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Abstract

We show that the integer roots of of a univariate polynomial with
integer coe�cients can be computed in polynomial time� This re�
sult holds for the classical �i�e� Turing	 model of computation and a
sparse representation of polynomials �i�e� coe�cients and exponents
are written in binary
 and only nonzero monomials are represented	�
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R�esum�e

On montre que les racines enti�eres d�un polynome en une variable
�a coe�cients entiers peuvent etre calcul�ees en temps polynomial� Ce
r�esultat est valable pour le mod�ele de calcul classique des machines de
Turing et pour une repr�esentation creuse des polynomes �coe�cients
et exposants sont �ecrits en binaire
 et seuls les monomes non nul sont
repr�esent�es	�

Mots�cl�es� polynomes creux
 �equations diophantiennes
 calcul formel�
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� Introduction

The goal of this paper is to prove the following�

Theorem � There is a polynomial time algorithm which given input f � ZZ�t�
decides whether f has an integer root and� moreover� the algorithm outputs the

set of integer roots of f �

Here we are using sparse representation of polynomials and the classical �i�e�
Turing	 model of computation and complexity� That is
 for f � ZZ�t�


f � adt
d � � � �� a�t� a��

we encode f by the list of pairs f�i� ai	 j � � i � d and ai �� �g� The size of the
sparse representation of f is de�ned by

size�f	 �
X

ijai ���

�size�ai	 � size�i		 �
X

ijai ���

�ht�ai	 � ht�i		
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where ht�a	 � log�� � jaj	 is the �logarithmic	 height of an integer a � ZZ� Thus

size�f	 is roughly the number of bits needed to write down the list representing f �
Polynomial time means that the number of bit operations to output the answer
is bounded by c�size�f		d for positive constants c� d�

Note that the degree of f is at most �size�f� and this exponential dependence
is sharp in the sense that there is no q � IN such that the degree of f is bounded
by �size�f		q for all f � In particular
 evaluating f at a given integer x may be
an expensive task since the size of f�x	 may be exponentially large as a function
of size�f	 and size�x	�

Algorithms for sparsely encoded polynomials �or just sparse polynomials as
they are usually called	 are usually much less e�cient than for the standard
�dense	 representation in which f is represented by the list fa�� a�� � � � � adg� This
is due to the fact that some polynomials of high degree can be represented in a
very compact way�

For dense polynomials
 the existence of a real root can de decided e�ciently
�by Sturm�s algorithm	� It seems to be an open problem whether this can also be
done in polynomial time with the sparse representation� Theorem � says that the
existence of an integer root for sparse polynomials can be decided in polynomial
time� In fact
 all integer roots can be computed within that time bound� Our
algorithm relies in particular on an e�cient procedure for evaluating the sign of
f at a given integer x� The �e�cient	 sign evaluation problem seems to be open
for rational values of x�

We note here that a version of Theorem � is well�known for dense polyno�
mials� For a general overview on computer algebra for one variable polynomials
see �Akritas ����� Mignotte ������

� Computing signs of sparse polynomials

The main result of this section is the proof that one can evaluate the sign of a
polynomial f at x � ZZ in polynomial time� That is
 given f � ZZ�t� and x � ZZ

we can compute the quantity

sign �f�x		 �

���
��

�� if f�x	 � �
� if f�x	 � �
� if f�x	 � �

in time polynomial in size�x	 and size�f	�

Theorem � There exists an algorithm which given input x � ZZ and f � ZZ�t�
computes the sign of f�x	� The halting time of this algorithm is bounded by a

polynomial in size�x	 and size�f	�
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Recall that a straight�line program with one variable is a sequence P �
fc�� � � � � ck� t� u�� � � � � u�g where c�� � � � � ck � ZZ
 and for i � �
 ui � a � b with
� � f�����g and a� b two elements in the sequence preceding ui�

Clearly
 u� may be considered as a polynomial f�t	� we say that P computes

f�t	� For every polynomial f�t	 there exist straight�line programs computing
f�t	� Thus
 straight�line programs are regarded as yet another way to encode
polynomials which turns out to be even more compact than the sparse encoding�
We de�ne the size of P to be

size�P	 � � �
kX
i��

size�ci	�

Lemma � Let P be a straight�line program in one variable of size s computing

f�t	 and x � ZZ such that � � f�x	 � T for some T � �� Then f�x	 can be

computed in time polynomially bounded in s and size�T 	�

Proof� One performs the arithmetic operations �there are at most s of them	
in the ring ZZT of integers modulo T � Each operation in this ring is done with a
number of bit steps polynomial in size�T 	�

The result
 f�x	
 is the value of f�x	 modulo T and therefore
 by hypothesis

the value of f�x	� �

Remark � A similar result holds if we have �T � f�x	 � ��

Lemma � There is an algorithm which given input �x� �	 � ZZ�� x � �� � � �
outputs � � ZZ� � � �� such that ���� � x� � ����� The halting time is bounded

by a polynomial in size�x	 and size��	�

Sketch of the proof� Compute � � ZZ
 � � � satisfying � � � � � log x �
���� To do so
 one computes an approximation y of log x such that jy� log xj �
�����	� �

Proof of Theorem �� We can assume that x � � since if x � � then f�x	 is
g��x	 where g is obtained from f by changing the sign of the coe�cients of the
monomials with odd degree� Also
 if x � � the problem can be solved by looking
at the constant term of f � Thus
 suppose x � ��

Let k be the number of monomials of f so that

f � a�t
�� � � � �� akt

�k with �� � �� � � � � � �k � ��

Then
 f�x	 can be evaluated using Horner�s rule as follows� Let �k � �k and
�j � �j � �j�� for j � �� � � � � k � �� Then
 �j � �j � �j�� � � � � � �k for
j � �� � � � � k�

Now we inductively de�ne p� � � and

si � pi�� � ai and pi � six
�i
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for i � �� � � � � k� We then have pk � f�x	�
The precise evaluation of f�x	 using the sequence of operations given by

Horner�s rule is not achieved in polynomial time since the intermediate results
can be too large� Instead
 we will inductively compute a sequence of rough
approximations of si and pi
 with the right sign and of small �i�e� polynomially
bounded	 size�

More precisely
 we will produce a sequence of pairs �mi�Mi	 � IN� and
�vi� Vi	 � IN� and a sequence of integers �i
 with i � �� � � � � k with the following
properties�

For i � �� � � � � k
 �i � f��� �� �g and

���
��

pi � ��mi� �Mi � if �i � �
pi � ���Mi���mi� if �i � ��
pi � � if �i � ��

��	

Moreover

� �Mi �mi � �i� ��	

Note that
 since mi � log jpij
 we can write mi with a number of bits which
is polynomial in S � maxfsize�x	� size�f	g� The same holds for Mi since Mi �
mi � �i�

The same properties hold for si and �vi� Vi	� That is
 for i � �� � � � � k


���
��

si � ��vi� �Vi� if �i � �
si � ���Vi���vi � if �i � ��
si � � if �i � �

��	

and
Vi � vi � �i� �� ��	

The general appearance of the algorithm is the following�

For input �x� f	

compute ��� � � � � �k as above and let �� � ��
Then
 inductively
 for i � �� � � � � k

�a	 compute vi� Vi and �i from mi���Mi�� and �i��
�b	 compute mi and Mi from vi� Vi and �i�

Output �k

We will show now how steps �a	 and �b	 are done�
For �a	
 suppose that mi���Mi�� and �i�� are known� Then
 we compute

vi� Vi and �i as follows�

�



If �i�� � � then compute � such that �� � jaij � ���� and let
vi � �
 Vi � � � � and �i � sign �ai	�
If �i�� �� � proceed as follows�

If �mi�� � �jaij we have two cases�
if �i��ai � � then let vi � mi�� and Vi �Mi�� � �
else
 if �i��ai � �
 let vi � mi�� � � and Vi � Mi���

On the other hand
 if �mi�� � �jaij

compute the exact value of pi�� using Lemma � with
T � �Mi�� � � and let si � pi�� � ai�
If si � �
 let �i � ��
If si �� � then
compute � such that �� � jsij � ���� and let
vi � �
 Vi � �� � and �i � sign �si	�

It is immediate to check that
 if mi���Mi�� and �i�� satisfy conditions ��	
and ��	 then vi� Vi and �i satisfy conditions ��	 and ��	� All lines in the above
algorithm are executed in polynomial time� This is immediate except for the
computation of the exact value of pi� But the algorithm in Lemma � has a halting
time bounded by a polynomial in size�P	 and size�T 	 for any P computing
pi�x	� In our case one can take any straight�line program computing pi of size
polynomial in the size of f �Horner�s rule as exposed above provides one with
�i� � operations	 and we note that the size of T 
 is about Mi��
 and

Mi�� � mi � ��i� �	 � log��jaij	 � ��i� �	

which is also polynomial in size�f	�
For �b	
 we proceed as follows�

Compute � such that ���� � x�i � ���� as in Lemma ��
If �i �� � then let mi � vi � �� � and Mi � Vi � � � ��

Notice that in �a	 we do not use the values of mi�� and Mi�� if �i � ��
Consequently
 we do not compute them in �b	 if this is the case� �

Remark � It is an open problem whether one can compute the sign of f�x	 in
polynomial time if f is given as a straight�line program� This is so even allowing
the use of randomization
 in which case the state of the art is an algorithm
for deciding whether f�x	 � � in randomized �one�side error	 polynomial time
�see �Schwartz �����	�
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� Proof of Theorem �

First we give a preliminary lemma� In the sequel we count roots without multi�
plicity
 that is
 the expression �k roots� means k di�erent roots�

Lemma � Let f � IR�t� have k monomials� Then f has at most �k real roots�

Proof� If k � � the statement is true� If k � � write f � x�p with p��	 �� ��
Then p�
 the derivative of p
 has k � � monomials and
 by induction hypothesis

at most ��k� �	 roots� From this we deduce that p has at most �k� � real roots
and hence f has at most �k� �

De�nition � Let p � ZZ�t� and M � ZZ
 M � �� Let C � f�ui� vi�gi�������N be a
list of closed intervals with integer endpoints satisfying ui � ui�� and vi � ui or
vi � ui � � for all i� We say that C locates the roots of p in ��M�M � if for each
root 	 of p in ��M�M � there is i � N such that 	 � �ui� vi�� Note that in this
case p has no roots in �vi� ui��	 for all i�

Let g � ZZ�t� and M � ZZ
 M � �� Write g � t�p with p��	 �� � and suppose
that C� � f�ui� vi�gi�������N locates the roots of p� in ��M�M �� Then
 for each
i � N 
 p has at most one root in the interval �vi� ui��	 since
 by Rolle�s theorem

if p has two roots in �vi� ui��	 the p� must have a root in this interval as well�

Moreover
 p has a root in this interval if and only if p�vi	p�ui��	 � �� This
is so since if p�vi	p�ui��	 � � and p has some root in �vi� ui��	 then
 either p has
�at least	 two roots in �vi� ui��� or it has a double root in �vi� ui��	� In both cases
p� has a root in �vi� ui��	 contradicting the choice of C��

Proposition � There is an algorithm which� given input g� p � ZZ�t�� M�N and

C� as above computes a list C locating the roots of p in ��M�M �� The list C has

at most N � �k intervals where k is the number of monomials of g� The halting

time of the algorithm is polynomially bounded in size�M	� size�g	 and N �

Proof� Using the algorithm of Theorem � compute the sign of p at the points
�M�u�� v�� � � � � uN � vN �M �

Let �x� y� be any of the N � � intervals ��M�u��
 �v�� u��� � � � � �vN��� uN �

�vN �M �� If p�x	p�y	 � � we know that there are no real roots of p in �x� y��
Otherwise
 there is only one root which can be located in an interval of the form
�u� u � �� by applying the classical bisection algorithm with integer mid�points
�the interval has the form �u� u� if we �nd a mid�point u such that p�u	 � �	� We
form C by adding to C� these intervals�

Since the total number of roots of p is bounded by �k it follows that the
number of intervals in C is at most N � �k�

The bound for the halting time is proved as follows� Bisection is applied
to N � � intervals at most� Each of these intervals has length at most �M an

�



therefore
 the number of sign evaluations is of the order of logM 
 that is
 it is
linear in size�M	� Finally
 all the sign evaluations �the ��N � �	 �rst ones and
the ones performed during the bisection process	 are done in polynomial time in
size�M	 and size�g	 by Theorem �� �

Proof of Theorem �� Let

f � a�t
�� � � � �� akt

�k

with �� � �� � � � � � �k � �� Then
 we can de�ne polynomials pi inductively by

f � t�kp� p���	 �� � and p� has k monomials
p�� � t�k��p� p���	 �� � and p� has k � � monomials

���
p�k�� � t��pk pk � ZZ� pk �� �

where 
k � �k and 
�� � � � � 
k�� only depend on ��� � � � � �k�
If L is a bound for the absolute value of the coe�cients of f 
 the coe�cients

of pj are bounded by L�j��
� for j � �� � � � � k� Therefore
 since pj has exactly

k � j � � coe�cients
 we deduce that

size�pj	 � �k � j � �	�j � �	size���	 � size�f	

which is bounded by ��size�f		� for all j � �� � � � � k�
Now we note that if 	 is an integer root of f 
 then either 	 � � or 	 divides

ak� To prove this
 suppose that f�		 � � and 	 �� �� Then �k � �
 that is

f � a�t

�� � � � �� ak��t
�k�� � ak and we have

a�	
�� � � � �� ak��	

�k�� � �ak�

Since 	 divides the left�hand side
 it must divide ak�
Thus
 all integer roots of f are in the interval ��jakj� jakj� and we can restrict

our search to this interval�
Consider the algorithm

input f
Compute p�� � � � � pk�
Let Ck � ��� ���
For i � k � �� � � � � �
 inductively

compute Ci locating the roots of pi in ��jakj� jakj�
using Proposition � with input Ci���

Let S � ��
For each endpoint x of an interval in C�


if f�x	 � � then let S � S � fxg�
Output S

�



The list Ck isolates the roots of pk� Then
 by k�� applications of Proposition �

the list C� isolates the roots of p� and since it contains the interval ��� ��
 the roots
of f � This ensures the correctness of the algorithm�

The polynomial bound for the halting time follows from Proposition � plus
the fact that size�pj	 � ��size�f		� for all j � �� � � � � k� �

� A Re�nement

Let f �
Pn

i�� ait
�i be an integer polynomial with �� � �� � 	 	 	 � �n and

all ai�s nonzero� Given k � f�� � � � � n � �g
 one can write uniquely f as f �
rk � x�k��qk where rk and qk are integer polynomials
 and deg�rk	 � �k �of
course
 rk �

Pk
i�� ait

�i and qk �
Pn

i�k�� ait
�i��k	� With these notations
 we have

the following simple fact�

Proposition � Let Mk � sup��i�k jaij� If x is an integer root of f and jxj � ��
x must also be a root of qk and rk provided that �k�� � �k � � � logMk�

Proof� Since x is a root of f 
 jrk�x	j � jqk�x	j 	 jxj�k��� Moreover


jrk�x	j �Mk�� � jxj� 	 	 	 � jxj�k	 �Mk

jxj���k � �

jxj � �
�

�From these two relations we obtain

jqk�x	j 	 jxj
�k����k �Mkjxj��jxj � �	 � �Mk

since jxj � �� Finally
 qk�x	 �� � implies ��k�� � �k	 log jxj � � � logMk since
jqk�x	j � � in this case� This is in contradiction with the hypothesis �k����k �
� � logMk� We conclude that qk�x	 � �
 and rk�x	 � � follows immediately�

�

This proposition applies in particular to polynomials that have a small number
of terms compared to their degree �of course these are precisely the polynomials
for which the sparse representation is interesting	� Speci�cally
 if f is a poly�
nomial of degree d � �n with a nonzero constant coe�cient �i�e� �� �� �	 and
M � Mn � sup��i�n jaij
 there must exist a gap of at least d�n between two
consecutive powers of f � Therefore one can always apply this proposition when
d

n
� � � logM �
In any case
 if the proposition applies we can �rst compute the integer roots

of rk �or qk	 and then check whether any of these roots is also a root of qk �or rk	�
This can sometimes speed up the algorithm described in the previous sections

in particular when either qk or rk is of small size compared to f � For instance
 if
f is of the form f�x	 � x� � � � x�q�x	
 only �� and � can possibly be integer
roots of f � And if f is of the form f�x	 � x� � � � x	q�x	
 all integer roots are
in f������ �� �g�

�



� Final Remarks

Natural extensions of Theorem � would consider the existence of rational or real
roots of f � For rational roots
 the arguments in Section � can be extended� If
a rational p�q is a root of f then p divides the constant term and q divides
the leading coe�cient� Thus
 the number of possible roots is again exponential
in size�f	 and the bisection method applies� However
 it is an open question
whether one can compute the sign of f�p�q	 in polynomial time� For real roots the
situation seems even more di�cult since bisection only may not detect multiple
roots�

In another direction
 one could consider diophantine equations in several vari�
ables� For sparse polynomials in several variables
 sign determination seems to
be a di�cult question
 and it is not clear whether Theorem � can be general�
ized� Actually
 right now it is not known whether any algorithm exists to decide
diophantine equations in two variables�

Recall that the �logarithmic	 height of an integer x is de�ned by ht�x	 �
log�� � jxj	�

Let f � ZZ�t�� � � � � tn�
 f �
P
a�t

�� Here a� �� �
 � � INn is a multiindex
and the sum is over a �nite set A 
 INn� The sparse representation of f is the
sequence of pairs ��� a�	
 and the size of f for this representation is de�ned by

size�f	 �
X
��A

�ht��	 � ht�a�		

where ht��	 � ht���	 � � � �� ht��n	�
It is well known that f can be evaluated at a point x � ZZn in time polynomial

in size�f	 and size�x	 if f is considered with the dense representation�

Problem � Given f � ZZ�t�� � � � � tn� and x � ZZn� is it possible to compute

sign �f�x		 in polynomial time in size�x	 and size�f	 for the sparse represen�

tation of f�

Theorem � solves this problem for the case n � �� For any �xed n
 Shub ������
solves it using Baker�s theorem �Baker ����� in case f has only two monomials
�but the halting time depends exponentially in n	� Moreover he poses a question
akin to Problem ��

Worse
 the problem of deciding feasibility of diophantine equations in many
variables is well�known to be undecidable �cf� �Matiyasevich �����	� Thus we
consider the ��variable case� Since this problem looks much harder than in one
variable
 we would be happy with a single exponential algorithm for dense poly�
nomials� If f � ZZ�t�� � � � � tn� has degree d � IN 
 the dense representation of f is
the sequence of coe�cients fa�g for all � � INn with j�j � �� � � � � � �n � d�
The sequence is ordered by lexicographic ordering in INn� Then
 the size of the

�



dense representation of f is

size�f	 �
X
j�j�d

size�a�	�

Here size�a	 � ht�a	 if a �� � and size��	 � ��
We propose the following conjecture�

Conjecture � The feasibility of any diophantine equation P �x� y	 � � can be

decided in time �Cs where C is a universal constant and s is the size of P for the

dense representation�

This would follow from certain height estimates� Height bounds are a topic of
current interest in number theory
 but there are more conjectures than theorems�
For instance
 the Lang�Stark conjecture �Lang ����� proposes the upper bound
jxj � Cmax�jaj�� jbj�	k �C and k are universal constants	 on the height of all

solutions of equations of the form y� � x�� ax� b with �a� ���b� �� �� Here we
only need a bound on the smallest height of a solution
 though�
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