
HAL Id: hal-02102079
https://hal-lara.archives-ouvertes.fr/hal-02102079

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Steady-State Scheduling on Heterogeneous Clusters:
Why and How?.

Olivier Beaumont, Arnaud Legrand, Loris Marchal, Yves Robert

To cite this version:
Olivier Beaumont, Arnaud Legrand, Loris Marchal, Yves Robert. Steady-State Scheduling on Hetero-
geneous Clusters: Why and How?.. [Research Report] LIP RR-2004-11, Laboratoire de l’informatique
du parallélisme. 2004, 2+11p. �hal-02102079�

https://hal-lara.archives-ouvertes.fr/hal-02102079
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Steady-State Scheduling on Heterogeneous
Clusters: Why and How?

Olivier Beaumont,
Arnaud Legrand,
Loris Marchal,
Yves Robert

March 2004

Research Report No 2004-11

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique :lip@ens-lyon.fr

Steady-State Scheduling on Heterogeneous Clusters:
Why and How?

Olivier Beaumont, Arnaud Legrand, Loris Marchal, Yves Robert

March 2004

Abstract
In this paper, we consider steady-state scheduling techniques for heteroge-
neous systems, such as clusters and grids. We advocate the use of steady-state
scheduling to solve a variety of important problems, which would be too dif-
ficult to tackle with the objective of makespan minimization. We give a few
successful examples before discussing the main limitations of the approach.

Keywords: Scheduling, steady-state, heterogeneous platforms

Résumé
Nous nous intéressons ici aux techniques d’ordonnancement en régime per-
manent pour les plates-formes hétérogènes de type“grille de calcul” . Nous
montrons l’utilité de l’approche en régime permanent pour résoudre un cer-
tain nombre de problèmes importants, pour lequels chercher à minimmiser le
temps d’exécution serait trop complexe. Nous donnons quelques exemples où
cette technique a été couronnée de succès, avant de présenter ses principales
limites.

Mots-clés: Ordonnancement, régime permanent, plates-formes hétérogènes

Steady-State Scheduling on Heterogeneous Clusters: Why and How? 1

1 Introduction

Scheduling computational tasks on a given set of processors is a key issue for high-performance com-
puting. The traditional objective of scheduling algorithms is makespan minimization: given a task
graph and a set of computing resources, find a mapping of the tasks onto the processors, and order the
execution of the tasks so that: (i) task precedence constraints are satisfied; (ii) resource constraints are
satisfied; and (iii) a minimum schedule length is provided. However, makespan minimization turned
out to be NP-hard in most practical situations [17, 1]. The advent of more heterogeneous architec-
tural platforms is likely to even increase the computational complexity of the process of mapping
applications to machines.

An idea to circumvent the difficulty of makespan minimization is to lower the ambition of the
scheduling objective. Instead of aiming at the absolute minimization of the execution time, why
not consider asymptotic optimality? After all, the number of tasks to be executed on the computing
platform is expected to be very large: otherwise why deploy the corresponding application on compu-
tational grids? To state this informally: if there is a nice (meaning, polynomial) way to derive, say, a
schedule whose length is two hours and three minutes, as opposed to an optimal schedule that would
run for only two hours, we would be satisfied. And if the optimal schedule is not known, there remains
the possibility to establish a lower bound, and to assess the polynomial schedule against it.

This approach has been pioneered by Bertsimas and Gamarnik [9]. Steady-state scheduling allows
to relax the scheduling problem in many ways. Initialization and clean-up phases are neglected. The
initial integer formulation is replaced by a continuous or rational formulation. The precise ordering
and allocation of tasks and messages are not required, at least in the first step. The main idea is to
characterize the activity of each resource during each time-unit: which (rational) fraction of time is
spent computing, which is spent receiving or sending to which neighbor. Such activity variables are
gathered into a linear program, which includes conservation laws that characterize the global behavior
of the system. We give a few examples below.

The rest of the paper is organized as follows. section2 summarizes the assumptions on the plat-
form model. Three examples of linear programs characterizing steady-state operation are given in
section3. The target problems are master-slave tasking, pipelined scatter operations and pipelined
multicast operations. For the first two problems, the solution of the linear program provides all the
information needed to reconstruct a periodic schedule which is asymptotically optimal, as explained
in section4. For the third problem, the situation is more complicated: we discuss this in section4.3.
section5 aims at discussing several extensions, as well as various limitations, of the steady-state
approach. Finally, we state some concluding remarks in section6.

