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Abstract

LinBox is a high-performance generic software library for black box linear al-
gebra over symbolic (exact) entry domains. The generic software methodology
enables the user to instantiate the procedures in the library with a multitude
of coefficient domains and black box matrices without sacrificing performance.
At the top level, LinBox provides algorithms for many standard problems in
linear algebra, such as equation solving and matrix normal forms, and includes
toolboxes for Lanczos-Krylov approaches and for algebraic preconditioning.

Keywords: Linear algebra, randomized algorithms, black box matrix,
matrix rank, seminumeric computation.

Résumé

LinBox est une bibliothéque logicielle générique efficace pour I'algébre linéaire,
A travers des matrices boite noire définies sur des domaines d’entrées symbo-
liques (exactes). Le principe de la généricité logicielle permet d’instancier les
procédures sur une multitude de domaines de coefficients et de matrices boite
noire, sans sacrifier les performances. Au plus haut niveau, LinBox fournit des
algorithmes pour plusieurs problémes standards de 1’algébre linéaire, tels que
la résolution d’équation et les formes normales de matrices. Linbox inclut aussi
des boites a outils pour une approche Lanczos-Krylov et pour du précondition-
nement algébrique.

Mots-clés: Algebre linéaire, algorithmes probabilistes, matrice boite noire,
matrice creuse, rang.
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Abstract

LinBox is a high-performance generic software library for black box
linear algebra over symbolic (exact) entry domains. The generic software
methodology enables the user to instantiate the procedures in the library
with a multitude of coefficient domains and black box matrices without
sacrificing performance. At the top level, LinBox provides algorithms
for many standard problems in linear algebra, such as equation solving
and matrix normal forms, and includes toolboxes for Lanczos-Krylov ap-
proaches and for algebraic preconditioning.

1 Introduction

Black box techniques [14] are enabling exact linear algebra computations of a
scale well beyond anything previously possible. The development of new and
interesting algorithms has proceeded apace for the past two decades. It is time
for the dissemination of these algorithms in an easily used software library so
that the mathematical community may readily take advantage of their power.
LinBox is that library.

In this paper, we describe the design of this generic library, sketch its current
range of capabilities, and give several examples of its use. The examples include
a solution of Trefethen’s “Hundred Digit Challenge” problem #7 [17] and the
computation of all the homology groups of simplicial complexes using the Smith
normal form [16].

Exact black box methods are currently successful on sparse matrices with
hundreds of thousands of rows and columns and having several million nonzero
entries. The main reason large problems can be solved by black box methods
is that they require much less memory in general than traditional elimination-
based methods do. This fact is widely used in the numerical computation area.
We refer for instance to the templates for linear system solution and eigenvalue

*http://www.linalg.org. E-mail addresses: Jean-Guillaume.Dumas@imag.fr, Thierry.
GautierQimag.fr, mwgQuwaterloo.ca (Giesbrecht), Pascal.Giorgi@ens-1lyon.fr, hovinen®@
udel.edu, kaltofen@math.ncsu.edu, saunders@cis.udel.edu, wjturner@math.ncsu.edu,
Gilles.Villard@ens-1lyon.fr. This material is based on work supported in part by the
National Science Foundation under grants Nrs. DMS-9977392, CCR-9988177, and ITR/ASC-
0113121 (Kaltofen) Nr. CCR-0098284 and ITR/ASC-0112807 (Saunders) and by the Centre
National de la Recherche Scientifique, Actions Incitatives No 5929 et Stic LinBox 2001 (Vil-
lard) and by the Natural Sciences and Engineering Research Council of Canada (Giesbrecht).
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problems [3, 2]. This has also led the computer algebra community to a consid-
erable interest in black box methods. Since Wiedemann’s seminal paper [19],
many developments have been proposed especially to adapt Krylov or Lanczos
methods to fast exact algorithms. We refer to [5] and references therein for a
review of problems and solutions.

