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Abstract
The monitoring infrastructure constitutes a key component of any Grid
middleware. The Network Weather Service (NWS) is the most com-
monly used tool to fulfill this need. Unfortunately, users have to deploy
the NWS manually, which can be very tedious and error-prone. This
paper introduces a method based on the Effective Network View (ENV)
network mapper to automatically deploy of NWS using the deployment
on our lab’s LAN as lead.
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Résumé
La bonne utilisation d’une plate-forme de metacomputing dépend de
façon cruciale de l’efficacité de son infrastructure de surveillance. Le
Network Weather Service (NWS) est l’outil le plus couramment uti-
lisé pour remplir cette fonction. Malheureusement, le déploiement de cet
outil est laissé à la charge des utilisateurs. Ce déploiement manuel est
donc très délicat et relativement pénible. Ce rapport propose une mé-
thode utilisant une vue effective du réseau, donnée par le logiciel ENV,
pour déployer automatiquement NWS. Le résultat de cette expérience
sur le réseau de notre laboratoire est utilisé pour valider cette méthode.

Mots-clés: Métrologie, topologie de niveau applicatif
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1 Introduction

Metacomputing consists in federating heterogeneous and distributed computer resources in
order to aggregate their computational and storage capacities. The platform resulting of the
sharing of local resources between several organizations is often called Grid [8]. In contrary
to the preceding parallel machines, the Grid presents dynamic, heterogeneous and even non-
dedicated capacities. Gathering accurate, recent and relevant informations about it is then a
very challenging issue, which yet has to be addressed before developing schedulers.

Nowadays, the Network Weather Service (NWS) constitutes a de facto standard in the
Grid community and is used by major Grid Problem Solving Environments (PSEs), such as
Globus [9], DIET [3], NetSolve [4] or NINF [15] to gather information about the current
state of the platform, as well as about its future evolutions.

Unfortunately, the NWS does not provide any automatic way to deploy the tools on
the platform, and this has to be done manually. This task is very tedious and its proper
achievement requires accurate knowledges both about the current network on which the tools
are to be deployed and about the NWS internals.

This deployment process can be decomposed in two phases: First, one have to decide
what kind of organization the NWS processes should follow in a deployment planning phase.
Then, this deployment should actually be applied on the platform. The first phase can in turn
be decomposed in two steps since one first have to gather the underlying network topology
before computing a deployment plan.

This paper presents a simple method using the Effective Network View (ENV) network
mapper [21] to collect the needed information and automatically compute a deployment plan
which can then be applied using standard tools. The rest of this article is organized as follows:
section 2 presents the NWS, focusing on how network measurements are conducted and on
the deployment requirements. After a rapid network mapping state of the art in section 3,
section 4 details the ENV tool and its methodology. Before a conclusion, section 5 discusses
an algorithm to deploy NWS from ENV results and presents some results obtained on the
LAN of our laboratory.

2 Network Weather Service

The NWS (Network Weather Service) [22] is leaded by Prof. Wolski at the University of Cali-
fornia, Santa-Barbara. It constitutes a distributed system of sensors and statistical forecasters
allowing to centralize the current state of the platform and predict its future evolutions. It
is possible to monitor the latency and throughput of any TCP/IP link, the CPU load, the
available free memory or the free disk space on any host. Concerning CPU load, NWS can
not only reports the current load, but also the time-slice a new process would get on startup.

2.1 Overview of the NWS processes organization

The lateral figure gives an overview of the NWS system. It is composed of four kinds of
servers:
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Sensors (S) conduct the measurements;

Memory servers (M) store the results on disk for fur-
ther use;

Forecasters (F) deduce the future evolutions of mea-
surement time series using statistics;

The name server (NS) keeps a directory of the sys-
tem, allowing each part to localize other existing
servers.
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In steady state, NWS conducts periodical measurements even if no request is submitted.
The results are then stored in memory servers for subsequent use. The communications arising
during this state are marked by ∆ on the figure.

When a client submits a request to the forecaster (Step 1), the latter contacts the name
server to localize the memory server in charge of the data corresponding to the request (Step
2). In the example presented on the Figure, it happens to be the memory server located on
Host 3. The forecaster then contact the memory to get the historic of previous measurements
(Step 3). It then apply statistical methods to predict the next value of the sequence and send
it back to the client (Step 4).

2.2 Link monitoring

NWS can report the network in term of bandwidth, latency and connection time. For that,
it conducts three kinds of experiments:

• The latency is approximated by very small message round-trip time: a 4 byte TCP
socket transfer is timed from one host to another one and back (TCP connection already
established).

• The bandwidth is computed by large-message throughput: 64 Kb messages are sent and
timed (based on acknowledgment time received from destination sensor, TCP connection
already established).

• The TCP socket connect-disconnect time is measured directly.

Given a set of n computers, there is n × (n − 1) links to test since the network is not
symmetric in the general case [18].

2.3 Characterizing the NWS deployment quality

The first constraint on the NWS deployment is due to the fact that the network measurements
must not collide with each other. If two measurements were conducted on a given network
link at the same time, both of them could be influenced by the bandwidth consumption of
the other one, and may therefore report an availability of about the half of the real value.