2 Platform model

The target architectural framework is represented by a node-weighted edge-weighted graphG =
(V,E,w, c), as illustrated in Figure1. Let p = |V | be the number of nodes. Each nodePi ∈ V
represents a computing resource of weightwi, meaning that nodePi requireswi time-steps to process
one computational unit (so the smallerwi, the faster the processor nodePi). Each edgeeij : Pi → Pj

is labeled by a valuecij which represents the time needed to communicate one data unit fromPi to Pj

(communication links are oriented). We assume that allwi are positive rational numbers. We disallow
wi = 0 since it would permit nodePi to perform an infinite number of computations, but we allow
wi = +∞; thenPi has no computing power but can still forward data to other processors. Similarly,
we assume that allcij are positive rational numbers (or equal to+∞ if there is no link betweenPi

Steady-State Scheduling on Heterogeneous Clusters: Why and How? 2

w6

P6

w2

P2

w5

P5

w3

P3

w1

P1

w4

P4

c13

c36

c56c45

c25
c24

c12

Figure 1: A graph labeled with node (computation) and edge (communication) weights.

andPj).
Our favorite scenario for the operation mode of the processors is thefull overlap, single-port model

for both incoming and outgoing communications. In this model, a processor node can simultaneously
receive data from one of its neighbors, perform some (independent) computation, and send data to
one of its neighbors. At any given time-step, there are at most two communications involving a given
processor, one sent and the other received. We state the communication model more precisely: ifPi
sends a data of sizeL to Pj at time-stept, then: (i)Pj cannot start executing or sending this task before
time-stept′ = t + cij · L; (ii) Pj can not initiate another receive operation before time-stept′ (but it
can perform a send operation and independent computation); and (iii)Pi cannot initiate another send
operation before time-stept′ (but it can perform a receive operation and independent computation).

Altogether, the model is quite simple: linear costs for computing and communicating, full computation-
communication overlap, one-port constraint for sending and receiving. However, no specific assump-
tion is made on the interconnection graph, which may well include cycles and multiple paths, and
contention over communication links is taken into account.

3 Linear programs

3.1 Master-slave tasking

In this problem, a special processorPm ∈ V (the master) initially holds a large collection of indepen-
dent, identical tasks to be allocated on the platform. Think of a task as being associated with a file that
contains all the data required for the execution of the task. The question for the master is to decide
which tasks to execute itself, and how many tasks (i.e. task files) to forward to each of its neighbors.
Due to heterogeneity, the neighbors may receive different amounts of work (maybe none for some of
them). Each neighbor faces in turn the same dilemma: determine how many tasks to execute, and
how many to delegate to other processors. During one time unit,αi is the fraction of time spent byPi

computing, andsij is the fraction of time spent byPi sending tasks toPj , for eij ∈ E.

Steady-State Scheduling on Heterogeneous Clusters: Why and How? 3

The steady-state equations are summarized in the following linear program:

STEADY-STATE MASTER SLAVE SSMS(G)

Maximize ntask(G) =
p∑

i=1

αi

wi
,

subject to


∀i, 0 � αi � 1
∀eij ∈ E, 0 � sij � 1
∀i,

∑
j|eij∈E sij � 1

∀i,
∑

j|eji∈E sji � 1
∀ejm ∈ E, sjm = 0
∀i �= m,

∑
j|eji∈E

sji

cji
= αi

wi
+

∑
j|eij∈E

sij

cij

The third and fourth equations enforce the one-port constraints. The fifth equation states that the
master does not receive anything. The last equation is the conservation law: the number of tasks
received byPi every time-unit is equal to the number of tasks processed byPi, plus the number of
tasks sent to its neighbors. It is important to see that this equation only holds in steady-state mode.
Finally, the objective function is to maximize the number of tasks executed over the platform.