LinBox supplies efficient black box solutions for a variety of problems includ-
ing linear equations and matrix normal forms with the guiding design principle
of re-usability. The most essential and driving design criterion for LinBox is that
it is generic with respect to the domain of computation. This is because there are
many and various representations of finite fields each of which is advantageous
to use for some algorithm under some circumstance. The integral and rational
number capabilities depend heavily on modular techniques and hence on the
capabilities over finite fields. In this regard, generic software methodology is a
powerful tool.

Partly modeled on the STL, LinBox uses the C++ template mechanism
as the primary tool to achieve the genericity. The library is inspired by the
FoxBox black box and plug-and-play design objectives [6]. Projects with some
similar goals include MTL! in numerical linear algebra and SYNAPS? in symbolic
computation. A forerunner of LinBox is described in [12].

The following section presents design decisions and their motivation using
the field and black box representations as examples. In Section 3 we discuss the
current capabilities provided in LinBox and guiding principles for the imple-
mentation of their underlying algorithms. In Section 4 we illustrate the power
of LinBox with some example solutions. In the conclusion we summarize the
current status and further development plans.

2 LinBox design

The overarching goal of our design is to create a software library that supports
reuse and reconfiguration at a number of levels without sacrificing performance.
At the top level, we provide algorithms for many standard problems in linear
algebra. As input, these algorithms accept black box matrices, a notion which
uniformly captures sparse and structured (and dense) matrices alike. Any object
conformant with the specification for a black box matrix can be plugged into
these algorithms. At a lower level, we want our code to operate over a multitude
of coefficient domains and, for a given domain, a variety of implementations. For
instance, into our algorithms one might plug any of several implementations of
the integers modulo a prime number. The field operations may be performed
via a Zech logarithm table or via integer remaindering. We can capture any
future improvements on field arithmetic without rewriting our programs. One
might also plug in a field of rational functions, or the floating point numbers,
although the resulting methods may not be numerically stable. At every stage
we have applied the principle commonly called generic programming. We realize
this through C++ templates and virtual member functions.

LinBox provides what we call archetype classes for fields and black box matri-
ces. An archetype serves three purposes: to define the common object interface,
to supply one instance of the library as distributable compiled code, and to con-
trol code bloat. An archetype is an abstract class whose use is similar to a Java

lhttp://www.osl.iu.edu/research/mtl
2http://www-sop.inria.fr/galaad/logiciels/synaps
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interface. It specifies exactly what methods and members an explicitly designed
class must have to be a pluggable template parameter type. Through the use
of pointers and virtual member functions, the field archetype, for instance, can
hook into different LinBox fields. Thus the precompiled library code can be
executed on a user supplied field.

2.1 Field design

The algorithms in LinBox are designed to operate with a variety of domains,
particularly finite prime fields. To perform the required arithmetic, additional
parameters, such as the modulus, must be available in some fashion to the algo-
rithm. One can store a pointer to the required parameters in each field element,
but that would require too much memory. One can also use a global variable
to store these parameters — this is the approach taken in NTL, for instance —
but it is then impossible to operate over more than one field concurrently. Our
approach is to have a separate field object whose methods include field arith-
metic operations. For example, the call F.add(x,y,z) adds the elements y and z
in the field F and stores the result in the element x. The field object stores the
required parameters, and it is passed to each of the generic algorithms. Because
of this design, we do not support traditional infix notation for arithmetic.

Given a field class Field, elements of this field are of the type Field: :element.
This may be a C++ 1long, for integers modulo a word size prime, or a more
complicated data structure declared elsewhere in the library. The field interface
requires only that the data type support C++ assignment and a copy construc-
tor. Because elements by themselves do not have access to the field parameters,
they are initialized by the field, as in F.init(x,5).

