65 2.65
750,000 2.86 2.86

1,000,000 2.94 2.85

Table 4: Maximum weighted clique: Speedups on the PCCs (POPC and PF)
for p = 4 and n varying.

parallel sort is larger than the gain between the counting sort and the parallel
sort. Moreover, the speedup drops away from the theoretical speedup when we
use more processors. These results come from communication overhead, and
not from local computations. If the time for local computations are decreased
by a factor p compared to the sequential time when p processors are used, it is
not the case with communications. Indeed, when we use p processors for the
execution of the algorithm on one input, and then p’ on the same input size
with p < p' (then there are less data per processor with p’ than with p), the
communication time is not decreased by a factor 5, because even if each of the
p' processors communicates ﬁ less data than with the p processors, globally the
same number of elements are communicated on the network. Note also that,
as shown in Table 4, the speedups are a little larger with POPC than with
PF, especially for large values of n. This can be explained by routing conflicts
that may be more frequent in the Fast Ethernet network than in the Myrinet
network.
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Figure 11: Maximum weighted clique: Swap Effects on the PCCs (POPC and
PF).
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Swap effects Figure 11 shows it is possible to handle very large data with this
algorithm. On PF, one PC begins to swap with 2 million intervals sequentially,
whereas 4 PCs can solve the problem on 5 million intervals before the swap limit
and 12 PCs on 20 million intervals. POPC has the same behaviour but begins
to swap on data of half the size due to the PCs’ memory size. If the sequential
program runs on n intervals before the swap limit, the CGM program is able to
solve reasonably the problem on a bit less than £n data. The factor § comes
from the fact that the algorithm needs not only the array of intervals as input,
but also a buffer of the same size to communicate data.

We may note that for the counting sort one PC begins to swap for 7 millions
elements on PF, whereas for the maximum weighted clique problem it begins
to swap before 2 millions intervals. This is consistent because the counting sort
does not sort in place and requires a memory space of size 2n to sort n data,
whereas the quicksort is done in place. Since we sort 2n endpoints when we
have n intervals we need 6n extra memory space to run Algorithm 3. This
corresponds to a memory space of size 8n to solve the problem on n intervals. It

is an algorithm greedy in memory because it does not work directly on intervals.

Communications - Local computations Figure 12 compares the commu-
nication times and the local computation times for 4 and 8 PCs of POPC and
for 4 and 12 PCs of PF. The local computations are predominant compared
with communications. We can note that we have only one large communica-
tion during the sort (exactly 4n data are communicated if we have n inter-
vals: the endpoints and the associated weights), whereas there are essentially
(8% + 27 1og,(27)) local operations. This behaviour is the inverse of the sort
where communications are predominant. Moreover, this gap decreases when we
use more processors, most probably due to the communications, as explained in
Paragraph Influence of p.

Note that the results are alike between the two PCCs. Moreover, the PCs
begin to swap before the interconnection networks are saturated.
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Figure 12: Maximum weighted clique: Communications - Local computations
on the PCCs (POPC and PF).
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Figure 13: Maximum weighted clique: Execution time on the T3E.

5.2.2 T3E

We give the outcomes on the T3E. The code is the same as the one used on the
PCCs.

Influence of p Figure 13 shows the execution times on 1,8 and 16 processors
of the T3E. We will give the results with 32 processors in Paragraph Handling
of large data because the curve begins with 4 million elements and we can not
draw a comparison with the sequential. n ranges from 500, 000 to 8 million. All
the curves begin for n equal to 500, 000 because the constraints of the chosen sort
algorithms are respected. Each curve stops before the memory of the processors
becomes saturated.

The curves have the expected features and they are almost linear in n as
for the PCCs. Moreover, the CGM program decreases the execution times, as
expected.

Table 5 gives the obtained speedup according to the number of processors
used for a fixed problem size (1 million intervals). Table 6 gives the speedups
obtained on 8 processors for varying input size. As for the PCCs, these speedups
are good. They are also better than those given for the parallel sort. For the
same reasons as for the PCCs, it should come from the use of the quicksort.
They are also better than those of the PCCs for large data. We think it is
due to the fact that the communication of large data is faster on the T3E than
on the PCCs, since local computations are more or less alike (see Paragraph
Communications - Local computations).

