N

N

Steady-State Scheduling on Heterogeneous Clusters:
Why and How?.

Olivier Beaumont, Arnaud Legrand, Loris Marchal, Yves Robert

» To cite this version:

Olivier Beaumont, Arnaud Legrand, Loris Marchal, Yves Robert. Steady-State Scheduling on Hetero-
geneous Clusters: Why and How?.. [Research Report] LIP RR-2004-11, Laboratoire de I'informatique
du parallélisme. 2004, 2+11p. hal-02102079

HAL Id: hal-02102079
https://hal-lara.archives-ouvertes.fr /hal-02102079
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal-lara.archives-ouvertes.fr/hal-02102079
https://hal.archives-ouvertes.fr

Laboratoire de I’ nformatique du Parallélisme

O
% Ecole Normale Supérieure de Lyon

Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBE 5668

Steady-State Scheduling on Heterogeneous
Clusters: Why and How?

Olivier Beaumont,
Arnaud Legrand,
Loris Marchal,
Yves Robert

March 2004

Research Report™N2004-11

Ecole Normale Supérieure de Lyon
46 Allée d'ltalie, 69364 Lyon Cedex 07, France
Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80
Adresse électroniquel:i p@ns- 1 yon. fr

CENTRE NATIONAL
DE LA RECHERCHE
SCIENTIFIQUE

Steady-State Scheduling on Heterogeneous Clusters:
Why and How?

Olivier Beaumont, Arnaud Legrand, Loris Marchal, Yves Robert
March 2004

Abstract
In this paper, we consider steady-state scheduling techniques for heteroge-
neous systems, such as clusters and grids. We advocate the use of steady-state
scheduling to solve a variety of important problems, which would be too dif-
ficult to tackle with the objective of makespan minimization. We give a few
successful examples before discussing the main limitations of the approach.

Keywords: Scheduling, steady-state, heterogeneous platforms

Résumé
Nous nous intéressons ici aux techniques d’ordonnancement en régime per-
manent pour les plates-formes hétérogenes de ‘typkée de calcul”. Nous
montrons I'utilité de I'approche en régime permanent pour résoudre un cer-
tain nombre de problémes importants, pour lequels chercher a minimmiser le
temps d’exécution serait trop complexe. Nous donnons quelques exemples ou
cette technique a été couronnée de succés, avant de présenter ses principales
limites.

Mots-clés: Ordonnancement, régime permanent, plates-formes hétérogénes

Steady-State Scheduling on Heterogeneous Clusters: Why and How? 1

1 Introduction

Scheduling computational tasks on a given set of processors is a key issue for high-performance com-
puting. The traditional objective of scheduling algorithms is makespan minimization: given a task
graph and a set of computing resources, find a mapping of the tasks onto the processors, and order the
execution of the tasks so that: (i) task precedence constraints are satisfied; (ii) resource constraints are
satisfied; and (iii) a minimum schedule length is provided. However, makespan minimization turned
out to be NP-hard in most practical situatiofs, [1]. The advent of more heterogeneous architec-

tural platforms is likely to even increase the computational complexity of the process of mapping
applications to machines.

An idea to circumvent the difficulty of makespan minimization is to lower the ambition of the
scheduling objective. Instead of aiming at the absolute minimization of the execution time, why
not consider asymptotic optimality? After all, the number of tasks to be executed on the computing
platform is expected to be very large: otherwise why deploy the corresponding application on compu-
tational grids? To state this informally: if there is a nice (meaning, polynomial) way to derive, say, a
schedule whose length is two hours and three minutes, as opposed to an optimal schedule that would
run for only two hours, we would be satisfied. And if the optimal schedule is not known, there remains
the possibility to establish a lower bound, and to assess the polynomial schedule against it.

This approach has been pioneered by Bertsimas and Ganf@jrrdady-state scheduling allows
to relax the scheduling problem in many ways. Initialization and clean-up phases are neglected. The
initial integer formulation is replaced by a continuous or rational formulation. The precise ordering
and allocation of tasks and messages are not required, at least in the first step. The main idea is to
characterize the activity of each resource during each time-unit: which (rational) fraction of time is
spent computing, which is spent receiving or sending to which neighbor. Such activity variables are
gathered into a linear program, which includes conservation laws that characterize the global behavior
of the system. We give a few examples below.

