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Cost Analysis of a Distributed Video Storage System

Alice Bonhomme

June 2001

Abstract

We describe the design and the implementation of the CFS (Cluster File Sys-
tem) storage system which is dedicated to video streams. Our goal is to provide
a system with the following features: 1) High number of supported streams at a
low cost. 2) Transparent management with respect to the clients. 3) Reliability
regarding data storage and service continuity. The CFS is implemented on a
cluster of PCs connected with a high speed internal network. Its management
is fully distributed among the cluster nodes so that there is no central compo-
nent. Data are stored and retrieved among the cluster nodes using a Streaming
RAID strategy, to enhance reliability.

We evaluate the overhead introduced by the CFS management with respect to
disk performance, by varying the number of nodes involved in file storage, the
block size and the reliability level. The impact of the global server load on this
overhead is moreover discussed to demonstrate scalability. As matter of fact,
the overhead is between 3-15% depending on the configuration.

Keywords: Video server, Data striping, Reliability, Performance analysis

Résumé

Nous présentons la conception et I'implémentation du CFS (Cluster File Sys-
tem), un systéme de stockage dédié aux données vidéo. Notre objectif est de
procurer un systéme intégrant les caractéristiques suivantes : 1) Grand nombre
de flux supportés, pour un faible coiit. 2) Gestion transparente vis a vis des
clients. 3) Fiabilité des données et de la continuité du service. Le CFS est im-
plémenté sur une grappe de PC connectés avec un réseau haut débit. Sa gestion
est totalement distribuée entre les nceuds de la grappe. Il n’y a donc pas de
composant central. Afin de gérer la fiabilité du systéme, les données sont sto-
ckées et accédées sur les nceuds de la grappe d’aprés la stratégie Streaming
RAID.

Nous évaluons le surcott introduit par la gestion du CFS par rapport aux per-
formances des disques, en variant le nombre de nceuds participant au stockage
des données, la taille de bloc, et le niveau de fiabilité. L’influence de la charge
globale du serveur sur ce surcofit, est aussi discutée afin de montrer les capaci-
tés d’extensibilité du CFS. De maniére générale, le surcotit du CFS représente
entre 3-15%), suivant la configuration.

Mots-clés: Serveur Vidéo, Distribution de données, Tolérance aux pannes, Analyse de performance



1 Introduction

Many multimedia applications, such as Video-On-Demand, or interactive television, require a video server
capable of supporting hundreds of simultaneous clients. Due to the number of large objects stored and the
real-time requirements for their retrieval, the design of video storage servers significantly differs from that
of traditional high capacity data storage servers. Database servers, for example, are designed to optimize
the number of requests per second, and to allow a fast response to the clients. In contrast, video storage
servers must meet the requirements resulting from the continuous nature of the stored multimedia streams,
and must guarantee the delivery of video data at precise time according to the bitrate of stored streams.

In this paper, we introduce the design of the CFS (Cluster File System), an efficient storage system
dedicated to video streams. Our goal is to provide a system with the following features : 1) High number
of supported streams at a low cost. 2) Transparent management with respect to the clients. 3) Reliability
regarding data storage and service continuity.

It has been recognized for several years that distributed architectures based on COTS components are best
suited for low cost servers [TMDV96]. Techniques [ORS96, GB99a] have been proposed to efficiently manage
video data on such distributed clusters of nodes. Video streams are spread across the nodes using a variety of
schemes, called data striping, similar to the well known RAID approach. Reliability can be moreover obtained
by using redundant storage. Among the existing storage techniques to enhance reliability [SV00, GLP9§],
we can point out the Streaming RAID approach [TPBG93], which enables to support the failure of a node
without loss in the number of supported output streams.