The field type contains methods to initialize and perform arithmetic on field
elements and check their equality. In addition to standard arithmetic, in which
the result is stored in a separate field element, we support “in-place” arithmetic,
similar to C++ +=, -=, *=_ and /=. Field types also support assignment and
equality checking of whole fields. These methods are required by the field inter-
face, but specific implementations may contain more methods.

For each field type, there exists a class that uniformly generates random
elements of that field or an unknown subset thereof of given cardinality. Many
of the algorithms in LinBox depend on the availability of such random elements
(see Section 3).

Whether or not a field requires parameters, such as a modulus, to perform
arithmetic, its interface is the same. We provide a template wrapper class for
the creation of an unparameterized field meeting the LinBox interface from a
C++ data type that supports standard arithmetic and equality operations. For
example, unparam_field<ZZ_p>F; is a field of NTL modular integers. If a user-
defined field implements a required method in a different manner, one can resort
to partial template specialization in order to define the corresponding operation.
The following example adjusts Victor Shoup’s inv function of his ZZ_p class to
the signature of LinBox’s inv method.

template <> NTL::ZZ_p&
unparam_field<NTL::ZZ_p>: :inv(
NTL: :ZZ_p& x,
const NTL::ZZ _p& y
) const
{ return x = NTL::inv(y); }
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Thus we can easily adapt fields from other libraries to LinBox.

The field archetype defines the interface that all field implementations must
satisfy. Any class that meets the same interface can be hooked into a generic
algorithm. There also exists an abstract class that has virtual methods with
the same signatures as those in the archetype. The archetype itself contains
a pointer to an instance of this abstract base class. Thus, generic algorithms
can be instantiated with the archetype and compiled separately. Code mak-
ing use of these algorithms can supply a field inheriting the abstract field type
and link against this code, with a modest performance loss resulting from the
inability to inline field operations and from additional memory indirection. Fi-
nally, LinBox provides a template class called Field_envelope that hooks any
archetype-compliant field type onto this abstract class, so any field type may be
used in this manner.

Field Archetypef- - - —. - — - —=|Abstract Base Class
pointers

\:/ virtual functions

Figure 1:

Linbox field archetype Concrete Field

2.2 Black box design

The LinBox black box matrix archetype is simpler than the field archetype
because the design constraints are less stringent. As with the field type, we
need a common object interface to describe how algorithms are to access black
box matrices. Beyond that, it only requires functions to access the matrix’s
dimensions and to apply the matrix or its transpose to a vector. Thus our black
box matrix archetype is simply an abstract class, and actual black box matrices
can be derived directly from it (see Figure 2. We note that the overhead involved
with this inheritance mechanism is negligible in comparison with the execution
time of the methods. For our field element types, this was not the case.

Figure 2: LinBox Black Box Matrix Archetype
black box matrix ;
archetype \:, virtual functions

Concrete Black Box Matrix

The black box matrix archetype is template-parameterized by the vector
type upon which it acts, but not by the field in which the arithmetic is done.
We saw no necessity for the latter. The field of entries is bound directly to
the black box matrix class and is available to be an argument to our black box
algorithms, which may perform additional coefficient field operations. Black
box matrix classes can have the field type as a template parameter, but such
genericity is not required. In addition, variants of the apply method are provided
through which one could pass additional information, including the field over
which to operate.

LinBox currently has three types of vectors, dense, sparse sequence, and
sparse map. The dense vectors store every entry of the vector and are generally
implemented as std::vector<element>. Sparse vectors only store nonzero en-
tries. Sparse sequence vectors have the archetype std: :1ist<std::pair<integer,
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element>>, and sparse map vectors have the archetype std: :map<integer, element>.
The C++ operator[] is disallowed in the latter to avoid fill-in with zero values.
By its data structure, a map entry access is logarithmic time.

We do not parameterize our algorithms with a black box type. We use the
black box archetype directly in the algorithms. The caller provides a specific
black box subclass. For convenience, some methods have default implementa-
tions in the archetype. For example, apply and applyTranspose each have three
variants, which handle allocation of the input and output vectors differently.
Only one variant is necessary:

Vector& apply (Vector& y, const Vector& x) const;
Vector& applyTranspose (Vector& y, const Vector& x) const;

The archetype base class provides default implementations of the other variants,
but a derived class can override them.