NWS handles this problem by introducing concept of measurement clique presented in
[23]. They form computer sets on which network measurements are done in a mutually
exclusive manner using a token-ring based algorithm: only the host having the token at a
given time is granted to launch network measurements on the links involved in that clique.
Mechanisms to handle network errors and leader elections are also introduced.
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The token-ring algorithms are known to be not very scalable, and the frequency of the
measurements obviously decreases when the number of hosts in a given clique increases. The
cliques must then be split in sub-cliques to ensure a sufficient network measurement frequency.
These splits have to be done wisely to ensure that the tests in a given clique will never collide
on any link with tests from any other cliques.

Naturally, the clients applications are potentially interested in any end-to-end connexion.
If there is no direct measurement between two given hosts, the system has to be able to
combine the conducted experiments results to deduce the missing values.

For example, given three machines A, B and C, if the machine B is the gateway connecting
A and C, it is sufficient to conduct only the experiments on (AB) and on (BC). Latency
between A and C can then be roughly estimated by adding the latencies measured on AB
and on BC. The minimum of the bandwidths on AB and BC can be used to estimate the one
on AC. These values may be less accurate than real tests, but are still interesting when no
direct test result is available.

In summary, the NWS deployment has to satisfy four constraints:

Do not let experiments collide. All hosts connected by a given physical network must be
in the same clique to ensure that the tests conducted on that link are done in a mutually
exclusive manner.

Scalability concerns. All cliques should be as small as possible so that measurement fre-
quency keeps high enough to ensure a certain reactivity level to the system.

Completeness. Given two machines, if no direct measurement is conducted on their con-
nectivity, the system must be able to aggregate the conducted experiments to estimate
the network characteristics of their interconnection.

Reduce intrusiveness. In order to reduce the system intrusiveness to its minimum, only
the needed tests have to be conducted. For example, since the bandwidth is shared by
all hosts connected to a hub or a bus, all hosts pair will have the same connectivity. It
is then sufficient to measure it for a pair of hosts and use the result for all possible host
pair.

The knowledge about the network topology is clearly fundamental to achieve a good NWS
deployment, and one especially needs to be able to determine which inter-host connexion
interfere on which other because they share a physical link. We now study how to gather this
information automatically.

3 Network mapping tools

Application
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Physical
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Routers
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The OSI Network Model pictured on the right figure presents seven layers
of abstractions, each of them providing a different view of the network.
When considering the network topology, one have therefore to specify
the layer considered since it will have a great impact both on the way
to discover it and on its possible uses. Most commonly, the topology of
either layer 2 and layer 3 are used.

Layer 2 is the Medium Access Control or Datalink layer, correspond-
ing to the level of the Ethernet protocol. Layer 3 is the Network one
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and involves protocols such as the Internet Protocol (IP). The layer 2 is
therefore closer to the physical links than the layer 3, and may be used
to get useful information about routers and switches that are not directly available from layer
3. On the other hand, layer 3 is closer to the user-level applications view of the network.

3.1 SNMP and BGP

The layer 2 of the OSI model is the one were LAN are defined and configured. It is then
possible to ask directly to the network components about their configuration as expressed
by network administrators using for example the the Simple Network Management Protocol
(SNMP [1]). Albeit, some old or dumb switch and routers do not answer to SNMP requests
while other equipments requires the use of proprietary tools and protocols such as the Cisco’s
Discovery Protocol1 or Bay Networks’ Optivity Enterprise2.

To complete this view about WAN, it is possible to use the Border Gateway Protocol
(BGP [19]), which is used to exchange routing informations between the autonomous systems
composing Internet.

The Remos [6] tool uses the SNMP protocol to construct the local network topology,
plus some simple benchmarks to gather informations about WAN [14]. It is then able to
reconstruct the part of the network where dumb routers did not answer to the requests and
get a complete topology.

The advantage of this approach is that such tools directly access to the network config-
uration as expressed by the network administrator. They are therefore very quick and not
intrusive. On the other hand, the use of those protocols is almost always restricted to autho-
rized users. This is due to two major reasons: security, since it is possible to conduct Deny
Of Service attacks by flooding the network of requests, and privacy, since ISP generally do
not like to publicly expose the possible bottlenecks of their networks.

As matter of fact, this limitation is simply not acceptable in a metacomputing context.
Since Grid platforms traditionally involve several well established and large organizations such
as universities, obtaining the grant to do unusual things like using level 2 protocols can be
very time consuming, and even reveal impossible due to human factors.

But on the other hand, any solution based on level 3 and above are more complicated to
design and use because for example of the VLAN [13] technology. This allows to present a
logical view of the network to the higher layers which is different from the physical reality.
This way, the network administrator can split physical network into several logical ones. This
is for example used in our lab to separate for security reasons in several networks the machines
administrated only by the staff from the laptops and such on which the users may become
root. Extra provisions are needed to take such things into account when mapping the network.