Such distributed storage architectures require an additional functional component to manage the rela-
tionship between the client and the various storage nodes. It is called a meta-server. Clients are connected
to the meta-server through an external distribution network. We do not assume any specific property for
this external distribution network, except that it is probably slower than the internal cluster network by
one or two orders of magnitude. Several designs have been proposed for the meta-server. In the centralized
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design (Figure 1), the meta-server component is implemented with an additional node, which is in charge of
handling the whole client’s request. It forwards the request to the storage nodes, receives the data from these
nodes, and then sends the data back to the clients. However, the meta-server stands as a bottleneck for com-
munication between the client and the storage nodes, which hinders it from scaling. Therefore, alternative
designs have been proposed. In the semi-centralized design (Figure 2), the meta-server is also implemented



as an additional node, but data are directly sent from the storage nodes back to the client, in a scalable way.
However, this design is not transparent with respect to the clients, as a client must be ezplicitly connected
to all the storage nodes in order to get the data. Moreover, it is up to the client to merge the various data
blocks together, in order to rebuild the original data. In particular, the client is in charge of implementing
the reliability strategy, if any. The distributed design (Figure 3) aims at providing transparency together with
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Fi1G. 3: The distributed design

scalability. The meta-server functionality is distributed among the storage nodes instead of being centralized
at a single one. The client connects to any single meta-server component which is in charge of gathering data
from storage nodes before forwarding them to the client. This approach enhances transparency as the client
knows of only one meta-server which is in charge of all data-rebuilding activity. Successive clients can connect
to different meta-servers, so that scalability and load-balancing are enhanced. In the event of a meta-server
failure, only the clients connected to it are disturbed.

The Cluster File System (CFS) described in this paper is made up of a cluster of COTS components,
namely PCs with large disks, interconnected by a Gigabit Myrinet network. In accordance with the distri-
buted design, each node hosts both a meta-server and a storage component. Data are stored and retrieved
among the storage components using a Streaming RAID strategy. As discussed above, this yields a video
storage system with the expected properties.

In this paper, we focus on evaluating the performance of various aspects of our CFS proposal. With
respect to the centralized design, CFS enhances scalability by using a distributed meta-server. This induces
additional management tasks to keep all meta-servers components in consistent states. We study the overhead
of this choice in terms of CPU load. With respect to the semi-centralized design, CFS enhances transparency
by gathering data at the meta-server component before forwarding them to the clients. This induces an
additional message exchanges through the internal network on the critical execution path. We study this
overhead in terms of latency and bandwidth.

Our experimental protocol focuses on read requests as they make up the dominant cost in common video
applications. Also, we disregard data transfer between the CFS and the client as it strongly depends on the
characteristics of the external network. Only intra-cluster communication is considered here. The latency of a
read request is made up of three contributions : 1) Parallel disk IO to retrieve data blocks ; 2) Communication



time to gather individual data blocks at the meta-server component ; 3) Computation time to receive the
series of blocks, and build up the read request out of them. We define the overhead of our CFS proposal
as contributions 2) and 3) with respect to the sum of all three contributions. We provide a detailed study
of this overhead by varying the number of nodes involved in storing files, the block size and the selected
reliability level. The evolution of the overhead with respect to the global server load is moreover discussed to
demonstrate scalability. As matter of fact, the overhead is between 3-15% depending of the configuration.

The rest of the paper is organized as follows : Section 2 describes the design of the CFS (cluster of PCs,
Streaming RAID strategy, distributed design) and its implementation. Section 3 outlines the methodology
we use to evaluate the CFS cost, and presents the various test parameters. Section 4 reports experimental
results, and Section 5 discusses some related work.

2  Design of the CFS

In this section, we present the design and the implementation of the CFS. The basic interface of the CFS
is similar to that of most high performance file systems with asynchronous reading and writing functionalities
beside the regular ones : open, close, etc. The CFS interface allows the user to create and write a video file
with or without reliability. A reliable file remains accessible even after the failure of one single node, whereas
no guarantee is provided for a non-reliable file. In this paper, we consider both types of files.

2.1 Data striping

File divided into blocks which are spread across the nodes
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FIG. 4: Two examples of data striping using a striping group size equal to 5 or a parity group size equal to 3

Video data are distributed according to a striping strategy. A video file is divided into blocks of equal
size, called block size. These blocks are then distributed among cluster nodes or a subset of cluster nodes.
The nodes involved in the file storage define a striping group. The number of nodes involved in a striping
group is called striping group size. Furthermore, in order to support at most one node failure, reliable files



use additional parity blocks. For a striping group of size P, one finds one parity block for (P — 1) data
blocks. This additional block is built as the result of a XOR operation between the regular data blocks.
This technique is similar to the well-known RAID5 [PGS88| technique applied to a multi-node platform,
instead of a multi-disk one. For reliable files, striping groups are also called parity groups. Figure 4 illustrates
striping and parity groups. On creating a file, the user specifies the striping group size, the block size and
the reliability level. This information is stored at the meta-server. It is used each time the file is read.