2.3 Input iterators

A major idea of the STL design is the separation of containers and their itera-
tors. The container types provide various ways to store data, while the iterator
types provide different strategies to access the data. In LinBox, we have ex-
tended this notion in order to obtain more genericity at the level of algorithm
inputs. We distinguish between the way an input is computed and the way
it is accessed. Indeed, algorithms are independent of the way their inputs are
produced, even if for the sake of simplicity or of considerations about speed or
memory management, both are intimately tied. We propose the use of input
iterators as input data. These may themselves be an interface to a primary
container-like data type (e.g., black boxes) and involve some computations on
this data. This indirection allows the algorithm to be oblivious, for instance,
to some pre-computations, to memory management or to the order of evalua-
tion, and more generally to serialization or parallelization issues. An example
is Wiedemann’s algorithm for the computation of the minimal polynomial of
a matrix (see Section 3.2). It uses scalar iterates of matrix-vector products
and dot products (vT A'u) to feed a linear recurring sequence solver such as the
Berlekamp-Massey algorithm. The sequence solver is completely independent, of
the way the scalars are produced. For example, (1) they may all be precomputed
and stored in an array; (2) they may be produced “on-the-fly” when the number
of iterations is not known in advance; (3) the required matrix-vector products
can be parallelized or pipelined (see [12]). We have implemented these solvers
with the STL iterator interface and show here an example with asynchronous
calls:

BlackBox_Container::const_iterator&
BlackBox_Container::operator++()
{ _c._launch(); return *this; }
const BlackBox_Container::value_type&
BlackBox_Container::operator* ()
{ _c._wait(); return _c.getvalue(); }
void launch() { for(long i=0; i<_size;++i) launch_one(i); }
void wait() { Wait<value_type>() (_dotproducts[_current]);}

The Berlekamp-Massey algorithm accesses the sequence via this interface.
The sequence itself may be computed by an input iterator with any of the pre-
viously mentioned methods. Thus the outer algorithm is generic with respect
to the choice of those methods. We now have the advantage to easily switch
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among parallel, pipelined, or other strategies with the purpose of very effec-
tive adaptation to available resources. For example, one can avoid redundant
computation by making a first pass on-the-fly; a verification run then can reuse
the same algorithm but with the sequence already known. (Cf. streams in the
Scheme language [1].)

3 Black box algorithms

As seen in the introduction, Wiedemann’s paper [19] has led to many develop-
ments in the application of Krylov or Lanczos methods to fast exact problem
solving. In this section we present the main directions followed by LinBox re-
garding these methods in the first version of the library. The reader may refer
to [5] for a detailed presentation of theoretical aspects. Linear algebra done
over finite fields is the core of the library. Computations over the integers or
rationals build upon this core.

3.1 Randomized algorithms, heuristics and checking

In black box linear algebra very often the fastest algorithms use random bits.
Our library includes Monte Carlo, Las Vegas, and deterministic algorithms.
Monte Carlo algorithms produce correct results with controllably high proba-
bility, but the results are not certified. With Las Vegas algorithms, the answer
is always correct and, with high probability, is produced quickly. Properties of
these algorithms are theoretically proven correct under conditions on the source
of random bits. For example, random elements must be chosen uniformly from a
sufficiently large subset of the field. This condition may be prohibitively costly
in practical situations. For example, if the field is small, use of an algebraic
extension may be required, greatly slowing the computation. This has led us
to a new implementation strategy. We relax conditions on our algorithms but
introduce subsequent checks for correctness. We exploit randomized algorithms
as heuristics when the conditions for provably high probability of success are not
satisfied. To complement this, specific checks are developed to certify the out-
puts. These checks may themselves be randomized (see Section 3.3), in which
case we certify only the probability of success. This strategy has been powerful
in obtaining solutions for huge problems in Sections 4.1 and 4.3. Following [11]
we also use cross checks between algorithms. For instance when finite field
computations are used within Chinese remaindering for integer computations,
additional information at the integer level may give further checking of the finite
field level outputs.

