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Abstract

We study a problem coming from the design of wireless cellular radio�
communication network� Frequency planning constraints are modelled
in terms of graph theory�

For each planning function f let us call sp�f� � or the span of the fre�
quency planning f � the di�erence between the largest and the smallest
frequency used� Let the Order of the graph be Or�G� � sp�G��� and
the maximal local order of the graph the maximum order of a clique of
G� i�e� Mlo�G� � max

X clique of G sp�X�� We show	

Mlo�G� � sp�G� � 
dMlo�G�
�

e�

Keywords� Graph coloring� Frequency planning

R�esum�e

Ce rapport explore un probl�eme issue de l�allocation de frequence dans
les reseaux de radiocommunication cellulaire� Le probl�eme de plani��
cation est decrit �a l�aide de la theorie des graphes�

Pour une fonction donnee f de planni�cation� on appelle le span de
f � ou sp�f� � la di�erence entre la plus grande frequence employee
et la plus petite� Nous de�nissons aussi l�ordre du graphe comme
etant Or�G� � sp�G� � � et l�ordre local maximum Mlo�G� comme
etant l�ordre maximum d�une clique de G� c�est��a�dire Mlo�G� �
max

X clique of G sp�X�� Nous montrons le resultat suivant 	

Mlo�G� � sp�G� � 
dMlo�G�
� e�

Mots�cl�es� Coloriage de graphe� planni�cation de fr�equences
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� Introduction

In this paper� we study a problem derived from the graph coloring problem
� the motivation for such a pseudo�coloring problem comes from the design
of wireless cellular radiocommunication network�

Wireless telecommunication systems come from various contexts� i�e�
military �command systems� or civil �numerical TV� mobile phone� paging
systems����� �xed �TV broadcasting� or Mobile �cellular phone�� half�duplex
or full�duplex� The next generation of wireless telecommunication systems
� refered as Universal Mobile Telecommunication System � will provide a
wide variety of services combining a wide variety of telecommunication tech�
nologies� All this systems share the spectral congestion problem and user
capacity management problem�

The cellular concept was a major breakthrough in solving such problems�
It is a system level idea which calls for replacing a single� high power trans�
mitter �large cells� with many low power transmitters �small cells�� Each
transmitter is allocated a portion of the total number of channels available
to the entire system�
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��� Hexagonal model

The conceptual hexagonal model is a model where each cell has a hexagonal
shape with the corresponding transmitter in the center of it� This model
is simple but it has been universally adopted since it permits easy and
manageable analysis of cellular system�

The cellular plani�cation area is now tilled with hexagons� Radioco�
munication parameters are mapped onto this hexagonal grid� The usual
parameters are demands and interference constraints� Each cell of the net�
work receives a demand� i�e� the number of frequencies needed to ful�l the
forecasted services in this area�

Interference is a major limiting factor in the performance of cellular radio
systems� The two major types of system�generated cellular interference are
co�channel interference and adjacent channel interference�

Frequency reuse means that in a given coverage area there are several
cells that use the same set of frequencies� To reduce co�channel interference�
co�channel cells must be physically separated by a minimum distance to
provide su	cient isolation due to propagation�

Interference resulting from signals which are adjacent in frequency to the
desired signal is call adjacent channel interference� Adjacent channel inter�
ference results from imperfect receiver �lters which allow nearby frequencies
to leak into the passband�

��� Generalized coloring

In the hexagonal model the neighbors of a cell are simply the 
 neighboring
hexagons in the grid� The resulting neighboring graph G�V�E� is a trian�
gular lattice� An integer d�v� from ��� Dmax is assigned to each node v � V

of graph� Parameters are attached to the graph� the co�site interference
constraint K� and the adjacent intereference set of constraints Ki� where
Ki is the interference constraint for pair of vertices at distance i �usually
Ki � � for i after the �reuse distance���

We assume for the rest of the paper that frequencies are taken from the
interval ��� Fmax� Let us call a planning function or a frequency assignment
of this weighted graph G�V�E� fKig� a function f � V � P���� Fmax�� which
assigns a subset of frequencies to each vertex of a graph� Planning function
must respect the following constraints�

C�� �v � G� card�f�v�� � d�v�
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C�� �v � G� �f�� f� � f�v�� jf� � f�j � K�

C�� �v� u � G� distance�v� u� � i� �f�� f�� f� � f�v�� f� � f�u�� jf�� f�j �
Ki

In this paper we will be interested in the case K� � k � �� K� � � and
�i � �� Ki � ��

For each planning function f let us call sp�f� � or the span of the
frequency planning f � the di�erence between the largest and the small�
est frequency used� The goal of the frequency assignment problem is
to �nd the planning function with the minimal span� i�e to �nd f� for
which sp�f�� � sp�G� � minf sp�f�� We also de�ne Or�G�� the Or�
der of the graph G as Or�G� � sp�G� � �� and Mlo�G�� the maximal
local order of the graph G as the maximum order of a clique of G� i�e�
Mlo�G� � max

X clique of G sp�X��
Let us denote by � and � respectively the clique number and the chro�

matic number of the graph G� We de�ne the weighted clique number
�W as the maximal sum of the demand of a clique of G� Note that if
�v � G� d�v� � � then ��G� � �W �G�� We also de�ne the weighted chro�
matic number �W �G� as the chromatic number of the graph G� obtained
by the blowup operation� When the demand is not less or equal to one
everywhere� the blowup operation consist of expanding each vertex v with
d�v� � � to a clique of size d�v� �if d�v� � �� then v is deleted�� Note that
�W �G� � ��G��� Furthermore� for k � � we get Or�G� � �W �G��

If �v � G� d�v� � � and K� � K� � � ��i � �� Ki � �� we obtain a
graph coloring problem on a triangular lattice� For arbitrary demand and
K� � K� � � we obtain a graph multicoloring problem on a triangular
lattice�

In this paper we give tight upper bounds for �W in terms of �W for case
K� arbitrary k � �� K� � � and �i � �� Ki � �� The main result of our
paper is that for arbitrary k�

Mlo�G� � sp�G� � �d
Mlo�G�



e

and in case k � �

�W �G� � �W �G� � d
�

�
�W e

For the later� there is a probabilistic proof of the upper bound ��� A
linear distributed algorithm which guarantees the ���� is reported in ��� In
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fact their algorithm guarantees the ����� We are not aware of any work on
upper bound for general case�

There was a lot of work done on celebrated Philadelphia examples �see
�� and the references there�� In this examples there are constraints at dis�
tance � and � �i�e� K� and K� are not zero�� The results on Philadelphias
include tight lower bounds while upper bounds were given by planing func�
tions constructed� Therefore no upper bounds were derived as far as we
know� Although instances are relatively small ��� cells� they have proved
to be extremely di	cult� This anticipates the general problem to be very
challenging�

In the next section we start with an example and give some de�nitions
and observations� In section � we prove a tight upper bound for �W and
give a linear time algorithm which �nds assignment within this bound� In
sections � and � analogous results are given for cases k � � and k � ��

The problem for K� � K� � � is still open�

� Preliminaries

��� A simple case� k 
 �� � 
 �

We start with an ilustrative example� Although simple� the general idea will
be used in some other proofs later�

Proposition � If k � � and ��G� � � then ��G� � ��

Proof� Let G be a triangular lattice graph with � � �� First we apply the
red�blue�green coloring to the graph G� We will show that it is possible to
cover all other cliques by using only one additional color�

Clearly� the red�blue�green coloring reduces all demands by one�
It is easy to see that there are no triangles left in the graph� Even more�

the graph induced on vertices� which still have positive demand is a graph
of isolated vertices�

If demand of a vertex after red�blue�green coloring is �� then the vertex
was an isolated vertex in the original graph� If not� then there was a clique
of demand � �� which is in contradiction with � � �� Hence we can color it
by the other two colors�

If demand of a vertex after red�blue�green coloring is �� we can use the
fourth color� This can be done� because these vertices are clearly indepen�
dent� If not� then there were two adjacent vertices with demand � in G�
which is in contradiction with � � �� �
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Figure �� Example of a graph with � � � and � � �
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Figure �� Coordinates

The bound just proved is best possible as the example of Fig� � shows�
There is only one vertex with demand � in the graph �this is the vertex of

degree �� All other vertices have demand �� It is easy to see that the maximal
clique size of the expanded graph is � and that the chromatic number of this
graph is �� �

��� Triangular lattice graphs

In this paper we are interested only in graphs which are induced subgraphs of
triangular lattice� We therefore can label each vertex of G with coordinates
which are de�ned by embedding in the in�nite triangular lattice� �with
vertex � and orientation in � directions given� �see Fig� ���

Given a graph G we will always assume that there is an embbeding into
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the in�nite triangular lattice given� Equivalently� we will assume that each
vertex of G is assigned three coordinates�

�Although � coordinates are enough to identify each vertex� we take �
for symmetry��

Furthermore� because the in�nite triangular lattice has essentialy unique
� coloring� or in other words its vertex set has a unique partition into three
independent sets� we assume this partition is given� and according to this
partition each vertex of G is called red� blue or green vertex�

�Note that it is enough to give each vertex the � coordinates and it is pos�
sible to derive from this information also in which of the three independent
sets the vertex is in��

Furthermore we call a vertex v of G odd �even� with respect to coordinate
i� if v�s i�th coordinate is an odd �even� number�

��� Red�blue�green colorings

For any triple �i� j� k�� i� j� k � � we de�ne a �i� j� k� r�b�g coloring as follows�
assign a set of i colors to each of the red vertices of G� a set of j colors
to each of the blue vertices of G and a set of k colors to each of the green
vertices of G�

When saying that we have applied a �i� j� k� r�b�g coloring to G� we will
assume that we get a new graph with reduced demands� This graph is a
subgraph of G� because there may be some vertices� for which the demand
was already ful�lled by the r�b�g coloring�

Lemma � Let H be a graph obtained from G after application of �i� j� k�
r�b�g coloring� i� j � k � � � �� There are no triangles in H�

Proof� if not� then � � �i� �� � �j � �� � �k� �� � �� contradiction� �

De�nition � A vertex v in H with color c� � fr� g� bg is said to be c�free
�c �� c�� c � fr� g� bg� i� it has no c neighbors in H�

Lemma � Let H be a graph obtained from G after application of �i� j� k�
r�b�g coloring� i� j�k � �� �� Each vertex of H is either free with respect
to two colors� or free with respect to one color or is not free�

�a� If a vertex is free with respect to two colors� then it is an isolated vertex
of H�

�b� The set of c�free vertices is bipartite�






�c� If a vertex v is not free� then it may have at most two neighbors in H�
In this case� the two edges incident to v are on a straight line� i�e� all
three vertices di�er in the same coordinate�

�d� Let K be the graph induced on the vertices which are not free in H�
The connected components of K are paths or isolated vertices�

Proof�

�a� clear�

�b� any such set is colored by the other two colors �as de�ned at end of
�����

�c� Assume v is not free and has two neighbors u and w� We now look at
the angle between edges vu and vw� The angle can not be �

�
� because

then the vertices u� v� w would induce a triangle in H � The angle can
not be ��

�
� as the following argument shows� Assume for a moment

the angle is ��
� � Then u and w are of the same color� say c� Since v

is not free with respect to any color this implies that there must be a
neighbor of v in H of color di�erent from c� But then this neighbor�
the vertex v and u or w induce a triangle in H � Contradiction� The
only possibility left is hence angle ��

�d� clear using �c��

�

��� Formulas for Mlo�G

Let Dmax be the maximal demand of a vertex of G�
Denote by Q the set of all cliques of G� These are only triangles� edges or

vertices� We assume that every element of Q is a triangle adding �virtual�
vertices with demand zero adjacent to isolated vertices and edges�

For k � �� the demand of a clique is simply the sum of demands� since
all colors must be distinct and there is no other constraint� Hence

Lemma � If k � � then�

Mlo�G� � maxfdu � dv � dw j uvw � Qg
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Assume k � � and let d� � d� � d� be demands on vertices of an
arbitrary triangle of Q� Then the order of any planning function for this
triangle is at least

��d� � �� � � if d� � d� � d�
or
d� � d� � d� if d� � d� � d� �see Fig� ���

Therefore�

Lemma 	 If k � � then�

Mlo�G� � maxf�Dmax � ��maxfdu � dv � dw j uvw � Qgg

Let now k � �� We compute the maximal order needed to ful�ll demand
of any triangle� The order of any planning function full�lling the demand of
a triangle only depends on the number of vertices with with demand Dmax

in this triangle�

Dmax

k�Dmax � �� � �

Dmax

Dmax

k�Dmax � �� � �

Dmax

Dmax Dmax

k�Dmax � �� � �

�
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Figure �� Optimal frequency planning for a triangle� k � ��

Lemma 
 If k � � then�

Mlo�G� �

��
�
k�Dmax � �� � � if all demands Dmax isolated
k�Dmax � �� � � if at most two maximal demands adjacent
k�Dmax � �� � � if there is a triangle with three demands Dmax

� Case k � �

Recall that for k � �� �W �G� � Mlo�G� and �W �G� � Or�G�� This is the
usual multicoloring of triangular lattice with demand�

��� Lower bound

Proposition � If �W �G� � � then �W �G� � �W �G� � d�
�
�W �G�e�

The case � � � is trivial� If � � �� then the connected components of
G are isolated vertices� paths and cycles� Since odd cycles can be induced
subgraphs of triangular lattice� � � ��

Proof� We give an algorithm which multi�colors any triangular lattice
graph with at most d�

�
��G�e colors� The algorithm has two steps�

�� step� We apply a ���� ��� ��� r�ed�b�lue�g�reen coloring to the graph
G� where �� � �� � �� � �� Without loss of generality we can write
�max � �� � �� � �� � �min�

�At �rst reading� the reader may assume �� � �� � �� and � � ��� for
simplicity� Or� a little more general� d�

�
e � �� � �� � �� � b�

�
c��

We will show that it is possible to cover all other cliques by using only
�max additional colors�
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Let H to be the graph obtained after the ���� ��� ��� r�ed�b�lue�g�reen
coloring to the graph G�

By Lemma �� we know that there is no triangle in H � Furthermore� the
vertices of H are either isolated or free with respect to one color or not free�
In the second step we show� that in each case the vertex can be colored by
at most �max additional colors�
Step ���� Let v be a vertex isolated or with degree one in H � v is free
according to at least one color� say c� Let u be a neighbor of v in G with
color c and maximal demand �among c�color neighbors�� du� let us denote
the number of colors which were available for u in the r�b�g coloring by �u�
Then we can color v with ��u � dm� spare colors of the neighbor u� After
that� the demand of the edge uv is at most � � �u � �v � �max and we can
ful�ll it with �max additional �white� colors�

Note that since v is isolated in H � there is no possible con�ict for using
white colors at the rest of H �
Step ���� gives coloring of the free vertices which have degre at least �
in H � It is easy to color these red free vertices by unused red colors� for
example as follows� Choose one of the partitions of the set of red vertices�
and for any vertex of this partition take as many �high� red colors as needed�
For the other partition of this set� at any vertex� some of the �low� colors
may have been used for red neighbors and some �high� colors may have been
used for red free neighbors�

Fact� there must be enough �middle� colors to ful�ll the demand� �Proof�
if not� then we get a contradiction by summing up the demands��

Step ���� Now we color the rest of the graph� i�e� the vertices� which
are not free� Denote the graph induced on this set of vertices K�

Since K is a union of paths and isolated vertices� it is bipartite� Take
any of the two independent sets and color vertices of it by �low� white colors�
Vertices of other bipartition can clearly be colored by the �high� white colors�
�Proof� if not� sum up the demands and get a contradiction��

Therefore� all demands were full�lled by � � �max colors� �

��� Algorithm

All information we need is the following�
�demand of the vertex and of its neighbors
�� and the �global addresses� of the vertex and its neighbors
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The addresses are used for determining which of the sets the vertex is
in �in r�b�g coloring of the �rst step� and second� it can be used to uniquely
determine which bipartition of K the vertex is in� i�e� will it receive �low� or
�high� white colors�

if color�v��red then v receive first I red colors d�v��d�v��I endif

if color�v��green then v receive first J red colors d�v��d�v��J endif

if color�v��blue then v receive first K red colors d�v��d�v��K endif

if d�v��� then STOP

if v is isolated or c�free with degree � then

let v� be the heaviest neighbor of v in G with color c

v receives the colors from the c set not used in v� and all

colors of the w set

else

if v is a c�free vertex then

Let c��color�v� and c� be the � colors of

the vertex of this c�free componant

Let c� be the subset of the c set not needed by

the c neighbor of v

if c��c� then

v receive the highest color of c� needed to fillful its demand

else

v receive the lowest color of c� needed to fillful its deman

endif

else

Let x be the index in which differ from its neighbors

if x is odd then

v receive the highest color of w set needed to fillful its demand

else

v receive the highest color of w set needed to fillful its demand

endif

endif

endif

Remark� recall that as soon as ���� ��� ��� is known frequency planning
can be made locally by each cell� If the global �W changes it has to be
broadcasted to all cells and they can update their frequency plan dynami�
cally� Therefore� if F is the maximal number of available frequencies for the
cellular service to be planned� one can set �� � �� � �� to �F��� But note
that this algorithm guarantees the solution only if �� � �� � �� � �F���
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� Case k � �

Proposition � Let k � � and Mlo�G� � �� Then Mlo�G� � Or�G� �
�dMlo�G�

�
e

It will be shown that it is possible to use the same proof as for case
k � �� but we must give a more precise de�nition of color sets� In fact� the
construction is even simpler �at step �� because of

Lemma � Dmax � dMlo�G�
�

e

The statement follows directly from lemma ��
Proof� De�ne the colors in the interval �dMlo

�
e by the following table�

odd numbers R� B� G� X

even numbers B� G� R� Y

More precise�

R� � �� �� � � � � �dMlo

�
e � �

B� � �� �� � � � � �dMlo

� e
B� � �dMlo

�
e� �� � � � � �dMlo

�
e � �

G� � �dMlo

� e � �� � � � � �dMlo

� e
G� � �dMlo

�
e � �� � � � � 
dMlo

�
e � �

R� � �dMlo

�
e� �� � � � � 
dMlo

�
e

X � 
dMlo

�
e � �� � � � � �dMlo

�
e � �

Y � 
dMlo

�
e� �� � � � � �dMlo

�
e

We also de�ne where free vertices will borrow from�

� red borrows from B� low and G� high

� blue borrows from G� low and R� high

� green borrows from R� low and B� high

From the point of view of a vertex lending its colors� we have�

� red reserves R� low for greens and R� high for blues �and uses from
the rest for coloring itself�

� blue reserves B� low for reds and B� high for greens

��
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Figure �� Green vertex v can borrow � vertices�

� green reserves G� low for blues and G� high for reds

Recal from the previous section that every vertex can compute from local
information whether it will borrow or lend colors� The vertex also knows
how many colors of each type will be given to each neighbor�
Fact� At step �� after application of r�g�b coloring� there is only demand at
most d�� e at any vertex�
�Proof� demand � Dmax � �d�

�
e � d�

�
e � �d�

�
e � d�

�
e� using the lemma 
� �

The last observation implies the following�

�a� colors of X can be assigned to one� and colors of Y to the other par�
tition at step ��

�b� colors assigned to the same vertex always di�er by at least k � ��

This completes the proof of proposition� �

We illustrate case �b� above by the following example� Let v be a green
vertex in H � It may borrow from R� �low� and B� �high�� If dMlo

�
e � �� v

may want to borrow at most � colors� In this case� we see in Fig� �� that v
can borrow without con�ict as long as the number of red and blue vertices
to be borrowed is not more than ��

� Case k � �

Assignment
�� k� �� �k� �� � � � � dmaxk to red�

��



�� k� �� �k� �� � � � � dmaxk � � to blue and
�� k� �� �k� �� � � � � dmaxk � � to green vertices

is always proper�
Therefore� the di�erence between order Or�G� and Mlo�G� is always ���

or ��

Proposition 	 Let k � �� Then Mlo�G� � Or�G� �Mlo�G� � �

� Conclusion

We conclude with a couple of open problems�

Problem I �nd good upper bounds for Or�G� in term of Mlo�G� for more
general Ki� For example�

� K� � K� � �� �i � �� Ki � �

� K� � K� � K� � �� �i � �� Ki � � �some Philadephias fall in
this case��

� etc���

Problem II let G be arbitrary k�colorable graph� Is there a bound for
�W �G� in terms of �W �G�� for example� if k � � we have by simple
generalization of our methods �W �G� � d�

�
�W �G�e�
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