2.2 Data retrieval

In most of retrieval schemes found in the literature, data blocks are retrieved one after the other, at the
time they are requested. However, on the occurrence of a node failure, a delay is required to get the parity
block and the other data blocks necessary to perform the XOR operation. Retrieving these blocks consumes
extra disk bandwidth. If this unexpected consumption has not been taken into account in scheduling the
client requests, then this results in a slow down for the overall system. In order to avoid this time and
bandwidth overhead, a specific scheme [TPBG93| called Streaming RAID (SR), has been proposed for a
multi-disk video server. SR, exploits the specificity of video files, as they are usually accessed in a sequential
way : it is extremely likely to retrieve block (i + 1) after block i. Instead of getting blocks one after the
other, SR gets all the blocks of a striping group at the same time, including the parity block. Thus, all
the blocks necessary to the XOR operation are already available and, the only remaining overhead is the
XOR computation. SR consumes an extra bandwidth to retrieve the parity block in all cases. Therefore,
the behavior is the same in a regular case as in a failure case. The system supports as many streams under
failure as it supports in the regular case. We use this retrieval scheme for both types of files : reliable files
and non-reliable files. Hence, for non-reliable files, we only retrieve data blocks, and no parity blocks. If a
node fails, then the reading operation just fails.

However, a major disadvantage of the SR, scheme is the large amount of memory required by the system.
To make this point clearer, let us consider a video server application. Video servers usually serve clients in a
cyclic way. At each cycle, data is first read, and then it is sent to the client. This requires one block buffer.
Let us now consider the SR scheme with a striping group size P. At each cycle, P blocks are read in parallel ;
then, they are sequentially sent to the client. This requires P block buffers instead of just one. The memory
requirement linearly grows with the striping group size. This hinders the system scalability. In [Bon01], we
showed that this is not the case as our distributed design spreads the memory requirement across the cluster
nodes.

2.3 CFS Implementation

The CFS is implemented as a set of processes, one on each node. On each node, additional processes are
also used to implement the meta-server functionality. Each meta-server is in charge of managing a number of
clients. It translates external client requests into internal service requests targeted to the local CFS process.
The CFS process is made up of two threads :

— The Job Treatment Thread (JTT) is in charge of handling local meta-server requests, remote CFS
requests and remote CFS replies. For this purpose, the JTT posts either asynchronous I/O to the
local disk subsystem, or messages through the internal network. It communicates with the meta-server
processes using shared memory in order to avoid copies.

— The Message Treatment Thread (MTT) receives messages through the internal network and forwards
them to the Job Treatment Thread. It is also in charge of the detection of node failure.

The implementation of the open/close operations requires a complex fault-tolerant distributed synchro-
nization between the CFS processes in order to manage file accesses. In this paper, we focus on the imple-
mentation of the reading operation.

The following example illustrates this scheme (Figure 5). Assume a client is connected to the meta-server
on node 4. This client requires data of a file striped using a striping group size equal to 1. In this case, a
reading request consists in retrieving only one block. Assume this block is stored on node j (i # j). The
reading request is performed as follows. The meta-server posts a request to the JTT through the CFS API
(Step 1). The JTT gets the request, and sends a request message to node j (Step 2). On node j, the MTT



receives the message and forwards it to the JTT (Step 3). The JTT posts a reading request to its local disk
subsystem (Step 4). The JTT is informed of the I/O completion (Step 5) and it sends the data back to node
i (Step 6). The data are received by the MTT on node ¢ and are forwarded to the JTT and then to the
meta-server (Step 7). The MTT on node 7 is also in charge of detecting the failure of node j by periodically
sending probe messages. Detecting the failure of a node typically requires around 10 milliseconds.

CFS processes

Internal network
—» request

=P data

Fia. 5: Ezample of the retrieval of a remote block

Regarding files striped with a striping group size P greater than 1, P remote blocks are retrieved in
parallel through the retrieval scheme described in the above example.