3.2 Minimal polynomial and nonsingular linear system solution over finite

fields

For a matrix A € F"*" over a field I, Lanczos and Krylov subspace methods
essentially compute the minimal polynomial of a vector with respect to A. These
methods access the matrix A only via matrix-vector products v = A - u and
w = AT - u. Therefore the library need only supply a black box for A. The
black box may efficiently exploit the structure or sparsity of A.

The minimal polynomial f4* of a vector u is computed as a linear depen-
dency between the iterates u, Au, A%u, .. .. In the Krylov/Wiedemann approach,
the dependency is found by applying the Berlekamp-Massey algorithm to the
sequence v u, vT Au,vT A%u, ... for a random vector v. We let d be the degree
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of the minimum linear generating polynomial fA U(r) = 2% — fgq2?t —

fiz — fo of the latter sequence, meaning that vT A%ty = f; 4 (vT Ad+i— lu) +

A+ fir1(wTAu) + fi(vTu),i > 0. Then fA%(z) always divides f4* and, fur-
thermore, with high probability, fA%(x) = f4* [19]. Berlekamp-Massey will
compute f2%(z) after processing the first 2d elements of the sequence. The
generation of the sequence is distinguished from the computation of the linear
recurrence. In the Lanczos approach, these tasks are intermixed in a single iter-
ation. As the vectors in the Krylov subspace are generated and orthogonalized,
the coefficients of the recurrence are computed on the fly as dot products. For
a unifying study of both approaches over finite fields we refer to [15].

LinBox: :minpoly: With high probability, the minimal polynomial f4* of a ran-
dom vector u is the minimum polynomial f4 of A [19, 13]. The basic imple-
mentation computes the minimal polynomial of A using Wiedemann’s algorithm
and two random vectors u and v to generate the sequence {vTAiu}ogiggn,l.
The algorithm is randomized of the Monte Carlo type. As first observed by
Lobo, the cost can be reduced by early termination. As soon as the linear gen-
erator computed by the Berlekamp-Massey process remains the same for a few
steps, it is likely the minimal polynomial. The argument is heuristic in general
but probabilistic when applied over large fields to preconditioned matrices with
Lanczos’ algorithm [10, 9]. A Monte Carlo check of the early termination is
implemented by incorporating the application of the computed polynomial to
a random vector. From [15] and [8, Chap. 6], we give the dominant terms of
the arithmetic costs in Table 1. Terms between brackets give the number of
memory locations required for field elements. Early termination and random-
ized Monte Carlo algorithms correspond to bi-orthogonal Lanczos algorithms
with or without lookahead. In both approaches, the number of matrix-vector
products may be cut in half if the matrix is symmetric. Since the update of
the linear generator is computed by dot products instead of elementary polyno-
mial operations, a Lanczos strategy has a slightly higher cost for computing the
minimal polynomial.

Table 1: Costs of Wiedemann and Lanczos algorithms for f4 of degree
d and for Az = b. A or AT can be applied to a vector using at most w
operations.

