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We study a problem coming from the design of wireless cellular radiocommunication network. Frequency planning constraints are modelled in terms of graph theory. For each planning function f let us call sp(f) -or the span of the frequency planning f -the di erence between the largest and the smallest frequency used. Let the Order of the graph be Or(G) = sp(G) + 1a n d the maximal local order of the graph the maximum order of a clique of G, i.e. Ml o (G) = max X clique of G sp(X). We show: Ml o (G) sp(G) 8d Mlo(G) 6 e.

Introduction

In this paper, we study a problem derived from the graph coloring problem the motivation for such a pseudo-coloring problem comes from the design of wireless cellular radiocommunication network.

Wireless telecommunication systems come from various contexts, i.e. military (command systems) or civil (numerical TV, mobile phone, paging systems...), xed (TV broadcasting) or Mobile (cellular phone), half-duplex or full-duplex. The next generation of wireless telecommunication systems -refered as Universal Mobile Telecommunication System -will provide a wide variety of services combining a wide variety of telecommunication technologies. All this systems share the spectral congestion problem and user capacity management problem.

The cellular concept was a major breakthrough in solving such problems. It is a system level idea which calls for replacing a single, high power transmitter (large cells) with many l o w p o wer transmitters (small cells). Each transmitter is allocated a portion of the total number of channels available to the entire system. 1

Hexagonal model

The conceptual hexagonal model is a model where each cell has a hexagonal shape with the corresponding transmitter in the center of it. This model is simple but it has been universally adopted since it permits easy and manageable analysis of cellular system.

The cellular plani cation area is now tilled with hexagons. Radiocomunication parameters are mapped onto this hexagonal grid. The usual parameters are demands and interference c onstraints. E a c h cell of the network receives a demand, i.e. the number of frequencies needed to ful l the forecasted services in this area.

Interference is a major limiting factor in the performance of cellular radio systems. The two m a j o r t ypes of system-generated cellular interference are co-channel interference and adjacent c hannel interference.

Frequency reuse means that in a given coverage area there are several cells that use the same set of frequencies. To reduce co-channel interference, co-channel cells must be physically separated by a minimum distance to provide su cient isolation due to propagation.

Interference resulting from signals which are adjacent in frequency to the desired signal is call adjacent c hannel interference. Adjacent c hannel interference results from imperfect receiver lters which allow nearby frequencies to leak into the passband.

Generalized coloring

In the hexagonal model the neighbors of a cell are simply the 6 neighboring hexagons in the grid. The resulting neighboring graph G(V E ) is a triangular lattice. An integer d(v) from 0 D max ] is assigned to each n o d e v 2 V of graph. Parameters are attached to the graph: the co-site interference constraint K 0 and the adjacent i n tereference set of constraints K i , w h e r e K i is the interference constraint for pair of vertices at distance i (usually K i = 0 for i after the \reuse distance").

We assume for the rest of the paper that frequencies are taken from the interval 1 F max ]. Let us call a planning function or a frequency assignment of this weighted graph G(V E fK i g) a function f : V ! P ( 1 F max ]), which assigns a subset of frequencies to each v ertex of a graph. Planning function must respect the following constraints:

C0) 8v 2 G card(f (v)) = d(v) C1) 8v 2 G 8f 1 f 2 2 f (v) jf 1 ; f 2 j K 0 C2) 8v u 2 G distance(v u ) = i 8f 1 f 2 f 1 2 f (v) f 2 2 f (u) jf 1 ; f 2 j K i
In this paper we will be interested in the case K 0 = k 1, K 1 = 1 and 8i > 1 K i = 0 .

For each planning function f let us call sp(f ) -o r t h e span of the frequency planning f -the di erence between the largest and the smallest frequency used. The goal of the frequency assignment problem is to nd the planning function with the minimal span, i.e to nd f for which sp(f ) = sp(G) = m i n f sp(f ). We also de ne Or(G), the Order of the graph G as Or(G) = sp(G) + 1 and M l o (G), the maximal local order of the graph G as the maximum order of a clique of G, i.e. M l o (G) = max X clique of G sp(X ).