The rest of the paper is organized as follows. se@isnmmarizes the assumptions on the plat-
form model. Three examples of linear programs characterizing steady-state operation are given in
section3. The target problems are master-slave tasking, pipelined scatter operations and pipelined
multicast operations. For the first two problems, the solution of the linear program provides all the
information needed to reconstruct a periodic schedule which is asymptotically optimal, as explained
in sectiord. For the third problem, the situation is more complicated: we discuss this in sé¢tion
section5 aims at discussing several extensions, as well as various limitations, of the steady-state
approach. Finally, we state some concluding remarks in se@:tion

2 Platform model

The target architectural framework is represented by a node-weighted edge-weighted>graph
(V,E,w,c), as illustrated in Figurd. Letp = |V| be the number of nodes. Each noBlec V
represents a computing resource of weightmeaning that nodé&), requiresw; time-steps to process
one computational unit (so the smalter, the faster the processor noftg. Each edge;; : P, — P;

is labeled by a value;; which represents the time needed to communicate one data unifton?;
(communication links are oriented). We assume thatadire positive rational numbers. We disallow

w; = 0 since it would permit nodé’, to perform an infinite number of computations, but we allow
w; = +o00; then P, has no computing power but can still forward data to other processors. Similarly,
we assume that all;; are positive rational numbers (or equal-too if there is no link betweer?

Steady-State Scheduling on Heterogeneous Clusters: Why and How? 2

Figure 1: A graph labeled with node (computation) and edge (communication) weights.

andp;).
Our favorite scenario for the operation mode of the processors faltloeerlap, single-port model
for both incoming and outgoing communications. In this model, a processor node can simultaneously
receive data from one of its neighbors, perform some (independent) computation, and send data to
one of its neighbors. At any given time-step, there are at most two communications involving a given
processor, one sent and the other received. We state the communication model more preéjsely: if
sends a data of sizeto F; at time-steg, then: (i) P; cannot start executing or sending this task before
time-stept’ = ¢ + ¢;; - L; (i) P; can not initiate another receive operation before time-siguit it
can perform a send operation and independent computation); ang ¢éhnot initiate another send
operation before time-step(but it can perform a receive operation and independent computation).
Altogether, the model is quite simple: linear costs for computing and communicating, full computation-
communication overlap, one-port constraint for sending and receiving. However, no specific assump-
tion is made on the interconnection graph, which may well include cycles and multiple paths, and
contention over communication links is taken into account.

3 Linear programs

3.1 Master-slave tasking

In this problem, a special processBy, € V' (the master) initially holds a large collection of indepen-
dent, identical tasks to be allocated on the platform. Think of a task as being associated with a file that
contains all the data required for the execution of the task. The question for the master is to decide
which tasks to execute itself, and how many tasks (i.e. task files) to forward to each of its neighbors.
Due to heterogeneity, the neighbors may receive different amounts of work (maybe none for some of
them). Each neighbor faces in turn the same dilemma: determine how many tasks to execute, and
how many to delegate to other processors. During one timeanistthe fraction of time spent b,
computing, and;; is the fraction of time spent b¥, sending tasks t@, for e;; € E.

Steady-State Scheduling on Heterogeneous Clusters: Why and How? 3

The steady-state equations are summarized in the following linear program:

STEADY-STATE MASTER SLAVE SSMSG)
p

Maximize nisi G) = %,
=1
subject to
Vi, 0<a; <1
Vel-jeE, Ogsijgl
Vi, D jleer S S 1
vi, 2 jlejicr Sii S 1
Vejm € F, Sjm = 0
ViFE M, Y jleseE % = T XjlesseE i—j

The third and fourth equations enforce the one-port constraints. The fifth equation states that the
master does not receive anything. The last equation is the conservation law: the number of tasks
received byP, every time-unit is equal to the number of tasks processe&,byius the number of
tasks sent to its neighbors. It is important to see that this equation only holds in steady-state mode.
Finally, the objective function is to maximize the number of tasks executed over the platform.

