Felipe Cucker

Pascal Koiran

Steve Smale

A P olynomial Time Algorithm for Diophantine Equations in One Variable

Keywords: sparse polynomials, diophantine equations, computer algebra sparse polynomials, diophantine equations, computer algebra

We show that the integer roots of of a univariate polynomial with integer coe cients can be computed in polynomial time. This result holds for the classical (i.e. Turing) model of computation and a sparse representation of polynomials (i.e. coe cients and exponents are written in binary, and only nonzero monomials are represented).

On montre que les racines enti eres d'un polynôme en une variable a coe cients entiers peuvent être calcul ees en temps polynomial. Ce r esultat est valable pour le mod ele de calcul classique des machines de Turing et pour une repr esentation creuse des polynômes (coe cients et exposants sont ecrits en binaire, et seuls les monômes non nul sont repr esent es).

Mots-cl es: polynômes creux, equations diophantiennes, calcul formel.

Introduction

The goal of this paper is to prove the following.

Theorem 1 There i s a p olynomial time algorithm which given input f 2 ZZ t] decides whether f has an integer root and, moreover, the algorithm outputs the set of integer roots of f.

Here we are using sparse representation of polynomials and the classical (i.e. Turing) model of computation and complexity. That is, for f 2 ZZ t], f = a d t d + : : : + a 1 t + a 0 we encode f by the list of pairs f(i a i) j 0 i d and a i 6 = 0 g. The size of the sparse representation of f is de ned by size(f) = X ija i 6 =0

(size(a i) + size(i)) = X ija i 6 =0

(ht(a i) + ht(i))

Felipe Cucker and Steve Smale are with the Mathematics Departement of the City U n iversity of Hong Kong. Most of this work was done when Pascal Koiran visited them in June 1997.

1

where ht(a) = l o g (1 + jaj) is the (logarithmic) height o f a n i n teger a 2 ZZ. Thus, size(f) is roughly the number of bits needed to write down the list representing f. Polynomial time means that the number of bit operations to output the answer is bounded by c(size(f)) d for positive constants c d.

Note that the degree of f is at most 2 size(f) and this exponential dependence is sharp in the sense that there is no q 2 IN such that the degree of f is bounded by (size(f)) q for all f. In particular, evaluating f at a given integer x may b e an expensive task since the size of f(x) m a y be exponentially large as a function of size(f) a n d size(x).

Algorithms for sparsely encoded polynomials (or just sparse polynomials as they are usually called) are usually much less e cient than for the standard (dense) representation in which f is represented by the list fa 0 a 1 : : : a d g. This is due to the fact that some polynomials of high degree can be represented in a very compact way.

For dense polynomials, the existence of a real root can de decided e ciently (by Sturm's algorithm). It seems to be an open problem whether this can also be done in polynomial time with the sparse representation. Theorem 1 says that the existence of an integer root for sparse polynomials can be decided in polynomial time. In fact, all integer roots can be computed within that time bound. Our algorithm relies in particular on an e cient procedure for evaluating the sign of f at a given integer x. The (e cient) sign evaluation problem seems to be open for rational values of x.

We n o t e h e r e t h a t a v ersion of Theorem 1 is well-known for dense polynomials. For a general overview on computer algebra for one variable polynomials see [START_REF] Akritas | Elements of Computer Algebra with Applications[END_REF][START_REF] Mignotte | Mathematics for Computer Algebra[END_REF]].

Computing signs of sparse polynomials

The main result of this section is the proof that one can evaluate the sign of a polynomial f at x 2 ZZ in polynomial time. That is, given f 2 ZZ t] a n d x 2 ZZ, we can compute the quantity sign (f(x)) = 8 > < > :

;1 if f(x) < 0 0 if f(x) = 0 1 if f(x) > 0 in time polynomial in size(x) a n d size(f).
Theorem 2 There exists an algorithm which given input x 2 ZZ and f 2 ZZ t] computes the sign of f(x). The halting time of this algorithm is bounded b y a polynomial in size(x) and size(f).

Recall that a straight-line program with one variable is a sequence P = fc 1 : : : c k t u 1 : : : u `g where c 1 : : : c k 2 ZZ, and for i `, u i = a b with 2 f + ; g and a b two elements in the sequence preceding u i .