Because we have a linear programming problem in rational numbers, we obtain rational values
for all variables in polynomial time (polynomial in|V |+ |E|, the size of the heterogeneous platform).
When we have the optimal solution, we take the least common multiple of the denominators, and thus
we derive an integer periodT for the steady state operation, during which we executeT · ntask(G)
tasks. Because any periodic schedule obeys the equations of the linear program, the previous number
is an upper bound of what can be achieved in steady-state mode. It remains to determine whether this
bound is tight or not: see section4.1.

3.2 Pipelined scatter operations

In a scatter operation, one processorPsourcehas to send distinct messages to a set of target processors
Ptarget = {P0, . . . , PN} ⊂ V . In the pipelined version of the problem,Psourceperforms a series of
scatter operations, i.e. consecutively sends a large number of different messages to the setPtarget.

Letmk be the type of messages whose destination isPk, andsend(i, j, k) be the fractional number
of messages of typemk which are sent on the edgeeij within a time-unit. Finally, letsij be the fraction
of time spent byPi sending messages toPj . We derive the following linear program:

STEADY-STATE PIPELINED SCATTER SSPS(G)
Maximize TP,
subject to
∀i, j, 0 � sij � 1
∀i,

∑
j|eij∈E sij � 1

∀i,
∑

j|eji∈E sji � 1
∀i, j, sij =

∑
k send(i, j, k) × cij

∀i, k, k �= i,∑
j|eji∈E send(j, i, k) =

∑
j|eij∈E send(i, j, k)

∀Pk ∈ Ptarget,
∑

j|ejk∈E send(j, k, k) = TP

As before, the first equations deal with one-port constraints. The fifth equation is the conservation
law: a processor forwards all the messages which it receives and whose final destination is another

Steady-State Scheduling on Heterogeneous Clusters: Why and How? 4

processor. The last equation states that each target processor receives the right number of different
messages. This number is indeed the objective function to be maximized. Again, TP is an upper
bound of the throughput that can be achieved in steady-state mode.

3.3 Pipelined multicast operations

It looks simpler to multicast than to scatter: indeed, the former operation is the restriction of the
latter to the case where all messages are identical. However, we do not know how to write a linear
program which would adequately bound the throughput of pipelined multicast operations. For the
scatter problem,Psourcesends messagesx(t)

k to eachPk ∈ P, where(t) denotes the temporal index of
the multicast operation. For the multicast problem, all messages are the same for a given operation:
x

(t)
k = x

(t)
k′ = x(t). Nothing prevents us to use the previous linear program, but the formulation

now is pessimistic. If two different messages are sent along a given edge, we do have to sum up
the communication times, but if they are the same, there is no reason to count the communication
time twice. In other words, we may want to replace the equationsij =

∑
k send(i, j, k) × cij by the

equationsij = maxk send(i, j, k) × cij . However, this approach may be too optimistic, as it may
well not be possible that messages can be forwarded into groups that obey the new equation: see the
discussion in section4.3.

4 Reconstructing the schedule

Once the linear program is solved, we aim at (i) fully characterizing the schedule during one time-
period, and (ii) deriving an actual schedule (with proper initialization and clean-up) whose asymptotic
efficiency will hopefully be optimal.

4.1 During a period in steady-state mode

There are several subtle points when reconstructing the actual periodic schedule, i.e. the detailed list
of actions of the processors during a time period. Once the linear programming problem is solved, we
get the periodT of the schedule, and the integer number of messages going through each link. First,
because it arises from the linear program,log T is indeed a number polynomial in the problem size,
butT itself is not necessarily polynomial in the problem size. Hence, describing what happens at every
time-step during the period might be exponential in the problem size, and we need a more “compact”
description of the schedule. Second, we need to exhibit an orchestration of the message transfers
where only independent communications, i.e. involving disjoint pairs of senders and receivers, can
take place simultaneously.

Both problems are solved as follows. From our platform graphG, and using the result of the linear
program, we build a bipartite graph: for each nodePi in G, we create two nodesPsend

i andP recv
i . For

each communication fromPi to Pj , we insert an edge betweenPsend
i andP recv

j , which is weighted by
the length of the communication. We are looking for a decomposition of this bipartite graph into a set
of subgraphs where a node (sender or receiver) is occupied by at most one communication task. This
means that at most one edge reaches each node in the subgraph. In other words, only communications
corresponding to a matching in the bipartite graph can be performed simultaneously, and the desired
decomposition of the graph is in fact an edge coloring. The weighted edge coloring algorithm of [15,
vol.A,chapter 20] provides in timeO(|E|2) a polynomial number of matchings (in fact, no more
than|E| matchings) which are used to perform the different communications, and which provides the
desired polynomial-size description of the schedule. See [6, 4] for further details.