Let us denote by ! and respectively the clique number and the chromatic number of the graph G. We de ne the weighted clique number ! W as the maximal sum of the demand of a clique of G. Note that if 8v 2 G d(v) = 1 then !(G) = ! W (G). We also de ne the weighted c h r omatic number W (G) as the chromatic number of the graph G 0 obtained by the blowup operation. When the demand is not less or equal to one everywhere, the blowup operation consist of expanding each v ertex v with d

(v) > 1 to a clique of size d(v) ( i f d(v) = 0, then v is deleted). Note that ! W (G) = !(G 0 ). Furthermore, for k = 1 w e g e t Or(G) = W (G). If 8v 2 G d(v) = 1 a n d K 1 = K 0 = 1 ( 8i > 1 K i = 0
) w e obtain a graph coloring problem on a triangular lattice. For arbitrary demand and K 1 = K 0 = 1 w e obtain a graph multicoloring problem on a triangular lattice.

In this paper we give t i g h t upper bounds for W in terms of ! W for case K 0 arbitrary k 1, K 1 = 1 and 8i > 1 K i = 0. The main result of our paper is that for arbitrary k:

M l o (G) sp(G) 8d M l o (G) 6 e and in case k = 1 ! W (G) W (G) d 4 3 ! W e
For the later, there is a probabilistic proof of the upper bound 3]. A linear distributed algorithm which guarantees the 4 =3 is reported in 2]. In fact their algorithm guarantees the 4!=3. We a r e n o t a wa r e o f a n y w ork on upper bound for general case.

There wa s a l o t o f w ork done on celebrated Philadelphia examples (see 4] and the references there). In this examples there are constraints at distance 2 and 3 (i.e. K 2 and K 3 are not zero). The results on Philadelphias include tight l o wer bounds while upper bounds were given by planing functions constructed. Therefore no upper bounds were derived as far as we know. Although instances are relatively small (21 cells) they have proved to be extremely di cult. This anticipates the general problem to be very challenging.

In the next section we start with an example and give some de nitions and observations. In section 3 we p r o ve a tight upper bound for W and give a linear time algorithm which nds assignment within this bound. In sections 4 and 5 analogous results are given for cases k = 2 a n d k 3.

The problem for

K 1 > K 0 > 1 is still open! 2 Preliminaries 2.1 A simple case: k = 1 , ! = 3
We start with an ilustrative example. Although simple, the general idea will be used in some other proofs later.

Proposition 1 If k = 1 and !(G) = 3 then (G) 4.

Proof: Let G be a triangular lattice graph with ! = 3. First we apply the red-blue-green coloring to the graph G. W e will show that it is possible to cover all other cliques by using only one additional color.

Clearly, the red-blue-green coloring reduces all demands by one.

It is easy to see that there are no triangles left in the graph. Even more, the graph induced on vertices, which still have positive demand is a graph of isolated vertices.

If demand of a vertex after red-blue-green coloring is 2, then the vertex was an isolated vertex in the original graph. If not, then there was a clique of demand > 3, which i s i n c o n tradiction with ! = 3. Hence we can color it by the other two colors.

If demand of a vertex after red-blue-green coloring is 1, we can use the fourth color. This can be done, because these vertices are clearly independent. If not, then there were two adjacent v ertices with demand 2 in G, which i s i n c o n tradiction with ! = 3 . The bound just proved is best possible as the example of Fig. 1 shows.

There is only one vertex with demand 2 in the graph (this is the vertex of degree 2) All other vertices have demand 1. It is easy to see that the maximal clique size of the expanded graph is 3 and that the chromatic number of this graph is 4.

Triangular lattice graphs

In this paper we are interested only in graphs which are induced subgraphs of triangular lattice. We therefore can label each v ertex of G with coordinates which are de ned by e m bedding in the in nite triangular lattice. (with vertex 0 and orientation in 3 directions given) (see Fig. 2).

Given a graph G we will always assume that there is an embbeding into the in nite triangular lattice given. Equivalently, w e will assume that each vertex of G is assigned three coordinates.

(Although 2 coordinates are enough to identify each v ertex, we t a k e 3 for symmetry.) Furthermore, because the in nite triangular lattice has essentialy unique 3 coloring, or in other words its vertex set has a unique partition into three independent s e t s , w e assume this partition is given, and according to this partition each v ertex of G is called red, blue or green vertex.

(Note that it is enough to give e a c h v ertex the 3 coordinates and it is possible to derive from this information also in which of the three independent sets the vertex is in.)

Furthermore we c a l l a v ertex v of G odd (even) with respect to coordinate i, i f v's i-th coordinate is an odd (even) number.