3.2 Hop-based tools

The layer 3 of the OSI model is the one where the inter-network connectivity is made possible.
To avoid infinite loops, all packets are given on creation a given Time To Live (TTL). This
value is decreased by each router transmitting the packet, and when it becomes null, the
packet is destroyed and an error is signified to the emitter of the offending packet.

1 http://www.cisco.com .
2 http://www.baynetworks.com .

http://www.cisco.com
http://www.baynetworks.com
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This feature is used the classical traceroute tool (and by projects developing wrappers to
traceroute such as TopoMon [5] or Lumeta [2]). Since most routers indicate their address in
the error message generated when the TTL becomes zero, traceroute can discover all hops
on a given network path by sending several packets with increasing TTLs.

This approach suffers of several drawbacks: First, since routers can return different ad-
dresses, combining the paths can be non-trivial. Then traceroute gives no information on
how concurrent transfers interact when sharing a given link, neither even the available band-
width. Indeed, traceroute does not reports the relevant information for us: It focuses on the
path followed in the network by the packets while we are interested in a more macroscopic
view indicating the effects of this information at an application level .

pathchar is the solution proposed by Jacobson (the traceroute’s author) to gather not
only the network organization, but also the capacity of each link. As traceroute, it works
by sending packets with different TTL, but let in addition change the size of these packets.
Analyzing the time before the error packet is received, it infers the latency and bandwidth of
each link in the path, the distribution of queue times, and the packet loss probability [7].

The first problem with pathchar is that it needs to assume that the probes it sends will
have negligible queuing delays on all encountered link. Since the probability of this event is
rather low on loaded networks, this tool needs to conduct a lot of experiments to be sure that
one of them will follow this assumption. In current implementations, more than 1500 probes
are usually used, so tests can last for hours on highly loaded routes constituted of many hops.
Moreover, it only gives the capacity of encountered links and not how their bandwidth will
be shared between several competing data streams.

Finally, in order to forge the packets needed for its experiments, pathchar needs to be
given the super-user privileges on the machines where it runs, which is clearly unacceptable
in Grid context.

3.3 Ping-based tools

The classical ping tool reports about the round trip time between two hosts. Projects like
IDMaps [10] or Global Network Positioning [16] use this method to compute a network topol-
ogy by clustering the network using this distance metric. This is clearly not sufficient for
our needs. We need more information on links, such as their bandwidth (which IDMaps
may sometimes provide) and how they would be shared between several streams using them
concurrently.

3.4 Passive measurements

It is also possible to conduct passive measurements at level 3 to avoid injecting extra traffic
into the network. For example, the Shared Passive Network Performance Discovery [20] tool
determines the available bandwidth and packet loss probability on routes aimed to a given
server by implementing a modified network stack to make live statistics. This approach is
also not well adapted to our context since the super-user privileges are needed to deploy a
modified network stack.

Another solution to conduct level 3 passive measurements is to instrument the applications
to extract the statistics of their network usage. But this only provides data specific to the
past usage. It is for example of little use when trying to guess the network availabilities on a
previously unused route.
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Moreover all these methods provide no direct information about the network topology,
and mapping the network only from the partial information provided by passive level 3 mea-
surements seems very difficult.

3.5 Summary

We cannot get the information from where it was configured by network administrators (using
SNMP or BGP) because it requires special privileges which cannot always be obtained on
a Grid platform. On the other hand, it means that we cannot detect directly the use of
technologies like VLAN, commonly used by network administrators to present a logical view
different of the physical reality, and special provisions are needed to take this into account.

Existing layer 3 methods are not sufficient for us since they either fail to report which part
of the network path are limiting (i.e. the ones on which a bandwidth shortage is possible) or
need super-user privileges to be used (like pathchar does).

That is why we decided to use ENV, presented in next section, because it captures a view
of the network well adapted to our needs with no need of special privileges to run.

4 Effective Network View

The Effective Network View (ENV [21]) project was developed by Gary Shao at University of
California (San Diego). ENV is primarily designed for the master/slave paradigm and can dis-
cover the effective topology of a network from the point of view of a given host. Data acquired
are then dependent from the master’s choice, as explained in [21]. Those data are stored in
a specialized form of XML called GridML, which constitutes a flexible format for describ-
ing the physical and observable characteristics of resources and networks constituting a Grid
computing. The relevant DTD and schema file can be found at http://apples.ucsd.edu/env/.

The main advantage of ENV is that it creates an effective profile of network configuration
based only on user-level observations and thus allows to get informations on layer 2 and 3
routers, without using low-level tools or protocols.

4.1 Result of an execution

Figure 1 presents the results of ENV running on the ENS-Lyon network as explained in next
section. Figure 1(a) shows the physical network topology while Figure 1(b) is the result of
an ENV run. The presented physical topology is simplified and asymmetric routes as well as
used VLANs are not pictured. The pictured effective network view is the one obtained when
choosing the-doors as master.

We can see that some routers are suppressed from the effective network view. In fact, the
remaining ones where needed because of route asymmetry. Besides, ENV reports the fact
that popc0, myri0 and sci0 are on a 100 Mbps hub, whereas links to reach popc0 and myri0
from the-doors must go trough a bottleneck at 10 Mbps.