Consider first a non-reliable file. If a failure is detected while waiting for the blocks, then the reading
request returns an error. Consider now a reliable file. In the case of the failure of one node, it would be
possible to reconstruct the missing data block on the fly. However, this would induce an additional delay
equal to the fault detection timeout. Therefore, an alternative strategy is implemented in the CFS. As soon
as (P — 1) blocks are available, the last block is reconstructed on the fly, using the XOR, operation. All P
blocks are immediately returned to the meta-server. If the remaining block arrives later, then it is merely
discarded. The overall behavior is exactly the same in the regular case as in the case of a single failure. The
overhead is the systematic computation of the XOR, operation. If more than one failure occur, then an error
is returned to the meta-server, as soon as the second fault is detected.

3 Methodology for cost analysis

In this section, we propose a scheme to experimentally evaluate the CFS overhead. We consider only
reading operations, because they are the most frequent in video applications. We follow a reading request
throughout its course inside the CFS implementation. Our goal is a) to investigate how the cluster resources
are used ; b) to identify possible bottlenecks and ¢) to evaluate the CFS management cost in terms of latency
time. Cluster resources are : the disk subsystem, the network subsystem and the CPU. We first decompose
the action of retrieving a block into 7 steps, and we identify the resources involved in those steps. Then,
we consider a complete reading request (striping group size # 1), and we decompose its latency time with



meaning node involved | resource involved
Step 1 handling local node CPU
meta-server request
Step 2 sending request - network
to the remote node
Step 3 | receiving and handling | remote node CPU
request
Step 4 | posting and performing | remote node disk
reading request
Step 5 handling remote node CPU
reading completion
step 6 sending back - network
data
Step 7 handling local node CPU
data reception

TAB. 1: Presentation of the resources used in the 7 steps of a block retrieval : the request is performed on a
node called local node whereas the block is stored on a node called remote node

respect to the three resources of the cluster. Finally, we introduce the various parameters considered in the
experimental tests.

3.1 Study of a block retrieval steps

The retrieval of a block is similar to a reading request performed on a file with a striping group size equal
to 1, as illustrated in Figure 5. We did determine 7 steps in terms of their functionality. Now, we associate
to each step, the resources which are used during each step, and the node involved (the local node on which
the request is done or, the remote node on which the block is stored). We do not consider the case in which
the local node and the remote node are the same. This represents a special case which uses only step 1-3-7.
Table 3.1 summarizes the step characteristics.

In order to measure the duration of each step, we introduce six timers within the CFS code. We use an
efficient timer function whose call costs around 4us. Thus, it does not perturbate the performance too much.
As shown in performance results, 24us are insignificant compared to latency values.

3.2 Decomposition of a request latency time into 3 time components

In order to make some statistics about resources utilization, we combined previous results about steps,
depending on the associated resource. Thus, a latency time is decomposed into the following components.

— CPU time = Step 1 + Step 3 + Step 5 + Step 7.
— Disk time = Step 4.
— Network time = Step 2 + Step 6.

Let us consider a reading request about a file with a striping group size equal to n # 1. Thus, the local
node performs n block retrievals in parallel. So, for each block, we have the time spent in each of the 7 steps.
We can therefore compute the CPU time, the disk time and the network time, associated to each block
retrieval. Then, the global time values associated to the global latency, are computed as the average between
the individual times of each block retrieval. However, if we consider a reliable file, when block (P —1) arrives,
the JTT computes block P. Thus, step 7 is longer for block (P — 1) retrieval than for the others. In this
case, we do not consider the average time of steps 7, we rather consider the maximum one.



3.3 Tests parameters
For our experiments, we perform various tests about reading requests. These tests allow to study the
CFS under various system loads and under various configurations. The test parameters are the following.
Block Size (BS), in KBytes : we use block sizes ranging from 16 KBytes to 128 KBytes.
Striping Group Size (SGS) : we use striping group sizes ranging from 1 to 8.
Number of simultaneous requests : we perform tests with one reading request, or with 10 reading re-
quests which are simultaneously posted.

Number of nodes from which the requests are performed : we use either reading requests posted
from one node, or reading requests simultaneously posted from several nodes.

Reliability level : we use reading requests about non-reliable files or about reliable files.