Because we have a linear programming problem in rational numbers, we obtain rational values
for all variables in polynomial time (polynomial iv'| + | E|, the size of the heterogeneous platform).
When we have the optimal solution, we take the least common multiple of the denominators, and thus
we derive an integer period for the steady state operation, during which we exe@uteasi G)
tasks. Because any periodic schedule obeys the equations of the linear program, the previous number
is an upper bound of what can be achieved in steady-state mode. It remains to determine whether this
bound is tight or not: see sectidril.

3.2 Pipelined scatter operations

In a scatter operation, one proces$ty,rcehas to send distinct messages to a set of target processors
Prarget = {Fo,---, Py} C V. In the pipelined version of the problemgo,rce performs a series of
scatter operations, i.e. consecutively sends a large number of different messages t®ifs: set

Letm be the type of messages whose destinatidi,iandsend (i, j, k) be the fractional number
of messages of typey, which are sent on the edgg within a time-unit. Finally, let;; be the fraction
of time spent byF; sending messages 1. We derive the following linear program:

STEADY-STATE PIPELINED SCATTER SSP$G)
Maximize TP,
subject to
Vi,7, 0<s;5 <1
vi, Zﬂez’jeE sij S 1
Vi, Zj\ejiEE sji < 1
Vi, g, sij =y send(i, 5, k) X ¢
Vi, k,k # i,
Zj\ejieE send(j,i,k) = Zj|€ij€E send(i, 7, k)
VP, € Prarget Zj\ejkeE send(j,k, k) = TP

As before, the first equations deal with one-port constraints. The fifth equation is the conservation
law: a processor forwards all the messages which it receives and whose final destination is another

Steady-State Scheduling on Heterogeneous Clusters: Why and How? 4

processor. The last equation states that each target processor receives the right number of different
messages. This number is indeed the objective function to be maximized. Again, TP is an upper
bound of the throughput that can be achieved in steady-state mode.

3.3 Pipelined multicast operations

It looks simpler to multicast than to scatter: indeed, the former operation is the restriction of the
latter to the case where all messages are identical. However, we do not know how to write a linear
program which would adequately bound the throughput of pipelined multicast operations. For the
scatter problempPsoyrceSENdS messageét) to eachP, € P, where(t) denotes the temporal index of

the multicast operation. For the multicast problem, all messages are the same for a given operation:
x,(f) = x,(f,) = 2, Nothing prevents us to use the previous linear program, but the formulation
now is pessimistic. If two different messages are sent along a given edge, we do have to sum up
the communication times, but if they are the same, there is no reason to count the communication
time twice. In other words, we may want to replace the equagios >, send(i,j,k) x c;; by the
equations;; = maxy, send(4, j, k) x ¢;;. However, this approach may be too optimistic, as it may
well not be possible that messages can be forwarded into groups that obey the new equation: see the
discussion in sectic.3,

4 Reconstructing the schedule

Once the linear program is solved, we aim at (i) fully characterizing the schedule during one time-
period, and (ii) deriving an actual schedule (with proper initialization and clean-up) whose asymptotic
efficiency will hopefully be optimal.

4.1 During a period in steady-state mode

There are several subtle points when reconstructing the actual periodic schedule, i.e. the detailed list
of actions of the processors during a time period. Once the linear programming problem is solved, we
get the periodl” of the schedule, and the integer number of messages going through each link. First,
because it arises from the linear progrdog, 7" is indeed a number polynomial in the problem size,
butT itself is not necessarily polynomial in the problem size. Hence, describing what happens at every
time-step during the period might be exponential in the problem size, and we need a more “compact”
description of the schedule. Second, we need to exhibit an orchestration of the message transfers
where only independent communications, i.e. involving disjoint pairs of senders and receivers, can
take place simultaneously.