4.2 Example of execution

We now detail how ENV collects the data, taking the mapping of the ENS-Lyon network as
example. This process can be split in two parts: the first is independent from the choice of
the master, while the other is not.

http://apples.ucsd.edu/env/
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Figure 1: Topology of the test network.
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4.2.1 Master-independant data collection

This phase is itself split in 3 parts.

4.2.1.1 Lookup
During this phase, the core GridML is created, using provided hostnames. For example, on
canaria and moby we would have the following GridML :

<?xml version="1.0"?>

<GRID>

<SITE domain="ens-lyon.fr">

<LABEL name="ENS-LYON-FR" />

<MACHINE>

<LABEL ip="140.77.13.229" name="canaria.ens-lyon.fr">

<ALIAS name="canaria" />

</LABEL>

</MACHINE>

<MACHINE>

<LABEL ip="140.77.13.82" name="moby.cri2000.ens-lyon.fr">

<ALIAS name="moby" />

</LABEL>

</MACHINE>

</SITE>

</GRID>

The GRID is divided in SITE nodes, for which each machine is represented by a MACHINE
node.

4.2.1.2 Extra information gathering
Information on hosts such as Operating System or processor type are acquired. It is possible
to extend ENV to capture any information about hosts relevant to the planned use.

<MACHINE>

<LABEL ip="140.77.13.92" name="pikaki.cri2000.ens-lyon.fr">

<ALIAS name="pikaki" />

</LABEL>

<PROPERTY name="CPU_clock" value="198.951" units="MHz" />

<PROPERTY name="CPU_model" value="Pentium Pro" />

<PROPERTY name="CPU_num" value="1" />

<PROPERTY name="Machine_type" value="i686" />

<PROPERTY name="OS_version" value="Linux 2.4.19-pre7-act" />

<PROPERTY name="kflops" value="17607" />

</MACHINE>

4.2.1.3 Structural topology
This constitutes a first approximation of the topology builded with traceroute, and used to
guide the active tests of latter phases. Each host involved in the mapping reports the path
used to get out of the Grid by targeting a traceroute to a well known external destination.
The part within the mapped network is used to build a tree such as the one presented in
Figure 2. Hosts using the same route to get out of the studied network are clustered together
as leaves on the same branch.
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Figure 2: Structural topology: the initial tree in ENV.

In our example, a test on canaria, moby, the-doors, myri, popc and sci gives the following
GridML :

<NETWORK type="Structural">

<LABEL ip="192.168.254.1" name="192.168.254.1" />

<NETWORK>

<LABEL ip="140.77.13.1" name="140.77.13.1" />

<MACHINE name="canaria.ens-lyon.fr" />

<MACHINE name="moby.cri2000.ens-lyon.fr" />

<MACHINE name="the-doors.ens-lyon.fr" />

</NETWORK>

<NETWORK>

<LABEL ip="140.77.161.1" name="routeur-backbone" />

<NETWORK>

<LABEL ip="140.77.12.1" name="routlhpc" />

<MACHINE name="myri.ens-lyon.fr" />

<MACHINE name="popc.ens-lyon.fr" />

<MACHINE name="sci.ens-lyon.fr" />

</NETWORK>

</NETWORK>

</NETWORK>

This tree is not sufficient, because it does not show for example which links are shared
and which are switched. For this, a few more tests will be done, that depend on the master’s
viewpoint.

4.2.2 Effective topology: Master-dependent data collection

The second part of the data collection depends on the chosen master. These measurements can
be seen as successive refinements of the structural view of the network. This allow to generate
a new tree containing the so-called ENV networks, which contain the critical information in
our context about the layer 2 topology.

Most of these experiments use thresholds to interpret the measurement results. The value
of this thresholds may have a great impact on the mapping results, and where determined
experimentally and empirically by the ENV authors.

4.2.2.1 Host to host bandwidth
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the-doors any host

This experiment splits the clusters to group machines having a compara-
ble connexion to the master. The bandwidth between the master M and
any host A is measured separately. Then, clusters previously made are divided into groups
with similar bandwidth. If the bandwidth ratio between two hosts exceeds the threshold of
3, their cluster is split to separate them.

4.2.2.2 Pairwise host bandwidth

the-doors

clusterThis experiment splits the clusters based on how the connexion
between their members and the master (M) is shared. For
that, for each pair of machines A and B in each cluster, the
bandwidths of MA and MB are tested when the transfers occur
concurrently.

This measurement is then compared to the band-
width as measured in the previous step. If the ratio
Bandwidth(MA)/Bandwidthpaired(MB)(MA) is below a threshold of 1.25, A is declared in-
dependent of B and the cluster is split to separate those hosts.

4.2.2.3 Internal host bandwidth
clusterFor each cluster, bandwidth is measured between any pair of

machine, within this cluster. This allows to set the local band-
width parameters for a given cluster. This may be useful for
clusters where local bandwidth is different from bandwidth
achieved between the cluster and the master. For example in
ENS-Lyon, the route from the-doors to the popc cluster goes
trough a 10 Mbps bottleneck, whereas popc is on a local 100Mbps hub.