P speedup
(n = 1 million)

8 6.7

16 12.05

Table 5: Maximum weighted clique: Speedups on the T3E for a problem with
1 million intervals.

20



n speedup

(p=28)
500,000 6.73
750,000 6.7

1,000,000 | 6.8

Table 6: Maximum weighted clique: Speedups on the T3E with 8 processors
and n varying.
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Figure 14: Maximum weighted clique: Handling of large data on the T3E.

Handling of large data Figure 14 shows it is possible to compute the max-
imum weighted clique with a lot intervals using several processors. The curve
with 32 processors begins with 4 million intervals, which implies a sort of 8
million data as required by the constraints of the parallel sort algorithm. In
sequential, the processor’s memory of the T3E saturates with a bit more than
1.5 million intervals. Before the memory saturation, 8 processors can handle 6
million intervals, whereas 16 processors can handle 8 million, and 32 processors
can handle 16 million intervals. If the problem can be solved sequentially on
n intervals before memory saturation, then the CGM program can solve the
problem in a bit less than £n intervals, as for the PCCs.

Note that we can solve this problem on 16 million intervals in less than 30
seconds with 32 processors.

Communications - Local computations Figure 15 compares the commu-
nication times and the local computation times for 8 and 16 processors of the
T3E. As for the PCCs and for the same reasons, local computations are pre-
dominant and this gap decreases when more processors are used. This gap is
larger on the T3E than on the PCCs because the communication of large data
is faster on the T3E whereas the local computations are almost the same.

5.2.3 Conclusion on the maximum weighted clique problem

According to the outcomes, we can say that Algorithm 3 is portable and ef-
ficient. The execution times are always decreased when more processors are
used. Moreover, it is possible to compute a maximum weighted clique on a
great number of intervals.
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Figure 15: Maximum weighted clique: Communications - Local computations
on the T3E.

We think that this implementation is efficient because we have an efficient
sort. When the endpoints of intervals are sorted, the other operations done on
the intervals, like the prefix maximum, are simple and efficient. We observed
exactly the same kind of results with the two other algorithms implemented (eg
connected components and breadth first search).

To conclude, Figure 16 compares execution times on 8 PCs of POPC and on
8,16 and 32 processors of the T3E. The time on the 8 processors of the T3E is
smaller than this on the 8 PCs. It comes from the communication time which is
smaller on the T3E than this on POPC as explained previously. Nevertheless,
the gap between these two curves is small compared with the performances of
the two machines (the speed of the interconnection network of the T3E, like
the one of the processors, is larger than on POPC) and compared with their
respective cost. Even if this comparison has to be drawn carefully because the
C++ compilers are different between the T3E and POPC, such clusters of PCs
with few processors can lead to efficient parallel executions for a relatively cheap
price.
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Figure 16: Maximum weighted clique: Comparison between POPC and the
T3E.
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6 Conclusion

In this paper we have shown how to solve many important problems on inter-
val graphs using a coarse-grained parallel computer such as a cluster of PCs.
The proposed algorithms were shown to be theoretically efficient, straightfor-
ward to implement, portable and fast in practice on different parallel platforms.
We believe this can largely be attributed to the use of the CGM model which
accounts for distributed memory effects, mixes sequential and parallel coding,
and encourages the use of a constant or very small number of communication
rounds.

Note that the use of the CGM model, which was primarily developed for
algorithm design in the context of interconnection networks, has led to efficient
implementations even in the context of a bus-based network like Ethernet. We
speculate that this is due to several factors including: 1) the model focuses on
sending a small number of large messages rather than a large number of small
ones 2) it relies on standard, and typically well optimized, communications op-
erations and 3) it focuses on reducing the number of communication rounds and
therefore the number of interdependencies between rounds. Evidently, at some
point such bus-based networks always become saturated and more attention
must be paid to bandwidth and broadcast conflict concerns, particularly as one
scales up. We are currently exploring how such concerns can be best dealt with
within the context of a CGM-like model.

An interesting way for further research would be to compare larger PCCs
(with up to 50 or 100 PCs for instance) with large parallel computers, like the
Cray T3E.
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