4 Experimental results

Experimental measures have been performed on a 8-node cluster made up of Intel bi-processors, connected
through a Myrinet network using the GM communication system (developed by Myricom). Each PC has six
10000-rpm disks in a RAID 1 configuration. The operating system is NT4 and the disks are accessed through
the NTFS file system.

This section presents results measured in various configurations and using the methodology described
in the previous section. We first study the case of a unique reading request. Then, we consider the case of
simultaneous reading requests. Finally, we analyze those results from a throughput point of view.

4.1 Latency of one request

4.1.1 With striping group size = 1
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F1G. 6: Evaluation of the CFS overhead on retrieving one remote block, versus the block size

We consider reading requests about non-reliable files (reliable files require that SGS > 1). In this case,
reading request is equivalent to the retrieval of one block. We more particularly study the retrieval of a
remote block in order to observe the network overhead.



Figure 6 shows latencies of : the disk subsystem, the network subsystem and the entire CFS request,
versus the block size. The difference between the disk latency and the CFS latency represents the CFS
overhead. The network latency represents the cost of the block transfer between two nodes. The difference
between the CFS latency and, the sum of the disk latency and the network latency, represents the time used
for CPU treatment and for sending the request over the network.

We notice that as the block size increases, the CFS overhead also increases. This due to the block
transfer on the network which linearly increases with the block size. Nevertheless, the CFS overhead remains
acceptable, representing from 3% to 10% of the global latency.

4.1.2 Non-reliable files with striping group size # 1
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F1a. 7: Evolution of the CFS latency versus the striping group size and the block size, for non-reliable files

Figure 7 shows latency results for reading requests with various striping group sizes and various block
sizes. In an ideal case (i.e. the CFS overhead equals zero), curves would have been straight, representing
a perfect parallelism. In effect, as the block retrievals are performed in parallel, retrieving one block or P
blocks should take the same time. In contrast, latencies plotted in Figure 7 increase as the striping group
size increases. Furthermore, we notice that the speed of increase is more important for large block sizes, than
for small ones.

To understand the reasons of those latency rises, we study the decomposition of the latency time, as
described in the methodology section. Results, obtained for SGS = 6, are shown in Figure 8 (for BS = 16)
and in Figure 9 (for BS = 128).

For BS = 16, we notice that the network overhead (Steps 2 and 6) is very small, almost insignificant, as
well as the CPU overhead. The increase of the CFS latency is explained by another factor, related to the disk
subsystem. In effect, the disk latency can be very varied. The disk latency is made up of two components :
the time of the data transfer between the disk and the memory and, the time required to find the data on the
disk. This second component includes the movement of the disk head to reach the accurate track and, the
disk rotation. It represents an overhead compared to the disk bandwidth. Furthermore, this overhead is not
related to the data size, it is rather related to the data position on the disk. Thus, no matter what is the data
size, the overhead remains the same. Accordingly, on reading a big amount of data, this overhead represents
a small percentage of the global latency. In contrast, for a small amount of data, it can represent more than
half of the latency. This latency variability has therefore an impact on the CFS results. On reading P blocks
in parallel on P remote disks, the global latency time equals the maximum value of the P disk latencies.
Thus for a large value of P, the probability to have a long disk latency is greater than the one obtained
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for a small value of P. Consequently, part of the increase of the CFS latency is due to the disk subsystem.
Nevertheless, the latency decomposition into various steps allows us to make the distinction between the
latency rise due to the CFS overhead and the one due to the disk subsystem. Let us consider the case for
BS = 128. We notice the increase of the CFS overhead, in particular the network time increase. The time
spent in step 6 is greater than for BS = 16. This is firstly due to the linear latency of the network. Secondly,
some of the messages overlap with each other over the network. As an example, block 1 is sent whereas block
5 has not been received yet. Thus, we have several transfers at the same time which consequently increase
the network latency. Nevertheless, this overhead (around 10%) remains acceptable.