4.2.2.4 Jammed bandwidth

the-doors

clusterFor each cluster, the bandwidth to the master is measured
while a transfer between two other hosts of that cluster oc-
curs. This measure is repeated 5 times, and the average of the
ratio Bandwidth/Bandwidthjammed is computed.

If the average is below the threshold of 0.7, the cluster is
reported to be on a shared link. If the average is above the
threshold of 0.9, the cluster is reported to be on a switched link. If the average is between
those two thresholds, data gathering about this cluster stops since the values are not significant
enough.

Here is for example the description of a switched network created after this test (the sci
cluster):

...

<NETWORK type="ENV_Switched">

<LABEL name="sci0" />

<PROPERTY name="ENV_base_BW" value="32.65" units="Mbps" />

<PROPERTY name="ENV_base_local_BW" value="32.29" units="Mbps" />

<MACHINE name="sci1.popc.private" />

<MACHINE name="sci2.popc.private" />

<MACHINE name="sci3.popc.private" />

<MACHINE name="sci4.popc.private" />

<MACHINE name="sci5.popc.private" />

<MACHINE name="sci6.popc.private" />
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</NETWORK>

...

All these refinements allow us to determine whether structural networks are switched or
shared based upon bandwidths observed between hosts. This information has a great impact
on the NWS deployment, as explained in section 5.

4.3 Known ENV issues

We describe in this section some problems that we encountered with ENV, and solutions that
we propose when applicable.

Bandwidth waste The ENV tests are still introducing a significant bandwidth consump-
tion. It cannot be prevented since active probes are needed to infer layer 2 informations
without relying on specific tools which may not be available. The point is that a given plat-
form needs to be mapped with ENV only once, and the results can then be shared between
different people. For example, administrators could publish the mapping of their network as
reported by ENV, so that any user can use it without redoing the mapping.

Firewalls Since firewalls prevent communications, it is naturally not possible to do all the
needed tests when some machines are firewalled. We solved this issue by running ENV
on each side of the firewall, and merging the results afterward. For example, the ENS-Lyon
network is split in two sub-domains as depicted on Figure 1(a). The hosts sci1, sci2, . . . cannot
communicate with the outside world, but they are connected to sci0, popc0 and myri0, which
can act as gateways. We therefore launched ENV on both sides of popc0 separately.

The following merge is quite simple: a new GridML structure containing both sites (here
ens-lyon.fr and popc.private) is created, and the aliases of hosts belonging to both sites are
provided. This operation is often as simple as a file concatenation. The only information the
user has to provide is the several aliases of the gateways machines depending on the considered
site. In our example, the aliases were:

popc.ens-lyon.fr popc0.popc.private

myri.ens-lyon.fr myri0.popc.private

sci.ens-lyon.fr sci0.popc.private

Which leads to the following GridML :

<GRID>

<LABEL name="Grid1" />

<SITE domain="ens-lyon.fr">

<LABEL name="ENS-LYON-FR" />

<MACHINE>

<LABEL ip="140.77.12.52" name="myri.ens-lyon.fr">

<ALIAS name="myri" />

<ALIAS name="myri0.popc.private" />

</LABEL>

...

</MACHINE>

...

</SITE>
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<SITE domain="popc.private">

<LABEL name="POPC-PRIVATE" />

<MACHINE>

<LABEL ip="192.168.81.50" name="myri0.popc.private">

<ALIAS name="myri0" />

<ALIAS name="myri.ens-lyon.fr" />

</LABEL>

...

</MACHINE>

...

</SITE>

</GRID>

Machines without hostname When traceroute are performed in the first stage, the
hosts are said to be in the same domain (and thus, considered for the experiment) based
on their full qualified domain name. But some hosts have no configured name and their IP
appear in the traceroute result. Since it was the case in our network, we modified ENV to
simply use IP address class [11] if IP resolution fails.

We also modified ENV to support non-routable IPs. Those addresses are routables only
from the local network and thus are always part of the local domain. They should therefore
be kept in the first phase of the mapping. For example the root of the structural topology
depicted on Figure 2 is a non-routable IP, but dropping this information may badly impact
the mapping quality.

Asymmetric routes The physical network in ENS-Lyon is more complex than Figure 1(a)
depicts. Indeed the route between the-doors and popc goes trough a 10 Mbps link, whereas
in the other direction it is on 100 Mbps links only. According to [17], this situation, even if
quite queerly, is rather common on Internet. Since ENV bandwidth tests are conducted in
only one way, the system cannot detect such problems. Solving this would imply almost a
complete rewrite of ENV tests and is still to do.

Likewise, networks are usually packet driven and we cannot guarantee that the path
between two given hosts always follows the same route. However, since ENV is mainly used
to map local networks, we assume that this is the case for the duration of the experiment, or
at least, that global measurements are not too sensitive to this variation.

Dropped traceroute According to [12], many modern routers no longer respond to trace-
route packets. This may not be a great problem for ENV, because clusters are still split based
on bandwidth measures made in preceding tests. So, structural networks may be affected by
this, but not the final result. Nevertheless, this would make measures longer, given that for
clusters discovered in first stage, all possible pairs of hosts are tested. Bigger clusters means
more measures in the second stage, hence more execution time.