Early termin. f* Monte Carlo f* System sol. Az =15
Wiedem. [6n] 2dw +4d(n +d) | 2nw + 4n® + 2d(n + d) +dw + 2dn
Wiedem. [O(dn)] | 2dw +4d(n +d) | 2nw + 4n® + 2d(n + d) +2dn
Lanczos [3n] 2dw + 8dn 2nw + 4n? + 4dn +2dn

LinBox::linsolve: If the matrix A is nonsingular, a linear system Az = b is
solved by computing the minimal polynomial f4*(z) = 29 + fq_ 1z 1+ ... +
fiz+ fo of b, since its coefficients directly give z = —(1/fo) (A4 b+ f4_1 AT 2b+
..+ f1b). Checking Az = b makes the system solution Las Vegas. The Lanczos
approach allows one to compute z within the iterations for the minimal poly-
nomial thus the arithmetic and memory costs are only slightly greater than for
basic Lanczos. The main drawback of the Wiedemann approach is that it needs
to either store or recompute the sequence {A%}o<i<q—1.
For both the minimal polynomial and system solution, we are developing
block versions of the Wiedemann and Lanczos algorithms [18, and the references
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therein] The choice between the two strategies will rely on the same criteria as
for the non-blocked versions [§].

3.3 Preconditioning for the rank and the determinant over finite fields

The computation of the rank and of the determinant of a black box matrix A
reduce to the computation of the minimal polynomial of a matrix A’, called a
preconditioning of A, obtained by composing A with one or more other black
boxes called preconditioners [19, 5]. A first type of preconditioning involves mul-
tiplication of A by Toeplitz, sparse, or butterfly matrices, and typically incurs
a cost of O(n?logn) or O(n?log? n) operations. For very large n, this overhead
can be prohibitively costly. We have thus focused on diagonal preconditioners,
i.e. scalings, which involve only n field elements and incur O(n) cost. They
are proven effective for large fields [10, 5] and, as we will see, may be used as
heuristics combined with Monte Carlo checking.

LinBox: :rank: The minimal polynomial of {vTA%u};>¢ always reveals a lower
bound for the rank of A. Whether this bound coincides with the rank depends
on the spectral structure of A [19]. In a given application, if that structure is
favorable then LinBox: :minpoly is sufficient, for instance, to certify full rank, as
this bound reaches the maximum possible value. In the general case for large
fields, the preconditioning A’ = D;ATD,AD; with D; and Dj two random
diagonal matrices, probabilistically ensures a good structure [10]. For smaller
fields, a first alternative is to use this preconditioning together with field exten-
sions. Nonetheless, we may use this preconditioning without the field extension
as a heuristic, even if theoretical conditions are not satisfied. It happens that
the Lanczos approach allows an easy check. Indeed, the Lanczos algorithm
may be used to produce an orthogonal basis for the range of A’. With O(n) dot
products one may orthogonalize a random vector with respect to this basis. The
rank is certified by checking that the result is in the null space. This induces
an overhead of only 4nr operations, where n is the matrix dimension and r is
the rank.

LinBox: :determinant: Using [5, Theorem 4.2], the determinant is easily obtained
from the constant term of the minimal polynomial of the preconditioning A’ =
DA, where D is a random scaling. This has been intensively used for the
experiments in Sections 4.1 and 4.3.

The techniques of this section will be generalized for singular system solution
and consistency certification.

3.4 Integer computations

Most of LinBox algorithms for integer and rational number computations are
based on the finite field functionality. Minimal polynomial, determinant and
system solution may be computed using Chinese remaindering. We include early
termination strategies based on the fact that the solution is known with high
probability once the reconstructed values remain stable for a relatively small
number of consecutive primes [4]. This idea has been initially proposed for
Monte Carlo interpolation algorithms [14, 11]. Integer linear systems, especially
sparse ones, may also be solved using the p-adic lifting approach combined
with the use of a black box for the inverse matrix modulo p [19, 13]. A very
efficient Monte Carlo rank determination is based on rank computations modulo
random primes (see Section 4.2). The specialized algorithms for Smith normal
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form computations (see Section 4.3 and [7]) and diophantine problems served
during the early development of LinBox to validate the design of the library.