Steady-State Scheduling on Heterogeneous Clusters: Why and How? 5

Altogether, this technique leads to the description of an optimal periodic schedule for our first two
problems, namely the master-slave tasking and the series of scatters. Nothing prevents us to use the
solution of the series of scatters for a series of multicast, but the throughput is no longer shown to be
optimal.

4.2 Asymptotic optimality

Because the different instances of the problem (tasks, scatter operations) are independent, it is easy to
derive an actual schedule based upon the steady-state operation. We need a fixed number of periods
(no more than the depth of the platform graph rooted atPm or Psource) to reach the steady-state: this
corresponds to the initialization phase (and similarly for the clean-up phase).

The asymptotic optimality of the final schedule directly follows. In fact, we have a very strong
result, both for master-slave tasking [3, 2] and for pipelined scatters [12]: the number of tasks or
scatter operations processed withinK time-units is optimal, up to a constant number, which only
depends upon the platform graph (but not onK).

Note that we can generalize the master-slave tasking to the case of independent task graphs (in-
stead of independent tasks). Then, collections of identical DAGs are to be scheduled in order to
execute, say, the same suite of algorithmic kernels, but using different data samples. There are no
dependences between successive DAGs, but of course there are some within a DAG. This mixed data
and task parallelism problem has not been solved for arbitrary DAGs, but the approach presented in
section3.1can be extended to any DAG with a polynomial number of simple paths [6, 4].

Finally, the approach for scatters also works for personalized all-to-all and reduce operations [12].

4.3 Optimal throughput for the multicast problem

The news for the pipelined multicasts is not so good: the problem of determining the optimal through-
put is NP-hard [7]. In that case, going from makespan minimization to steady-state has not decreased
the complexity of the problem.

However, for series ofbroadcastsrather thanmulticasts, the optimal steady-state can be character-
ized in polynomial time. Contrarily to the case of the multicast, the bound given by the linear program
where themax operator replaces the

∑
operator turns out to be achievable [5]. Intuitively, because

each intermediate processor participates in the execution, it is not important to decide which messages
will be propagated along which path: in the end, everybody has the full information.

This is not the case for the multicast problem, and we illustrate this using an example. Consider the
platform graph represented in Figure2, where values labeling edges are the communication costs of a
unit-size message. A solution of the linear program of section3.2, but with themax operator instead of
the

∑
operator, is shown in the following figures, and reaches the throughput of one message per time-

unit. Figure3(a)shows the number of messages sent on each link and whose target processor isP5,
while Figure3(b) shows similar numbers for target processorP6. Apparently, looking at Figure3(c)
which shows all the transfers, only one message needs to be sent through edge(P3, P4) every second
time-unit, which would comply with the edge capacity. However when trying to reconstruct the
schedule, we see that message routes differ for odd-numbered indices (labela) and even-numbered
indices (labelb). Messages are routed along two different trees. To reachP5, odd-numbered multicast
messages, with labela, use the routeP0 → P1 → P5, while even-numbered messages, with labelb,
use the routeP0 → P2 → P3 → P4 → P5. Similarly, there are two routes to multicast the messages
to P6: router1 = P0 → P1 → P3 → P4 → P6 and router2 = P0 → P2 → P5. Labela messages
targeted toP6 must use router1, because the edge(P0, P2) alone has not the capacity to carry all the

Steady-State Scheduling on Heterogeneous Clusters: Why and How? 6

messages. Labelb messages targeted toP6 then use router2, as shown on Figure3(c). As a result,
the edgeP3 → P4 is required to transfer both onea and oneb messages every time unit, which is not
possible because of its communication cost. Therefore, reconstructing a schedule from the solution of
the linear program is not possible, the bound on the throughput cannot be met.

P0

P1 P2

P3

P4P5 P6
1

1

1

1

1

1

1

1

2

Figure 2: The multicast platform (target processors are shaded).