Implementation portability ENV is implemented in the Python programming language,
which seems at the first glance to be a good portability compromise since the same code should
work on all platform with no modification.

The experimental reality is rather different, and running ENV on a rather homogeneous
set of machines (all machines were i386 Linux boxes) revealed to be a challenging problem.
We had of course to install Python on all machines: this programming language may be
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rapidly spreading, it is not yet installed on computational servers by default. Moreover,
ENV also requires extra libraries which in turn requires extra precaution to compile their
Python bindings to become accessible from this programming language..

Optimists will consider that this issue should not last for long as Python is spreading
more and more quickly. Pessimists will object that Python is also rapidly evolving and that
the backward compatibility is not provided across the versions, which will cause even further
problems in the future. Moreover, a lot of scripting languages may constitute a portability
layer, but determining which one will become dominant in the future and which one will
survive in the next few years is still very difficult. Another solution would be to rewrite ENV
in C or equivalent, but the resulting program would be more complex and harder maintain
since Python is a high level programming language.

Reliability and accuracy Even if ENV provides some bandwidth estimations, their ac-
curacy is not crucial in our context since NWS is to be deployed, and provides much more
accurate and up-to-date measurements. Qualitative and topological information about the
network are therefore much more important than quantitative one.

The first problem is the possible platform evolution: many inter-dependent tests are to be
run and they last some time to complete. The results given by ENV may be corrupted if the
network load evolves greatly (increasing or decreasing) between tests. There is no solution
yet to this problem, except rapidity: the mapping of our platform only last a few minutes, so
we assume that the environment is stable enough to provide viable results in those conditions.
For bigger platforms. it would be possible to map separately the different parts of the network
and then merge the results together, just like we did to map both sides of firewalls.

Moreover, experimental thresholds may be problematic, because they may be specific to
platform characteristics like the media type. They may for example be adapted to LAN,
but not to Terabit links. Besides, determining if the thresholds are adapted to the current
platform is very difficult.

Link A

Cluster 1

Link B

Cluster 2

Link C

Platform

Master

Master/Slave paradigm ENV was designed for mas-
ter/slave computing, and this may lead to important informa-
tion loss during the mapping. For example, the lateral figure
depicts a Master and two clusters 1 and 2. While the links
A and B (between the master and each cluster) are discovered
by ENV, the link C (between the two clusters) is not because
ENV does not make “inter-cluster” tests. This information loss
seems to be the price to pay for rapidity, since gathering all
information about the network may require a very long time to
complete. Indeed, using exactly the same methodology as ENV
for a whole mapping would require to first drive n∗(n−1) band-
width tests between each couple of hosts {a; b}. Then, it would
require for each pair of link {a; b} and {c; d} to conduct experiments to determine whether
those network path are dependent or not, i.e. whether a transmission on {a; b} impacts the
bandwidth of {c; d} or not. This naive algorithm would not scale at all because of the band-
width and time consumed. Considering that collecting information about two given links
lasts half a minute (which is reasonable since the network needs to stabilize between each
experiments), the whole process would last about 50 days for 20 hosts. That is why ENV
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does not try to completely map the network, but only focuses on a view of the network from
a given point of view.

5 Deploying the NWS using ENV

Most common Grid testbeds are constituted of several organizations inter-connected by a wide
area network, each of them sharing local resources (like clusters) interconnected by local area
network with the others. The resulting platform is a WAN constellation of LAN resources.
The most natural solution to satisfy all constraints is then to set up a hierarchical monitoring
infrastructure, where intra-site connectivity is tested separately from the inter-site one. If
needed, this hierarchy can contain more than two levels, and intra-cluster connectivity would
be measured separately from the inter-cluster one.

5.1 Deployment planning

This section presents a simple algorithm to plan the NWS deployment using the data gathered
by ENV. For each network or subnetwork discovered by ENV, our deployment plan contains
at least two cliques:

• If the network is shared, its hosts are supposed to be on the same physical link, so the
latency and bandwidth of one couple of hosts is representative for any possible couple.
The intra-network connectivity is then measured by a clique containing two arbitrary
chosen hosts.

Note that even if this is sufficient to gather the needed information, this method reveals a
NWS shortcoming: it is currently not possible to inform the system that the connexion
between two hosts (AB) is representative of the connexion between two other hosts
(CD), and the user has to keep track of this to ask NWS about (AB) when he wants
to retrieve the characteristics of (CD).

• If the network is switched, the network characteristics between each host pair are inde-
pendents and could be measured separately, but each host must be involved in at most
one measurement at a given time. That is why we deploy a NWS clique containing all
the hosts to make sure that only one measurement will occur at the same time on the
given group of hosts.

Note that using a clique is a bit too restrictive. On a switched network, the tests AB
and CD would not collide if they involve different hosts, i.e. if {AB} ∩ {CD} = ∅.
On the other hand, the only drawback of allowing at most one test over the group at
the same time is that the frequency of a given test between two given hosts slightly
decrease.