4 Computational experiences

What do we know in practice about the prospects for high performance exact
linear algebra computations? In this section we cite some examples to illustrate
the range of possibilities. The problems described here have been difficult to
solve by other means. The alternative to LinBox’s exact linear algebra is numeric
approximation in some cases and combinatorial methods in others. These alter-
native approaches suffer fatal numerical instability and/or exponential memory
demand, which are avoided here. The first example is not a real application,
but rather a posed Challenge problem. Its solution is illustrative of LinBox’s ca-
pability. A noteworthy fact is that a very long computation succeeded without
exhausting memory. Computations with high time to memory ratio are rare in
computer algebra.

4.1 Trefethen’s Hundred Digits

Nick Trefethen has just posed a “Hundred Dollar, Hundred Digit Challenge,”
[17]. Aimed at numerical analysts, the Challenge consists of 10 problems which
have real number solutions. Ten digits of accuracy are asked in the answer to
each. All of them are numerically hard and he suggests, “If anyone gets 50 digits
in total, I will be impressed.” One of the problems is a linear algebra problem
having an exact rational solution in principle. We took it on as a challenge for
LinBox to produce this exact solution in practice. Specifically, problem #7 is
the computation of the (1,1) entry of A~!, where A is the 20000 x 20000 matrix
whose entries are zero everywhere except for the primes 2,3,5,7,...,224737
along the main diagonal and the number 1 in all the positions a;; with |i — j| =
1,2,4,8,...,16384. The exact answer is a rational number, the quotient of two
integers of approximately 100,000 digits, as is suggested by Hadamard’s bound,
which turns out to be sharp in this case. To compute this rational number is
well beyond the capability of present day general purpose systems such as Maple
and Mathematica on current processors and memories. Indeed, it is beyond the
capabilities of any software we know of, save LinBox. We have computed this
exact answer using approximately 2 years of CPU time (about 180 CPUs running
for 4 days). Trefethen has asked that we not reveal the solution or the details
of our method before the deadline of his Challenge, May 20, 2002. However, we
intend to include a more complete description of this computation in the final
version of this paper. Also, we are experimenting with several approaches to
this problem and will expand on their relative performances.

4.2 Rank, competition with Gaussian elimination techniques

In table 2 we report some comparisons between Wiedemann’s algorithm and
elimination with reordering for computing the rank. For the first method, we
compute the minimal polynomial of Dy AT Dy AD,, as seen in Section 3.3. In
order to show the usefulness of this approach, we compare it to elimination-
based methods. As the matrices are sparse, some pre-elimination and on-the-fly
reordering may be used to reduce fill-in and augment efficiency. We have chosen
not to focus on this, and the reader may refer to [8] and references therein for a
review of some reordering heuristics and their application to the matrices. The



10 http://www.linalg.org

timings in column “Gauft” of Table 2 have been obtained using the algorithm
of [8, §5.1]. The timings in column “SuperLU” are those of a generic version®
of the SuperLU numerical code*. Our experiments were performed on an Intel
Pentium IIT, 1 GHz and 1024 Mb of memory. We computed ranks of matrices
over finite fields GF(q) where ¢ has half word size. The chosen arithmetic
used discrete logarithms with precomputed tables. Let Q denote the number of
nonzero elements, N x n the shape, and r the integer rank of the matrix under
consideration. For several cases, fill-in causes a failure of elimination. This is
due to memory thrashing (MT). All the timings presented are in seconds, except
as otherwise specified, and reflect the CPU time for sequential computation and
the real time for parallel computation.

Our experiments show that as long as enough memory is available, elimi-
nation is very often more efficient when the matrix is already nearly triangular
(cyclic8 m11, from Groébner basis computation), when the matrix has a very
small number of elements per row (nick; chi-j, from algebraic topology), or
when the matrix is very unbalanced (bibd — Balanced Incomplete Block Design,
from combinatorics). Nonetheless, when the mean number of elements per row
is significant (greater than 5, say), Wiedemann’s algorithm is superior, even on
small matrices, and is sometimes the only practical solution.

Table 2: Rank modulo 65521, Elimination vs. Wiedemann.