5 Limitations

5.1 Communication model

5.1.1 Send OR Receive

Surprisingly, the hypothesis that a processor can simultaneously send and receive messages is crucial
for the reconstruction of the schedule. As detailed in section4.1, the solution of the linear program
gives a list of actions to be conducted during a period, and the edge-coloring algorithm implements
the desired orchestration.

If we assume that a processor caneither sendor receive, it is easy to modify the linear program:
for each processor, write the constraint that the time spent sending plus the time spent receiving does
not exceed one time-unit. However, extracting independent communications (involving disjoint pro-
cessor pairs) amounts to edge-color an arbitrary graph. The problem becomes NP-hard, but efficient
polynomial approximation algorithms can be used [1]. However, for general graphs, we do not know
the counterpart of the edge coloring algorithm for bipartite weighted graphs [15, vol.A,chapter 20].

This is bad news, because the fact that the activity variables output by the linear program did lead
to a feasible periodic schedule, regardless of their ordering, was a key advantage of the steady-state
approach.

5.1.2 Multiport

We can also consider more powerful communication models, where an host, equipped with several
network card devices, can be involved in several receptions or emissions simultaneously. In the case
where each network card on a given host is used in only one direction (sending or receiving) and
is linked to a set of fixed network cards on neighbor hosts, then a linear program can be derived
(constraints are written for each network card), and the schedule can be reconstructed (each node in
the bipartite graph corresponds to a network card).

In the case where a network card can be used for both sending and receiving operations, then the
problem is NP-hard (see above). In the case where a network card is dedicated either to send or to

Steady-State Scheduling on Heterogeneous Clusters: Why and How? 7

receive data, but can be involved in a communication with any neighbor host, then the complexity of
the schedule reconstruction is still open.

5.2 Start-up costs

Linear programs are naturally suited to linear costs, so introducing computation or communication
start-ups complicates the story. However, in many situations, the difficulty can be circumvented as
follows:
1. Compute a lower bound of the total execution time forn tasksTopt(n)
2. Use the solution of the linear program and the reconstruction of the solution to design a periodic
schedule whose time period is large (of order

√
Topt(n)). A (small) fraction of each period will be

wasted due to start-up costs.
3. Design initialization and clean up phases (used before and after the periodic schedule).
4. Prove the asymptotic optimality of the resulting schedule.

The rationale behind the strategy is simple: (i) the length of the period should increase to+∞
together with the total amount of work, so that start-up overheads end up by being negligible; (ii)
the work performed during a period should tend to a negligible fraction of the total amount of work,
because a fixed number of periods are “wasted” during the initialization and clean-up phases.

The first examples of this strategy were given in [9]. It was successfully applied to divisible load
computations in [8]. Let us detail the different phases for master slave tasking when the communica-
tion of nij tasks fromPi to Pj now takesCij + nijcij time-steps, whereCij is the start-up cost.
1. Clearly, the platform with start up costs is less powerful than the platform without start-up costs, so
thatTopt(n) � n

ntask(G) .
2. Consider the solution obtained after the reconstruction (without start up costs) and letT denote its
period. The idea is to group the communications ofm consecutive periods into a new period, so as
to diminish the influence of start-up costs. We slightly increase the new periodmT in order to take
start-up costs into account. Since there are at most|E| communication rounds per period, the overall
cost due to start-ups can be bounded byC|E|, whereC = maxCij . Thus, during each period of
durationmT + C|E|, exactlymTntask(G) are processed.
3. The initialization phase consists in sending (sequentially) to each processor the number of tasks it
will both compute and send during the first time period. The duration of this initialization phase can
be bounded byA1m, whereA1 only depends on the platform (and not onn). The clean-up phase
consists in processing “in place” the tasks that have not been processed yet after the first� n

mTntask(G)�
periods. SincemTntask(G) are processed during each period, at mostmTntask(G) have not been
processed yet, so that the duration of the clean up phase can be bounded byA2m, whereA2 only
depends on the platform (and not onn).
4. The overall timeT (n) of initialization, steady state and clean up phases is therefore bounded by

T (n) � (A1 + A2)m +
n

ntask(G)
+

C|E|n
mTntask(G)

,

so that if we setm = 	
√

n
ntask(G)
, then

T (n)
Topt(n)

� 1 +

√
ntask(G)√

n
(A1 + A2 +

C|E|
T

) + O(
1
n

),

thereby achieving the proof of asymptotic optimality whenn becomes arbitrarily large.