Both problems are solved as follows. From our platform gr@phnd using the result of the linear
program, we build a bipartite graph: for each ndglen G, we create two nodeB*"¢ and PV, For
each communication frorR; to P;, we insert an edge betweéﬁend andP]?‘m, which is weighted by
the length of the communication. We are looking for a decomposition of this bipartite graph into a set
of subgraphs where a node (sender or receiver) is occupied by at most one communication task. This
means that at most one edge reaches each node in the subgraph. In other words, only communications
corresponding to a matching in the bipartite graph can be performed simultaneously, and the desired
decomposition of the graph is in fact an edge coloring. The weighted edge coloring algorlifin of |
vol.A,chapter 20] provides in timé&(|E?) a polynomial number of matchings (in fact, no more
than|E| matchings) which are used to perform the different communications, and which provides the
desired polynomial-size description of the schedule. [&é& for further details.

Steady-State Scheduling on Heterogeneous Clusters: Why and How? 5

Altogether, this technique leads to the description of an optimal periodic schedule for our first two
problems, namely the master-slave tasking and the series of scatters. Nothing prevents us to use the
solution of the series of scatters for a series of multicast, but the throughput is no longer shown to be
optimal.

4.2 Asymptotic optimality

Because the different instances of the problem (tasks, scatter operations) are independent, it is easy to
derive an actual schedule based upon the steady-state operation. We need a fixed number of periods
(no more than the depth of the platform graph roote@®,abr Psourcd to reach the steady-state: this
corresponds to the initialization phase (and similarly for the clean-up phase).

The asymptotic optimality of the final schedule directly follows. In fact, we have a very strong
result, both for master-slave taskirigj [Z] and for pipelined scatter?]: the number of tasks or
scatter operations processed withihtime-units is optimal, up to a constant number, which only
depends upon the platform graph (but not/oh

Note that we can generalize the master-slave tasking to the case of independent task graphs (in-
stead of independent tasks). Then, collections of identical DAGs are to be scheduled in order to
execute, say, the same suite of algorithmic kernels, but using different data samples. There are no
dependences between successive DAGS, but of course there are some within a DAG. This mixed data
and task parallelism problem has not been solved for arbitrary DAGs, but the approach presented in
section3.1 can be extended to any DAG with a polynomial number of simple gétds [

Finally, the approach for scatters also works for personalized all-to-all and reduce opetafions |

4.3 Optimal throughput for the multicast problem

The news for the pipelined multicasts is not so good: the problem of determining the optimal through-
put is NP-hardT]. In that case, going from makespan minimization to steady-state has not decreased
the complexity of the problem.

However, for series diroadcastgather tharmulticasts the optimal steady-state can be character-
ized in polynomial time. Contrarily to the case of the multicast, the bound given by the linear program
where themax operator replaces the operator turns out to be achievalifi. [Intuitively, because
each intermediate processor participates in the execution, it is not important to decide which messages
will be propagated along which path: in the end, everybody has the full information.

This is not the case for the multicast problem, and we illustrate this using an example. Consider the
platform graph represented in Fig@;avhere values labeling edges are the communication costs of a
unit-size message. A solution of the linear program of se8t#mut with themax operator instead of
the > operator, is shown in the following figures, and reaches the throughput of one message per time-
unit. Figure3(a)shows the number of messages sent on each link and whose target procéssor is
while Figure3(b) shows similar numbers for target processpr Apparently, looking at Figurad(c)
which shows all the transfers, only one message needs to be sent througtiledygevery second
time-unit, which would comply with the edge capacity. However when trying to reconstruct the
schedule, we see that message routes differ for odd-numbered indicesujlainel even-numbered
indices (labeb). Messages are routed along two different trees. To réaatdd-numbered multicast
messages, with label, use the route?y — P, — Ps, while even-numbered messages, with lahel
use the routédy — P, — P3 — Py — P5. Similarly, there are two routes to multicast the messages
to Fs: routery = Py — P, — P3 — Py — Ps and routers = Py — P, — Ps. Labela messages
targeted taP; must use route;, because the eddé?}), P») alone has not the capacity to carry all the

Steady-State Scheduling on Heterogeneous Clusters: Why and How? 6

messages. Labélmessages targeted ¢ then use route,, as shown on Figuig(c). As a result,

the edgeP; — P, is required to transfer both oreand oneh messages every time unit, which is not
possible because of its communication cost. Therefore, reconstructing a schedule from the solution of
the linear program is not possible, the bound on the throughput cannot be met.

Figure 2: The multicast platform (target processors are shaded).