Clearly, u `may be considered as a polynomial f(t) we s a y t h a t P computes f(t). For every polynomial f(t) there exist straight-line programs computing f(t). Thus, straight-line programs are regarded as yet another way t o e n c o d e polynomials which turns out to be even more compact than the sparse encoding. We de ne the size of P to be size(P) = `+ k X i=1 size(c i):

Lemma 1 Let P be a s t r aight-line program in one variable of size s computing f(t) and x 2 ZZ such that 0 f(x) < T for some T > 0. Then f(x) can be computed i n t i m e p olynomially bounded i n s and size(T).

Proof. One performs the arithmetic operations (there are at most s of them) in the ring ZZ T of integers modulo T. E a c h operation in this ring is done with a number of bit steps polynomial in size(T).

The result, f(x), is the value of f(x) modulo T and therefore, by h ypothesis, the value of f(x).

Remark 1 A similar result holds if we h a ve ;T < f (x) < 0. Lemma 2 There is an algorithm which given input (x) 2 ZZ 2 , x > 0, 0 outputs `2 ZZ, > 0, such that 2 `;1 x 2 `+1 . The halting time is bounded by a polynomial in size(x) and size().

Sketch of the proof. Compute `2 ZZ, > 0 satisfying `; 1 log x `+ 1 .T o do so, one computes an approximation y of log x such that jy ; log xj 1=(2). Proof of Theorem 2. We can assume that x > 0 since if x < 0 t h e n f(x) i s g(;x) where g is obtained from f by c hanging the sign of the coe cients of the monomials with odd degree. Also, if x = 0 the problem can be solved by looking at the constant term of f. T h us, suppose x > 0.

Let k be the number of monomials of f so that f = a 1 t 1 + : : : + a k t k with 1 > 2 >: : :> k 0: Then, f(x) c a n b e e v aluated using Horner's rule as follows. Let k = k and j = j ; j+1 for j = 1 : : : k; 1. Then, j = j + j+1 + : : :+ k for j = 1 : : : k . Now w e inductively de ne p 0 = 0 and s i = p i;1 + a i and p i = s i x i for i = 1 : : : k . W e then have p k = f(x).

The precise evaluation of f(x) using the sequence of operations given by Horner's rule is not achieved in polynomial time since the intermediate results can be too large. Instead, we will inductively compute a sequence of rough approximations of s i and p i , with the right sign and of small (i.e. polynomially bounded) size.

More precisely, w e will produce a sequence of pairs (m i M i) 2 IN 2 and (v i V i) 2 IN 2 and a sequence of integers i , with i = 1 : : : kwith the following properties.

For i = 1 : : : k , i 2 f ; 1 0 1g and 8 > < > :

p i 2 2 m i 2 M i] if i = 1 p i 2 ;2 M i ;2 m i] if i = ;1 p i = 0 if i = 0 : (1)
Moreover, 0 M i ; m i 3i:

(2) Note that, since m i log jp i j, w e can write m i with a numb e r o f b i t s w h i c h is polynomial in S = m a x fsize(x) s i z e (f)g. The same holds for M i since M i m i + 3 i.

The same properties hold for s i and (v i V i). That is, for i = 1 : : : k , 8 > < > :

s i 2 2 v i 2 V i] if i = 1 s i 2 ;2 V i ;2 v i] if i = ;1 s i = 0 if i = 0 (3) and
V i ; v i 3i ; 2: (4) The general appearance of the algorithm is the following.

For input (x f), compute 1 : : : k as above and let 0 = 0 . Then, inductively, f o r i = 1 : : : k (a) compute v i V i and i from m i;1 M i;1 and i;1 (b) compute m i and M i from v i V i and i . Output k

We will show n o w h o w steps (a) and (b) are done. For (a), suppose that m i;1 M i;1 and i;1 are known. Then, we c o m p u t e v i V i and i as follows.

If i;1 = 0 then compute `such that 2 ` j a i j < 2 `+1 and let v i = `, V i = `+ 1 a n d i = sign (a i). If i;1 6 = 0 proceed as follows.