The resulting deployment plan for the ENS-Lyon network is depicted on Figure 3. The
sci cluster is switched, so we pick all its machines to form a new clique, whereas the myri
cluster is shared, so we pick only two hosts for the local clique (myri1 and myri2 ). myri0
and popc0 were chosen to test the network characteristics on Hub 2 while moby and canaria
are used to test the Hub 1. The connection between canaria and popc0 is used to test the
connexion between these hubs.
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moby canaria routlhpc the−doors

myri0 popc0 sci0

sci3

sci2

sci4

sci5
sci6

sci1
myri1

myri2

Hub 3 Switch

Hub 2

Hub 1

Figure 3: NWS deployment plan in ENS-Lyon.

5.2 Deployment plan application

Once the deployment plan has been computed, another challenging issue is to actually apply
it, and launch the several parts of NWS on the different hosts with the right options. In-
deed, the official version of NWS offers very few support to process management and global
configuration and one have to manually ssh to the right host, and pass manually the right
option on the command line of each NWS process.

To solve this issue, we realized a NWS manager program using a configuration file shared
across all involved hosts and applying the local parts on each hosts. The actual deployment
of NWS is then as easy as dispatching the configuration file to the hosts (using for example
NFS), and running the manager on each machines.

Our implementation is still fallible since it is implemented in the Perl scripting language
and thus needs a proper interpreter on all involved hosts.

6 Conclusion

The Network Weather Service constitutes a de facto standard of Grid platform monitoring
tool used by major Grid PSEs. Unfortunately, deploying this tool remains tedious since no
automatic tool is provided by default, and since the manual deployment requires accurate
knowledges both about the current network on which the tools are to be deployed and about
the NWS internals.

The main difficulty remains to accurately map the target network, and ENV seems to be
the better suited tool to our needs among the existing ones. In contrary to SNMP-based tools
or pathchar, it does not require any specific privileges to run. This is very important on a Grid
constituted of several organizations sharing their local resources but possibly not willing to
give extra privileges to the Grid users on their network. In contrary to simple solutions based
on ping or traceroute, ENV is also able to quantify how each detected network is shared among
several concurrent transfers, which reveals to be a crucial information to achieve a proper
NWS deployment. After characterizing the constraints a good NWS deployment should
satisfy, we proposed a simple algorithm to deduce a deployment plan from the information
provided by ENV.
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This paper relates an experiment to automatically deploy NWS on our lab’s network
using our methodology. This experiment was fortifying since it allowed us to identify several
shortcomings and needs both in the ENV and NWS tools.

The ENV tool only provides a tree view of the network to simplify and speed up the
mapping process. This is well adapted to a master/slave paradigm, but this is too limited
in the general case since it will overlook some transversal links between leafs of the tree.
ENV also considers that the routes are symmetric and only test them in one direction.
According to [17], this simplification is over-optimistic. Finally, ENV is implemented in
the Python scripting language and depends on specific extensions of this language. Since this
language uses a virtual machine to make the code portable, this seems to be a good portability
compromise, but the experimental reality proved to be rather different, and installing all ENV
dependencies on the target machines proved to be the mostly tedious task of the mapping.

The NWS does not provide process managing facilities, and we realized a prototype of
NWS manager implemented in Perl (and thus having the same portability issues than ENV)
which can locally apply the deployment plan to the current machine.

Another concern revealed by this experiment involves the NWS protocol used to make
sure that experiments will never collide on a given resource (which would lead to wrong
measurements). It makes sure that only one pair of hosts from a given group will conduct
an experiment at a given time. But on a switched network, more than one experiment may
be authorized if the hosts involved in each experiments are different. That is to say that a
possibility to lock hosts (and not networks) is still needed. Moreover, if the network is shared
(using an hub), testing the connexion capacities between each pair of host will be the same, and
testing one pair is enough. Unfortunately, NWS is then unable to substitute automatically the
characteristics of the tested pair when another pair is asked. More generally, NWS is unable
to aggregate measurement results when no direct experiment were conducted. However,
reducing the number of direct measurements is a must to ensure the system scalability.

References

[1] A. Bierman and K. Jones. Physical topology mib. RFC2922, september 2000.

[2] H. Burch, B. Cheswick, and A. Wool. Internet mapping project.
http://www.lumeta.com/mapping.html.

[3] Eddy Caron, Frédéric Desprez, Franck Petit, and Vincent Villain. A Hierarchical Re-
source Reservation Algorithm for Network Enabled Servers. In IPDPS’03. The 17th
International Parallel and Distributed Processing Symposium, Nice - France, April 2003.

[4] H. Casanova and J. Dongarra. Using Agent-Based Software for Scientific Computing in
the Netsolve System. Parallel Computing, 24:1777–1790, 1998.

[5] Mathijs den Burger, Thilo Kielmann, and Henri E. Bal. TOPOMON: A monitoring tool
for grid network topology. In International Conference on Computational Science (ICCS
2002), volume 2330, pages 558–567, Amsterdam, April 21-24 2002. LNCS.