4.1.3 Reliable files
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FiG. 10: Evolution of the CFS latency versus the parity group size and the block size, for reliable files

Figure 10 shows global latency results for reliable files, versus the parity group size and the block size.
We notice that latency is more sensitive to the parity group size than for non-reliable files. This can be
explained by studying in more details the latency. Figure 11 shows the decomposition of the latency, for a



reliable file with SGS = 6 and, BS = 16. Results are similar to the one for non-reliable files, except the
fact that there is an additional CPU time when the XOR operation is computed after the arrival of block
(P —1). In Figure 11, this overhead appears after the retrieval of block 4. The CPU overhead for the XOR
computation increases linearly with the block size and the striping group size. Figure 12 gives an example
of the CPU cost for BS = 128.
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4.2 Latency of simultaneous requests

We perform 10 simultaneous reading requests. For each request, we get information about the time spent
using CPU, network and disk resources. Figure 13 plots results obtained for BS = 128 and various striping
group sizes. Naturally, the disk utilization remains steady. The CPU utilization is so small that it does not
appear on the plot. However, the network utilization increases as the striping group size increases. This is
related to the data overlapping over the network. In worst cases, the network contention represents 20% of
the request latency. Figure 14 illustrates the influence of the block size on the resources utilization, with
SGS = 6. As for the one request case, the network overhead increases as the block size increases.

IEcpu time Wdisk time [network time

ECPUtime Wdisk time [ network time 70000 1
70000 - - -
£0000
60000
50000 -
: ]
50000 + o — - b
) 0 0 1 g 40000 —
g 40000 _- i - g qmn g il
o i o
@ ~ m B 20000
5 = = 1l F
530000 - g
o 20000 -+
E I
= 20000 I
10000 I il
p MEEEEER | §ESEEREEESENNENDSSENNEERSE|
..... 4567 91013314567 101 2345678 41
0 e B N e T O ST T S EE ET R < B5= 16 KB T CIE T
L334 56 7T 8 9db1 30 4587 $101 2 3458738 8,10
SGS=2 —> 568=4 —> Requests order

Request order

F1a. 14: Decomposition of the latency for 10 simul-
F1G. 13: Decomposition of the latency for 10 simulta- taneous requests (SGS = 6 and BS = 16 KBytes, 64
neous requests (BS = 128 KBytes, SGS = 2, 4 or 6) KBytes or 128 KBytes)
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Figure 15 and Figure 16 show some experiments with reliable files. Results outline the CPU utilization
required for the XOR computation. The plotting clearly show the linear evolution of the CPU time versus
the striping group size and the block size.

Finally, we made some experiments with 10 simultaneous requests performed from several nodes. We do
not plot the results here because they are similar to the one presented above.
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4.3 Global throughput of the CFS

Throughput (MBytes/s)

120

100

80

60

40

20

70000 -

60000 -+

50000 -

Time (microseconds)

10000

Eepu time Wdisk time [ network time

40000 -

30000 +

20000 +

2 9

et

1012346678010 1

131 45 @

BS=84KB
Requests order

BS = 16KB

BS = 128KB

Fia. 16: Decomposition of the latency for 10 simul-
taneous requests (SGS = 6 and BS = 16 KBytes, 6/

KBytes or 128 KBytes), for reliable files

= B5 = 16 KB, 1 request

—es—BS = 128 KB, 1 request
—— B= = 16 KE, 10 requests

—— BS = 128 KB, 10 requests

Striping group size

F1a. 17: Global CFS throughput versus the striping group size

So far, we have only considered latency times and percentages of these times due to the CFS overhead.
Results clearly show that this overhead increases with the striping group size and the block size. Nonetheless,
this does not mean that it is better to use small values of those parameters. In effect, for large block sizes
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and large striping group sizes, the resulted throughput is higher. As an example, a reading request using
SGS = 6 is slightly slower than a reading request using SG'S = 3. Yet, the first request does retrieve twice
much data than the second one. Figure 17 shows the results of previous experiments about non-reliable files,
from a throughput point of view. We clearly notice that the higher throughput is reached using a large
block size, even if the CFS overhead is more important in that case. However, when the striping group size
is greater than 5, the throughput growth slows down. This is explained by the network overlapping due to
simultaneous data transfers over the network.