If 2 m i;1 2ja i j we h a ve t wo cases: if i;1 a i > 0 then let v i = m i;1 and V i = M i;1 + 1 else, if i;1 a i < 0, let v i = m i;1 ; 1 a n d V i = M i;1 . On the other hand, if 2 m i;1 < 2ja i j, compute the exact value of p i;1 using Lemma 1 with T = 2 M i;1 + 1 and let s i = p i;1 + a i .

If s i = 0 , l e t i = 0 . If s i 6 = 0 then compute `such t h a t 2 ` j s i j < 2 `+1 and let v i = `, V i = `+ 1 and i = sign (s i).

It is immediate to check that, if m i;1 M i;1 and i;1 satisfy conditions (1) and (2) then v i V i and i satisfy conditions (3) and (4). All lines in the above algorithm are executed in polynomial time. This is immediate except for the computation of the exact value of p i . But the algorithm in Lemma 1 has a halting time bounded by a polynomial in size(P) a n d size(T) f o r a n y P computing p i (x). In our case one can take a n y straight-line program computing p i of size polynomial in the size of f (Horner's rule as exposed above p r o vides one with 2i ; 1 operations) and we note that the size of T, i s a b o u t M i;1 , a n d M i;1 m i + 3 (i ; 1) < log(2ja i j) + 3 (i ; 1) which is also polynomial in size(f).

For (b), we proceed as follows.

Compute `such t h a t 2 `;1 x i 2 `+1 as in Lemma 2.

If i 6 = 0 then let m i = v i + `; 1 a n d M i = V i + `+ 1 .

Notice that in (a) we do not use the values of m i;1 and M i;1 if i = 0 . Consequently, w e do not compute them in (b) if this is the case.

Remark 2 It is an open problem whether one can compute the sign of f(x) i n polynomial time if f is given as a straight-line program. This is so even allowing the use of randomization, in which case the state of the art is an algorithm for deciding whether f(x) = 0 in randomized (one-side error) polynomial time (see [START_REF] Schwartz | Fast probabilistic algorithms for veri cation of polynomial identities[END_REF]).

3 Proof of Theorem 1 First we give a preliminary lemma. In the sequel we c o u n t roots without multiplicity, that is, the expression \k roots" means k di erent roots.

Lemma 3 Let f 2 IR t] have k monomials. Then f has at most 2k real roots.

Proof. If k = 1 the statement is true. If k > 1 write f = x p with p(0) 6 = 0 . Then p 0 , the derivative o f p, h a s k ; 1 monomials and, by induction hypothesis, at most 2(k ; 1) roots. From this we deduce that p has at most 2k ; 1 r e a l r o o t s and hence f h a s a t m o s t 2 k.

De nition 1 Let p 2 ZZ t] a n d M 2 ZZ, M > 0. Let C = f u i v i]g i=1 ::: N be a list of closed intervals with integer endpoints satisfying u i < u i+1 and v i = u i or v i = u i + 1 for all i. W e s a y that C locates the roots of p in ;M M] if for each root of p in ;M M] there is i N such that 2 u i v i]. Note that in this case p has no roots in (v i u i+1) for all i.

Let g 2 ZZ t] and M 2 ZZ, M > 0. Write g = t p with p(0) 6 = 0 and suppose that C 0 = f u i v i]g i=1 ::: N locates the roots of p 0 in ;M M]. Then, for each i < N , p has at most one root in the interval (v i u i+1) since, by Rolle's theorem, if p has two roots in (v i u i+1) t h e p 0 must have a root in this interval as well.

Moreover, p has a root in this interval if and only if p(v i)p(u i+1) < 0. This is so since if p(v i)p(u i+1) 0 and p has some root in (v i u i+1) then, either p has (at least) two roots in v i u i+1] or it has a double root in (v i u i+1). In both cases p 0 has a root in (v i u i+1) c o n tradicting the choice of C 0 .

Proposition 1 There is an algorithm which, given input g p2 ZZ t], M N and C 0 as above computes a list C locating the roots of p in ;M M]. The list C has at most N + 2 k intervals where k is the number of monomials of g. The halting time of the algorithm is polynomially bounded i n size(M), size(g) and N.