[6] P. Dinda, T. Gross, R. Karrer, B Lowekamp, N. Miller, P. Steenkiste, and D. Sutherland.
The architecture of the remos system. In 10th IEEE International Symposium on High
Performance Distributed Computing (HPDC-10), August 2001.

http://www.lumeta.com/mapping.html


Automatic deployment of the Network Weather Service using the Effective Network View 17

[7] Allen B. Downey. Using pathchar to estimate internet link characteristics. In Mea-
surement and Modeling of Computer Systems, pages 222–223, 1999. Available at
http://citeseer.nj.nec.com/downey99using.html.

[8] I. Foster and C. Kesselman (Eds.). The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann, 1999.

[9] I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. Interna-
tional Journal of Supercomputing Applications, 11(2):115–128, 1997.

[10] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang. Idmaps: A global
internet host distance estimation service. IEEE/ACM Transactions on Networking, oct
2001. Available at http://citeseer.nj.nec.com/francis01idmaps.html.

[11] S. Kirkpatrick, M. K. Stahl, and M. Recker. RFC 1166: Internet numbers, July 1990.
Obsoletes RFC1117, RFC1062, RFC1020 Status: INFORMATIONAL. Available at
ftp://ftp.math.utah.edu/pub/rfc/rfc1166.txt.

[12] Bruce B. Lowekamp, David R. O’Hallaron, and Thomas R. Gross. Topology discovery for
large ethernet networks. In ACM Press, editor, ACM SIGCOMM 2001, pages 237–248,
San Diego, California, 2001. Available at http://citeseer.nj.nec.com/500129.html.

[13] D. McPherson and B. Dykes. RFC 3069: VLAN aggregation for efficient IP ad-
dress allocation numbers, February 2001. Status: INFORMATIONAL. Available at
ftp://ftp.math.utah.edu/pub/rfc/rfc3069.txt.

[14] Nancy Miller and Peter Steenkiste. Collecting network status information for network-
aware applications. In INFOCOM’00, pages 641–650, 2000.

[15] H. Nakada, M. Sato, and S. Sekiguchi. Design and Implementations of Ninf: towards a
Global Computing Infrastructure. Future Generation Computing Systems, Metacomput-
ing Issue, 15(5–6):649–658, Oct. 1999.

[16] E. Ng and H. Zhang. Predicting internet network distance with coordiantes-based ap-
proaches, 2001. Available at citeseer.nj.nec.com/article/ng01predicting.html.

[17] Vern Paxon and Sally Floyd. Why we don’t know how to simulate the internet. In
Proceedings of the Winder Communication Conference, December 1997. Available at
http://citeseer.nj.nec.com/article/floyd99why.html.

[18] Vern Paxson. Measurements and Analysis of End-to-End Internet Dynamics. PhD thesis,
University of California, Berkeley, 1997.

[19] Y. Rekhter and T. Li. A border gateway protocol 4 (bgp-4). RFC1771, March 1995.

[20] Srinivasan Seshan, Mark Stemm, and Randy H. Katz. SPAND: Shared passive network
performance discovery. In USENIX Symposium on Internet Technologies and Systems,
1997. Available at http://citeseer.nj.nec.com/seshan97spand.html.

[21] Gary Shao, Francine Berman, and Rich Wolski. Using effective network views to
promote distributed application performance. In International Conference on Paral-
lel and Distributed Processing Techniques and Applications, June 1999. Available at
http://apples.ucsd.edu/pubs/pdpta99.ps.

http://citeseer.nj.nec.com/francis01idmaps.html
ftp://ftp.math.utah.edu/pub/rfc/rfc1166.txt
http://citeseer.nj.nec.com/500129.html
ftp://ftp.math.utah.edu/pub/rfc/rfc3069.txt
citeseer.nj.nec.com/article/ng01predicting.html
http://citeseer.nj.nec.com/article/floyd99why.html
http://citeseer.nj.nec.com/seshan97spand.html
http://apples.ucsd.edu/pubs/pdpta99.ps


18 A. Legrand, M. Quinson

[22] R. Wolski, N. T. Spring, and J. Hayes. The Network Weather Service: A Distributed
Resource Performance Forecasting Service for Metacomputing. Future Generation Com-
puting Systems, Metacomputing Issue, 15(5–6):757–768, Oct. 1999.

[23] Rich Wolski, Benjamin Gaidioz, and Bernard Tourancheau. Synchronizing network
probes to avoid measurement intrusiveness with the Network Weather Service. In 9th
IEEE High-performance Distributed Computing Conference, pages 147–154, August 2000.


	1 Introduction
	2 Network Weather Service
	2.1 Overview of the NWS processes organization
	2.2 Link monitoring
	2.3 Characterizing the NWS deployment quality

	3 Network mapping tools
	3.1 SNMP and BGP
	3.2 Hop-based tools
	3.3 Ping-based tools
	3.4 Passive measurements
	3.5 Summary

	4 Effective Network View
	4.1 Result of an execution
	4.2 Example of execution
	4.2.1 Master-independant data collection
	4.2.2 Effective topology: Master-dependent data collection

	4.3 Known ENV issues

	5 Deploying the NWS using ENV
	5.1 Deployment planning
	5.2 Deployment plan application

	6 Conclusion