Matrix Qnxm,r Gauk SuperLU Wiedem.
cyclic8 mll 2462970, 4562x5761, 3903 257.33 448.38 2215.36
bibd_22 8 8953560, 231x319770, 231 100.24 938.81 594.29
n4c6.b12 1721226, 25605x69235, 20165 188.34 1312.27 2158.86
mk13.b5 810810, 135135x270270, 134211 MT 44907.10
ch7-7.b5 211680, 35280x52920, 29448 2179.62 MT 2404.5
ch7-8.b5 846720, 141120x141120, 92959 5375.76 MT 29109.8
ch7-9.b5 2540160, 423360x317520, 227870 MT 34h x4
ch8-8.b5 3386880, 564480x376320, 279237 MT 55h x4
TF14 29862, 2644x3160, 2644 50.58 50.34 27.21
TF15 80057, 6334x7742, 6334 734.39 776.68 165.67
TF16 216173, 15437x19321, 15437 18559.40  15625.79 1040.36
TF17 586218, 38132x48630, 38132 MT MT 7094.97

“In hours on 4 processors

4.8  Smith Form, Simplicial Homology
As a way to recognize patterns, algebraic topologists use the intrinsic structure
of associated simplical complexes. This structure is the sequence of homology
groups of the complex and can be computed by integer diagonalizations, called
the Smith normal forms, of the boundary matrices of the complex [16]. These
matrices can be very large, with several hundreds of thousands of rows and
columns and having several millions of nonzero entries. Therefore, despite their
sparsity, the diagonalizations were often infeasible by elimination because of
significant fill-in and coefficient growth.

For the complexes we have studied, the minimal polynomials of the sym-
metrizations (A7 A) of the boundary matrices A, usually have a very low de-
gree, on the order of 25 for even the largest cases. In such cases Wiedemann’s

3http://www-sop.inria.fr/galaad/logiciels/synaps
4http://wuw.nersc.gov/~xiaoye/SuperLU
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algorithm with early termination is extremely fast, and the integer coeflficients
of the minimal polynomial are very small. We are able to compute these coef-
ficients and directly determine the prime numbers involved in the Smith form.
Then rank computations, done either via elimination or using the rank heuristic
discussed in Sections 3.3 and 4.2 over the associated prime fields, complete the
algorithm (see [7]). We have computed Smith forms that were not previously
known. In particular, we have disproved a combinatorial conjecture that a cer-
tain simplical complex has only 3-torsion. We proved the existence of 2-torsion
in the 7 x 8 chess board complex using about a month of CPU time. This was
done with LinBox code incorporated into a share package for the computer al-
gebra software GAP. We also provide free web-based access to these capabilities
via a math server (http://linalg.org). For instance, some users have succeeded
in completing more than 36 hour homology computations using the server.

5 Conclusion

LinBox is a generic C++ source code library for exact and semi-numerical linear
algebra computation. It is designed for genericity and for use as a component.
The domain of computation may be any field implementation, and for some
algorithms, any commutative ring. A plug-in of part of LinBox to the GAP
package exists and component use as a plug-in from such systems as Maple and
Mathematica is envisioned for the future.

The black box matrix representation is central to LinBox. Any idea whatso-
ever of how to implement the application of a given linear operator (the matrix-
vector product) may be easily set up as a black box object and used with the
LinBox algorithms.

Algorithm implementations exist for minimal polynomial, rank, system solu-
tion, and Smith normal form. Currently the library is undergoing polishing for
release of a first public version. Web access to some of the functionality already
exists at linbox.org. Future work will extend the capabilities, for instance for
characteristic polynomial and Frobenius form computation. Performance im-
provements are also in the works, especially the use of block-Wiedemann and
block-Lanczos algorithms and the use of parallelism.

Acknowledgements. We are grateful to B. Mourrain and P. Trébuchet for their help
in benchmarking their SuperLU code, to Austin Lobo for his comments, and to W.
Eberly for his many algorithmic improvements published elsewhere.
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