Proof. Using the algorithm of Theorem 2 compute the sign of p at the points ;M u 1 v 1 : : : u N v N M . Let x y] b e a n y of the N + 1 i n tervals ;M u 1], v 1 u 2] : : : v N;1 u N], v N M]. If p(x)p(y) > 0 w e know that there are no real roots of p in x y]. Otherwise, there is only one root which can be located in an interval of the form u u + 1] b y applying the classical bisection algorithm with integer mid-points (the interval has the form u u] i f w e nd a mid-point u such t h a t p(u) = 0). We form C by adding to C 0 these intervals.

Since the total number of roots of p is bounded by 2 k it follows that the number of intervals in C is at most N + 2 k.

The bound for the halting time is proved as follows. Bisection is applied to N + 1 i n tervals at most. Each of these intervals has length at most 2M an therefore, the number of sign evaluations is of the order of log M, that is, it is linear in size(M). Finally, all the sign evaluations (the 2(N + 1) r s t o n e s a n d the ones performed during the bisection process) are done in polynomial time in size(M) and size(g) b y Theorem 2. Proof of Theorem 1. Let f = a 1 t 1 + : : : + a k t k with 1 > 2 >: : :> k 0. Then, we can de ne polynomials p i inductively by f = t k p 1 p 1 (0) 6 = 0 and p 1 has k monomials p 0 1 = t k;1 p 2 p 2 (0) 6 = 0 and p 2 has k ; 1 monomials . . . p 0 k;1 = t 1 p k p k 2 ZZ p k 6 = 0 where k = k and 1 : : : k;1 only depend on 1 : : : k .

If L is a bound for the absolute value of the coe cients of f, the coe cients of p j are bounded by L j;1 1 for j = 1 : : : k . Therefore, since p j has exactly k ; j + 1 coe cients, we deduce that size(p j) (k ; j + 1)(j ; 1)size(1) + size(f) which is bounded by 2 (size(f)) 3 for all j = 1 : : : k . Now w e note that if is an integer root of f, then either = 0 o r divides a k . To p r o ve this, suppose that f() = 0 a n d 6 = 0 . Then k = 0 , t h a t i s , f = a 1 t 1 + : : : + a k;1 t k;1 + a k and we h a ve a 1 1 + : : : + a k;1 k;1 = ;a k : Since divides the left-hand side, it must divide a k .

Thus, all integer roots of f are in the interval ;ja k j ja k j] a n d w e can restrict our search t o t h i s i n terval.

Consider the algorithm input f Compute p 1 : : : p k . Let C k = 0 0]. For i = k ; 1 : : : 1, inductively compute C i locating the roots of p i in ;ja k j ja k j] using Proposition 1 with input C i+1 . Let S = .

For each endpoint x of an interval in C 1 , if f(x) = 0 t h e n l e t S = S f xg. Output S

The list C k isolates the roots of p k . Then, by k;1 applications of Proposition 1, the list C 1 isolates the roots of p 1 and since it contains the interval 0 0], the roots of f. This ensures the correctness of the algorithm.

The polynomial bound for the halting time follows from Proposition 1 plus the fact that size(p j) 2(size(f)) 3 for all j = 1 : : : k .

A Re nement

Let f = P n i=0 a i t i be an integer polynomial with 0 < 1 < < n and all a i 's nonzero. Given k 2 f 1 : : : n; 1g, one can write uniquely f as f = r k + x k+1 q k where r k and q k are integer polynomials, and deg(r k) = k (of course, r k = P k i=0 a i t i and q k = P n i=k+1 a i t i ; k). With these notations, we h a ve the following simple fact.

Proposition 2 Let M k = s u p 0 i k ja i j. I f x is an integer root of f and jxj 2,

x must also be a r oot of q k and r k provided that k+1 ; k > 1 + log M k .

Proof. Since x i s a r o o t o f f, jr k (x)j = jq k (x)j j xj k+1 . Moreover, jr k (x)j M k (1 + jxj + + jxj k) = M k jxj 1+ k ; 1 jxj ; 1 : >From these two relations we obtain jq k (x)j j xj k+1 ; k M k jxj=(jxj ; 1) 2M k since jxj 2. Finally, q k (x) 6 = 0 implies (k+1 ; k) l o g jxj 1 + l o g M k since jq k (x)j 1 in this case. This is in contradiction with the hypothesis k+1 ; k > 1 + log M k . We conclude that q k (x) = 0 , a n d r k (x) = 0 f o l l o ws immediately. This proposition applies in particular to polynomials that have a s m a l l n umber of terms compared to their degree (of course these are precisely the polynomials for which the sparse representation is interesting). Speci cally, i f f is a polynomial of degree d = n with a nonzero constant coe cient (i.e. 0 6 = 0) a n d M = M n = s u p 0 i n ja i j, there must exist a gap of at least d=n between two consecutive p o wers of f. Therefore one can always apply this proposition when d n > 1 + log M.