5 Limitations

5.1 Communication model
5.1.1 Send OR Receive

Surprisingly, the hypothesis that a processor can simultaneously send and receive messages is crucial
for the reconstruction of the schedule. As detailed in sedtifyrthe solution of the linear program
gives a list of actions to be conducted during a period, and the edge-coloring algorithm implements
the desired orchestration.

If we assume that a processor @ither sendor receive, it is easy to modify the linear program:
for each processor, write the constraint that the time spent sending plus the time spent receiving does
not exceed one time-unit. However, extracting independent communications (involving disjoint pro-
cessor pairs) amounts to edge-color an arbitrary graph. The problem becomes NP-hard, but efficient
polynomial approximation algorithms can be usgd lHowever, for general graphs, we do not know
the counterpart of the edge coloring algorithm for bipartite weighted gragheo].A,chapter 20].

This is bad news, because the fact that the activity variables output by the linear program did lead
to a feasible periodic schedule, regardless of their ordering, was a key advantage of the steady-state
approach.

5.1.2 Multiport

We can also consider more powerful communication models, where an host, equipped with several
network card devices, can be involved in several receptions or emissions simultaneously. In the case
where each network card on a given host is used in only one direction (sending or receiving) and
is linked to a set of fixed network cards on neighbor hosts, then a linear program can be derived
(constraints are written for each network card), and the schedule can be reconstructed (each node in
the bipartite graph corresponds to a network card).

In the case where a network card can be used for both sending and receiving operations, then the
problem is NP-hard (see above). In the case where a network card is dedicated either to send or to

Steady-State Scheduling on Heterogeneous Clusters: Why and How? 7

receive data, but can be involved in a communication with any neighbor host, then the complexity of
the schedule reconstruction is still open.

5.2 Start-up costs

Linear programs are naturally suited to linear costs, so introducing computation or communication
start-ups complicates the story. However, in many situations, the difficulty can be circumvented as
follows:

1. Compute a lower bound of the total execution timerfaasksZop(n)

2. Use the solution of the linear program and the reconstruction of the solution to design a periodic
schedule whose time period is large (of org€fop(n)). A (small) fraction of each period will be
wasted due to start-up costs.

3. Design initialization and clean up phases (used before and after the periodic schedule).

4. Prove the asymptotic optimality of the resulting schedule.

The rationale behind the strategy is simple: (i) the length of the period should increase to
together with the total amount of work, so that start-up overheads end up by being negligible; (ii)
the work performed during a period should tend to a negligible fraction of the total amount of work,
because a fixed number of periods are “wasted” during the initialization and clean-up phases.

The first examples of this strategy were giveridh [t was successfully applied to divisible load
computations ing]. Let us detail the different phases for master slave tasking when the communica-
tion of n;; tasks fromP; to P; now takesC;; + n;jc;; time-steps, wher€’;; is the start-up cost.

1. Clearly, the platform with start up costs is less powerful than the platform without start-up costs, so
that Top(n) < ﬁk@)

2. Consider the solution obtained after the reconstruction (without start up costs) dhddabte its
period. The idea is to group the communicationsrotonsecutive periods into a new period, so as

to diminish the influence of start-up costs. We slightly increase the new perioih order to take
start-up costs into account. Since there are at mifolstommunication rounds per period, the overall
cost due to start-ups can be bounded®y|, whereC = maxCj;. Thus, during each period of
durationmT + C|E|, exactlymTniasi G) are processed.

3. The initialization phase consists in sending (sequentially) to each processor the number of tasks it
will both compute and send during the first time period. The duration of this initialization phase can
be bounded by4d;m, where A; only depends on the platform (and not oh The clean-up phase
consists in processing “in place” the tasks that have not been processed yet after bﬁgﬁﬁi&bj
periods. SincenTnsG) are processed during each period, at maStn,s G) have not been
processed yet, so that the duration of the clean up phase can be bounded,byhere A5 only
depends on the platform (and not @h

4. The overall timél’(n) of initialization, steady state and clean up phases is therefore bounded by

n__ C|En
ntask(G) antask(G) ’

so that if we setn = [, /-1, then

T(n) V 1ask &) C|E| 1
o) 1+ tT(Al + Ay + =)+ 0(-),

thereby achieving the proof of asymptotic optimality whehecomes arbitrarily large.