Steady-State Scheduling on Heterogeneous Clusters: Why and How? 8

5.3 Platform model

The target architectural platform model presented in section2 takes into account the most important
features of actual grid platforms: heterogeneity, link contention, 1-port constraints, overlapping capa-
bilities. We consider it as a good compromise between simplicity (necessary in order to build efficient
algorithms) and realism (necessary to build useful algorithms). Nevertheless, the actual topology of
a large scale meta-computing platform is usually not known. On one hand, as proposed in [10], we
can execute pings between each pair of participating hosts in order to determine the latency and band-
width between each pair of hosts. This leads to a complete graph where contention are not taken into
account. On the other hand, according to Paxson [14], it is very difficult to determine the paths fol-
lowed by the packets on wide-area networks, and it is almost impossible to deduce the communication
performance and the interaction of one data stream on another.

Fortunately, we only need a macroscopic view of the network, showing that some link is shared
between some routes, without determining the actual physical topology. Recently, several tools have
been designed in order to obtain such a macroscopic view. ENV [16] has been especially designed
for master slave tasking, since it provides the view of the platform as seen from the master (i.e. a tree
showing shared links). AlNeM [13] provides a platform model which is closer to the model presented
in section2. Both tools perform simultaneous communications between several host pairs in order
to determine whether some links are shared on the route between these pairs. The main limitation of
both tools is that the search of the topology of a real large scale platform requires a huge amount of
time, hence limiting their use to stable platforms.

5.4 Approximation for fixed periods

In the case where the period obtained from the linear program is very large, we may want to restrict
to fixed-length periods. The price to pay is that the throughput may be lowered. Again, it is possible
to derive fixed-period schedules whose throughputs tend to the optimum as the length of the period
increases. See [4] for further details.

5.5 Dynamic versions

A key feature of steady-state scheduling is that it is adaptive. Because the work is divided into periods,
it is possible to dynamically adjust to changes in processor speeds or link bandwidths.

Indeed, a classical approach to respond to change in resources capabilities is borrowed from the
simple paradigm“use the past to predict the future”, i.e. to use the currently observed speed of
computation of each machine and of each communication link to decide for the next distribution of
work. There are too many parameters to accurately predict the actual speed of a machine for a given
program, even assuming that the machine load will remain the same throughout the computation.
The situation is even worse for communication links, because of unpredictable contention problems.
When deploying an application on a platform, the idea is thus to divide the scheduling into phases.
During each phase, all the machine and network parameters are collected and histogrammed, using a
tool like NWS [18]. This information will then guide the scheduling decisions for the next phase.

This approach naturally fits with steady-state scheduling. A first solution is to recompute the solu-
tion of the linear program periodically, based upon the information acquired during the current period,
and to determine the activity variables for the new period accordingly. A second solution is more dy-
namic: each processor executes a load-balancing algorithm to choose among several allocations (for
instance, various weighted trees for the scatter problem). This technique has been used for scheduling
independent tasks on tree-shaped platforms [11].

Steady-State Scheduling on Heterogeneous Clusters: Why and How? 9

6 Conclusion

The use of steady-state scheduling techniques turned out to be very helpful to solve a variety of prob-
lems, which includes master-slave tasking, divisible load scheduling, and pipelining several types of
macro-communications. The list is far from being exhaustive, and we aim at enlarging it in the future.
More importantly, we hope to characterize, or at least better understand, which are the situations when
the bound output by the solution of the linear program is achievable.

We conclude by stating an open problem: what is the complexity of computing the optimal steady-
state for the problem of mapping collections of arbitrary task graphs (with an exponential number of
paths, such as the Laplace graph)? We conjecture that determining this optimal throughput is NP-hard.

References

[1] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi.
Complexity and Approximation. Springer, Berlin, Germany, 1999.

[2] C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert. Scheduling strategies
for master-slave tasking on heterogeneous processor platforms.IEEE Trans. Parallel Distributed
Systems, 15, 2004.

[3] C. Banino, O. Beaumont, A. Legrand, and Y. Robert. Scheduling strategies for master-slave
tasking on heterogeneous processor grids. InPARA’02: International Conference on Applied
Parallel Computing, LNCS 2367, pages 423–432. Springer Verlag, 2002.