In any case, if the proposition applies we can rst compute the integer roots of r k (or q k) and then check whether any of these roots is also a root of q k (or r k). This can sometimes speed up the algorithm described in the previous sections, in particular when either q k or r k is of small size compared to f. F or instance, if f is of the form f(x) = x 2 ; 3 + x 5 q(x), only ;1 and 1 can possibly be integer roots of f. A n d i f f is of the form f(x) = x 2 ; 9 + x 7 q(x), all integer roots are in f;3 ;1 1 3g.

Final Remarks

Natural extensions of Theorem 1 would consider the existence of rational or real roots of f. F or rational roots, the arguments in Section 3 can be extended. If a rational p=q i s a r o o t o f f then p divides the constant t e r m a n d q divides the leading coe cient. Thus, the number of possible roots is again exponential in size(f) and the bisection method applies. Howeve r , i t i s a n o p e n q u e s t i o n whether one can compute the sign of f(p=q) in polynomial time. For real roots the situation seems even more di cult since bisection only may not detect multiple roots.

In another direction, one could consider diophantine equations in several variables. For sparse polynomials in several variables, sign determination seems to be a di cult question, and it is not clear whether Theorem 2 can be generalized. Actually, right n o w i t i s n o t k n o wn whether any algorithm exists to decide diophantine equations in two v ariables.

Recall that the (logarithmic) height o f a n i n teger x is de ned by ht(x) = log(1 + jxj).

Let f 2 ZZ t 1 : : : t n], f = P a t . Here a 6 = 0 , 2 IN n is a multiindex and the sum is over a nite set A IN n . The sparse representation of f is the sequence of pairs (a), and the size of f for this representation is de ned by size

(f) = X 2A (ht() + ht(a))
where ht() = ht(1) + : : : + ht(n).

It is well known that f can be evaluated at a point x 2 ZZ n in time polynomial in size(f) a n d size(x) i f f is considered with the dense representation.

Problem 1 Given f 2 ZZ t 1 : : : t n] and x 2 ZZ n , i s i t p ossible to compute sign (f(x)) in polynomial time in size(x) and size(f) for the sparse representation of f? Theorem 2 solves this problem for the case n = 1 . F or any x e d n, S h ub 1993] solves it using Baker's theorem [START_REF] Baker | Transcendental Number Theory[END_REF] in case f has only two monomials (but the halting time depends exponentially in n). Moreover he poses a question akin to Problem 1.

Worse, the problem of deciding feasibility of diophantine equations in many variables is well-known to be undecidable (cf. Matiyasevich 1 9 9 3]) . Thus we consider the 2-variable case. Since this problem looks much harder than in one variable, we w ould be happy with a single exponential algorithm for dense polynomials. If f 2 ZZ t 1 : : : t n] has degree d 2 IN, the dense representation of f is the sequence of coe cients fa g for all 2 IN n with j j = 1 + : : :+ n d. Here size(a) = ht(a) i f a 6 = 0 a n d size(0) = 1. We propose the following conjecture.

Conjecture 1 The feasibility of any diophantine equation P(x y) = 0 can be decided in time 2 Cs where C is a universal constant and s is the size of P for the dense representation.

This would follow from certain height estimates. Height bounds are a topic of current i n terest in number theory, but there are more conjectures than theorems. For instance, the Lang-Stark conjecture [START_REF] Lang | Number Theory III, V olume 60 of Encyclopaedia of Mathematical Sciences[END_REF] proposes the upper bound jxj C max(jaj 3 jbj 2) k (C and k are universal constants) on the height o f all solutions of equations of the form y 2 = x 3 + ax + b with 4a 3 + 2 7 b 2 6 = 0 . H e r e w e only need a bound on the smallest height of a solution, though.

 The sequence is ordered by lexicographic ordering in IN n . Then, the size of the dense