To study the CFS scalability, we measure the maximum throughput we can reach with the CFS. We
proceed as follows : during a certain time duration, we try to complete as many reading requests as possible.
The throughput is computed based on the amount of data retrieved by these requests. For reliable files, we
only consider data blocks to compute the throughput. The best results are obtained using BS = 128, and
posting requests from several nodes. Furthermore, we post requests with a regular interval between them.
In effect, if we post all the requests at the same time, a contention firstly appears on the disk subsystem
and secondly on the network. Results are plotted in Figure 18. They demonstrate the scalability capability
of the CFS design, for non-reliable files as well as for reliable files. We also notice the cost in terms of
throughput of reliable files compared to the one of non-reliable files. This cost remains almost steady in
terms of throughput decrease. This is due to the fact that no matter what is the striping group size, one
additional block is retrieved. Nevertheless, we do not insist on that point since it is not the main topic of
this paper.
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F1a. 18: Global CFS throughput versus the striping group size

5 Related Work

Many techniques have been investigated in order to achieve scalability for video servers : Ghandeharizadeh
et al. [GZST97], Muntz et al. [FSM98], Biersack et al. [GB99b], Lee and Wong [LW00]. A comprehensive
study of approaches used by existing systems can be found in [GVK™'95, Lee98|. In most cases, the storage
system is integrated within the video server design.

Ghandeharizadeh et al. [GZST 97|, work on optimizing local disk accesses. They particularly focus on data
placement on one disk in order to reduce the variability of the disk latency. The Mitra server implements this
principle and, experimental results show that it reaches good performance. In Mitra, reliability is enhanced
using mirror disks. However, this solution requires very large storage space because of the extensive mirroring.
Moreover, the mirror disk bandwidth is only used in case of failure. It is thus wasted most of the time.

Muntz et al. [FSM98] propose to randomly distributed the data blocks among the disks. They demonstrate

12



that this solution is very well suited for non sequential accesses (like in video editing or virtual reality
applications, etc.) or for heterogeneous disk platforms. The RIO prototype is based on this idea.

Biersack et al. [GB99b] study striping methods and various reliability schemes based on mirror or parity
techniques. They compare the different strategies, in terms of bandwidth and memory requirement. They
conclude that the striping method and the reliability strategy are interdependent. In particular, they de-
monstrate that the mirror technique is best suited for classical retrieval scheme whereas, parity techniques
are best suited for sequential scheme, like SR. Their ideas have been implemented in the Server Array
prototype, which is based on classical retrieval scheme combined with a mirror technique. However, the re-
liability strategy is not transparent to the client. In fact, the client itself is in charge of part of the reliability
management : it detects node failures, and explicitly requests mirror blocks.

In [LWOO], Lee et al. focus on performance analysis for a distributed video server using a semi-centralized
design. Their studies reveal that large number of simultaneous client requests may overwhelm the server. To
solve this problem, they propose and analyze a staggering-based admission scheduler. Using modeling and
simulation, they show that this scheduler enables the server to achieve scalability.

In contrast with these systems, we propose a storage system which is independent from the video server,
and whose distributed management is transparent to the client. Furthermore, our experimental measures
have shown that the internal network behavior has a significant impact on the overall performance. This
aspect is too often underestimated in the analytical modeling.

6 Conclusion

In this paper, we have presented the design of the CFS, a distributed storage system dedicated to video
data. This system is based on a fully distributed design and provides reliability properties. The goal of our
study presented in this paper, is to experimentally evaluate the cost of the CFS design. This cost can be
expressed in terms of network utilization and CPU utilization. For various configurations, we analyzed the
time spent in various steps of a reading request and the resources used in each step. Thus, we determined the
overhead introduced by the CFS management. Results showed that this overhead is acceptable, between 3%
and 15%, depending on the configuration. Moreover, throughput results showed that it does not prevent the
CFS from reaching good performance and from achieving scalability. However, it is not recommended, for
large clusters, to use a striping group size equal to the number of cluster nodes. It is wiser to partition the
nodes into smaller striping groups. It avoids contention over the internal network due to message overlapping,
and it enables to support one failure per striping group. These results point out the importance of scheduling
the client requests to avoid contention on the disks or on the internal network.

We are currently studying performance results for several simultaneous requests using various striping
group sizes. In the future, we will also work on optimizing the local filesystem, as it is done in Mitra [GZST97],
in order to reduce the variability of the disk latency.
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