[4] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. Optimal algorithms for the pipelined
scheduling of task graphs on heterogeneous systems. Technical Report RR-2003-29, LIP, ENS
Lyon, France, April 2003.

[5] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. Optimizing the steady-state throughput
of broadcasts on heterogeneous platforms heterogeneous platforms. Technical report, LIP, ENS
Lyon, France, June 2003.

[6] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. Scheduling strategies for mixed data and
task parallelism on heterogeneous clusters.Parallel Processing Letters, 13(2), 2003.

[7] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. Complexity results and heuristics for
pipelined multicast operations on heterogeneous platforms. Technical report, LIP, ENS Lyon,
France, January 2004.

[8] O. Beaumont, A. Legrand, and Y. Robert. Scheduling divisible workloads on heterogeneous
platforms.Parallel Computing, 29:1121–1152, 2003.

[9] D. Bertsimas and D. Gamarnik. Asymptotically optimal algorithm for job shop scheduling and
packet routing.Journal of Algorithms, 33(2):296–318, 1999.

[10] P.B. Bhat, C.S. Raghavendra, and V.K. Prasanna. Adaptive communication algorithms for dis-
tributed heterogeneous systems.Journal of Parallel and Distributed Computing, 59(2):252–279,
1999.

Steady-State Scheduling on Heterogeneous Clusters: Why and How? 10

[11] L. Carter, H. Casanova, J. Ferrante, and B. Kreaseck. Autonomous protocols for bandwidth-
centric scheduling of independent-task applications. InInternational Parallel and Distributed
Processing Symposium IPDPS’2003. IEEE Computer Society Press, 2003.

[12] A. Legrand, L. Marchal, and Y. Robert. Optimizing the steady-state throughput of scatter and
reduce operations on heterogeneous platforms. Technical Report RR-2003-33, LIP, ENS Lyon,
France, June 2003.

[13] A. Legrand, F. Mazoit, and M. Quinson. An application-level network mapper. Research Report
RR-2003-09, LIP, ENS Lyon, France, feb 2003.

[14] V. Paxson.Measurements and Analysis of End-to-End Internet Dynamics. PhD thesis, University
of California, Berkeley, 1997.

[15] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24 ofAlgorithms
and Combinatorics. Springer-Verlag, 2003.

[16] G. Shao.Adaptive scheduling of master/worker applications on distributed computational re-
sources. PhD thesis, Dept. of Computer Science, University Of California at San Diego, 2001.

[17] B. A. Shirazi, A. R. Hurson, and K. M. Kavi.Scheduling and load balancing in parallel and
distributed systems. IEEE Computer Science Press, 1995.

[18] R. Wolski, N.T. Spring, and J. Hayes. The network weather service: a distributed resource
performance forecasting service for metacomputing.Future Generation Computer Systems,
15(10):757–768, 1999.

Steady-State Scheduling on Heterogeneous Clusters: Why and How? 11

P0

P1 P2

P3

P4P5 P6

1
2

1
2

1
2

1
2

1
2

1
2

(a) Number of messages transferred through each
edge and targetingP5

P0

P1 P2

P3

P4P5 P6

1
2

1
2

1
2

1
2

1
2

1
2

(b) Number of messages transferred through each
edge and targetingP6

P0

P1 P2

P3

P4P5 P6

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

(c) Total number of messages going through each
edge

P0

P1 P2

P3

P4P5 P6

a

a

a

a

ab

b

b

b

b

(d) Conflict between two distinct messages through
edgeP3 → P4

Figure 3: Multicast: Problems while reconstructing a schedule

	1 Introduction
	2 Platform model
	3 Linear programs
	3.1 Master-slave tasking
	3.2 Pipelined scatter operations
	3.3 Pipelined multicast operations

	4 Reconstructing the schedule
	4.1 During a period in steady-state mode
	4.2 Asymptotic optimality
	4.3 Optimal throughput for the multicast problem

	5 Limitations
	5.1 Communication model
	5.1.1 Send OR Receive
	5.1.2 Multiport

	5.2 Start-up costs
	5.3 Platform model
	5.4 Approximation for fixed periods
	5.5 Dynamic versions

	6 Conclusion