Steady-State Scheduling on Heterogeneous Clusters: Why and How? 8

5.3 Platform model

The target architectural platform model presented in se@ttakes into account the most important
features of actual grid platforms: heterogeneity, link contention, 1-port constraints, overlapping capa-
bilities. We consider it as a good compromise between simplicity (necessary in order to build efficient
algorithms) and realism (necessary to build useful algorithms). Nevertheless, the actual topology of
a large scale meta-computing platform is usually not known. On one hand, as propds@dvie [

can execute pings between each pair of participating hosts in order to determine the latency and band-
width between each pair of hosts. This leads to a complete graph where contention are not taken into
account. On the other hand, according to Pax&dh it is very difficult to determine the paths fol-

lowed by the packets on wide-area networks, and it is almost impossible to deduce the communication
performance and the interaction of one data stream on another.

Fortunately, we only need a macroscopic view of the network, showing that some link is shared
between some routes, without determining the actual physical topology. Recently, several tools have
been designed in order to obtain such a macroscopic view. EB\hfs been especially designed
for master slave tasking, since it provides the view of the platform as seen from the master (i.e. a tree
showing shared links). AINeMLE] provides a platform model which is closer to the model presented
in section2. Both tools perform simultaneous communications between several host pairs in order
to determine whether some links are shared on the route between these pairs. The main limitation of
both tools is that the search of the topology of a real large scale platform requires a huge amount of
time, hence limiting their use to stable platforms.

5.4 Approximation for fixed periods

In the case where the period obtained from the linear program is very large, we may want to restrict
to fixed-length periods. The price to pay is that the throughput may be lowered. Again, it is possible

to derive fixed-period schedules whose throughputs tend to the optimum as the length of the period
increases. Se@][for further detalils.

5.5 Dynamic versions

A key feature of steady-state scheduling is that it is adaptive. Because the work is divided into periods,
it is possible to dynamically adjust to changes in processor speeds or link bandwidths.

Indeed, a classical approach to respond to change in resources capabilities is borrowed from the
simple paradignfuse the past to predict the future”.e. to use the currently observed speed of
computation of each machine and of each communication link to decide for the next distribution of
work. There are too many parameters to accurately predict the actual speed of a machine for a given
program, even assuming that the machine load will remain the same throughout the computation.
The situation is even worse for communication links, because of unpredictable contention problems.
When deploying an application on a platform, the idea is thus to divide the scheduling into phases.
During each phase, all the machine and network parameters are collected and histogrammed, using a
tool like NWS [1§]. This information will then guide the scheduling decisions for the next phase.

This approach naturally fits with steady-state scheduling. A first solution is to recompute the solu-
tion of the linear program periodically, based upon the information acquired during the current period,
and to determine the activity variables for the new period accordingly. A second solution is more dy-
namic: each processor executes a load-balancing algorithm to choose among several allocations (for
instance, various weighted trees for the scatter problem). This technique has been used for scheduling
independent tasks on tree-shaped platfofiiis [

Steady-State Scheduling on Heterogeneous Clusters: Why and How? 9

6 Conclusion

The use of steady-state scheduling techniques turned out to be very helpful to solve a variety of prob-
lems, which includes master-slave tasking, divisible load scheduling, and pipelining several types of
macro-communications. The list is far from being exhaustive, and we aim at enlarging it in the future.
More importantly, we hope to characterize, or at least better understand, which are the situations when
the bound output by the solution of the linear program is achievable.

We conclude by stating an open problem: what is the complexity of computing the optimal steady-
state for the problem of mapping collections of arbitrary task graphs (with an exponential number of
paths, such as the Laplace graph)? We conjecture that determining this optimal throughput is NP-hard.

References

[1] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi.
Complexity and ApproximatiorSpringer, Berlin, Germany, 1999.

[2] C.Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert. Scheduling strategies
for master-slave tasking on heterogeneous processor platftiEEs. Trans. Parallel Distributed
Systemsl5, 2004.

[3] C. Banino, O. Beaumont, A. Legrand, and Y. Robert. Scheduling strategies for master-slave
tasking on heterogeneous processor gridsPARA’02: International Conference on Applied
Parallel ComputingLNCS 2367, pages 423-432. Springer Verlag, 2002.

[4] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. Optimal algorithms for the pipelined
scheduling of task graphs on heterogeneous systems. Technical Report RR-2003-29, LIP, ENS
Lyon, France, April 2003.

[5] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. Optimizing the steady-state throughput
of broadcasts on heterogeneous platforms heterogeneous platforms. Technical report, LIP, ENS
Lyon, France, June 2003.

[6] O.Beaumont, A. Legrand, L. Marchal, and Y. Robert. Scheduling strategies for mixed data and
task parallelism on heterogeneous clust®arallel Processing Letterd 3(2), 2003.

[7] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. Complexity results and heuristics for
pipelined multicast operations on heterogeneous platforms. Technical report, LIP, ENS Lyon,
France, January 2004.

[8] O. Beaumont, A. Legrand, and Y. Robert. Scheduling divisible workloads on heterogeneous
platforms. Parallel Computing29:1121-1152, 2003.

[9] D. Bertsimas and D. Gamarnik. Asymptotically optimal algorithm for job shop scheduling and
packet routingJournal of Algorithms33(2):296-318, 1999.

[10] P.B. Bhat, C.S. Raghavendra, and V.K. Prasanna. Adaptive communication algorithms for dis-
tributed heterogeneous systerdgurnal of Parallel and Distributed Computing9(2):252-279,
1999.

Steady-State Scheduling on Heterogeneous Clusters: Why and How? 10

[11] L. Carter, H. Casanova, J. Ferrante, and B. Kreaseck. Autonomous protocols for bandwidth-
centric scheduling of independent-task applicationsintarnational Parallel and Distributed
Processing Symposium IPDPS’200BEE Computer Society Press, 2003.

[12] A. Legrand, L. Marchal, and Y. Robert. Optimizing the steady-state throughput of scatter and
reduce operations on heterogeneous platforms. Technical Report RR-2003-33, LIP, ENS Lyon,
France, June 2003.

[13] A. Legrand, F. Mazoit, and M. Quinson. An application-level network mapper. Research Report
RR-2003-09, LIP, ENS Lyon, France, feb 2003.

[14] V. PaxsonMeasurements and Analysis of End-to-End Internet DynarRicB thesis, University
of California, Berkeley, 1997.

[15] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficienaplume 24 ofAlgorithms
and Combinatorics Springer-Verlag, 2003.

[16] G. Shao.Adaptive scheduling of master/worker applications on distributed computational re-
sources PhD thesis, Dept. of Computer Science, University Of California at San Diego, 2001.

[17] B. A. Shirazi, A. R. Hurson, and K. M. KaviScheduling and load balancing in parallel and
distributed systemdEEE Computer Science Press, 1995.

[18] R. Wolski, N.T. Spring, and J. Hayes. The network weather service: a distributed resource
performance forecasting service for metacomputiriguture Generation Computer Systems
15(10):757-768, 1999.

Steady-State Scheduling on Heterogeneous Clusters: Why and How? 11

1
2 2
1 . . . 1 .

(&) Number of messages transferred through each (b) Number of messages transferred through each
edge and targetings edge and targetings

N
NI

®@ & r——@

(c) Total number of messages going through each (d) Conflict between two distinct messages through
edge edgePs; — P4

Figure 3: Multicast: Problems while reconstructing a schedule

	1 Introduction
	2 Platform model
	3 Linear programs
	3.1 Master-slave tasking
	3.2 Pipelined scatter operations
	3.3 Pipelined multicast operations

	4 Reconstructing the schedule
	4.1 During a period in steady-state mode
	4.2 Asymptotic optimality
	4.3 Optimal throughput for the multicast problem

	5 Limitations
	5.1 Communication model
	5.1.1 Send OR Receive
	5.1.2 Multiport

	5.2 Start-up costs
	5.3 Platform model
	5.4 Approximation for fixed periods
	5.5 Dynamic versions

	6 Conclusion