Red-blue-green colorings

For any triple (i j k), i j k 0 w e de ne a (i j k) r-b-g coloring as follows: assign a set of i colors to each of the red vertices of G, a set of j colors to each of the blue vertices of G and a set of k colors to each of the green vertices of G.

When saying that we h a ve applied a (i j k) r-b-g coloring to G, w e w i l l assume that we get a new graph with reduced demands. This graph is a subgraph of G, because there may b e s o m e v ertices, for which the demand was already ful lled by the r-b-g coloring.

Lemma 1 Let H be a g r aph obtained f r om G after application of (i j k) r-b-g coloring, i + j + k ! ; 2. There a r e no triangles in H .

Proof: if not, then ! (i + 1 ) + ( j + 1 ) + ( k + 1 ) > ! , c o n tradiction. De nition 1 A vertex v in H with color c 1 2 f r g b g is said to be c-free (c 6 = c 1 c 2 f r g b g) i i t h a s n o c neighbors in H .

Lemma 2 Let H be a g r aph obtained f r om G after application of (i j k) r-b-g coloring, i + j + k ! ; 2. Each vertex of H is either free w i t h r espect to two colors, or free with respect to one color or is not free.

(a) If a vertex is free with respect to two colors, then it is an isolated vertex of H .

(b) The set of c-free vertices is bipartite.

(c) If a vertex v is not free, then it may have at most two neighbors in H . In this case, the two edges incident to v are on a straight line, i.e. all three vertices di er in the same coordinate.

(d) Let K be t h e g r aph induced on the vertices which are n o t f r ee i n H . The connected c omponents of K are p aths or isolated vertices.

Proof:

(a) clear. (b) any such set is colored by the other two colors (as de ned at end of 2.2). (c) Assume v is not free and has two neighbors u and w. W e n o w l o o k a t the angle between edges vu and vw. The angle can not be 3 , because then the vertices u v w would induce a triangle in H . The angle can not be 2 3 , as the following argument shows. Assume for a moment the angle is 2 3 . T h e n u and w are of the same color, say c. Since v is not free with respect to any color this implies that there must be a neighbor of v in H of color di erent f r o m c. But then this neighbor, the vertex v and u or w induce a triangle in H . Contradiction. The only possibility left is hence angle . (d) clear using (c).

Formulas for Ml o (G)

Let D max be the maximal demand of a vertex of G.

Denote by Q the set of all cliques of G. These are only triangles, edges or vertices. We assume that every element o f Q is a triangle adding \virtual" vertices with demand zero adjacent to isolated vertices and edges.

For k = 1, the demand of a clique is simply the sum of demands, since all colors must be distinct and there is no other constraint. Hence where ! 1 + ! 2 + ! 3 = !. Without loss of generality w e can write ! max = ! 1 ! 2 ! 3 = ! min .

(At rst reading, the reader may assume ! 1 = ! 2 = ! 3 and ! = 3 ! 1 for simplicity. Or, a little more general:

d ! 3 e = ! 1 ! 2 ! 3 = b ! 3 c.)
We will show that it is possible to cover all other cliques by using only ! max additional colors. green reserves G 1 low for blues and G 2 high for reds

Recal from the previous section that every vertex can compute from local information whether it will borrow or lend colors. The vertex also knows how many c o l o r s o f e a c h t ype will be given to each neighbor. This completes the proof of proposition.

We illustrate case (b) above b y the following example. Let v be a green vertex in H . I t m a y borrow from R 1 \low" and B 2 \high". If d Mlo 6 e = 8 , v may w ant t o b o r r o w at most 8 colors. In this case, we see in Fig. 4, that v can borrow without con ict as long as the number of red and blue vertices to be borrowed is not more than 8. Problem I nd good upper bounds for Or(G) in term of M l o (G) for more general K i . F or example:

-K 0 > K 1 > 1 8i 2 i = 0 -K 0 K 1 K 2 = 1 8i 3 K i = 0 (some Philadephias fall in this case).

-etc...

Problem II let G be arbitrary k-colorable graph. Is there a bound for W (G) in terms of ! W (G) for example, if k = 3 w e h a ve b y simple generalization of our methods W (G) d 3 2 ! W (G)e.

Figure 1 :

 1 Figure 1: Example of a graph with ! = 3 a n d = 4

Lemma 3 Figure 3 : 3 ! 3 !

 3333 Figure 3: Optimal frequency planning for a triangle, k = 2 .

4 Case k = 2 Proposition 3 ee

 23 Let k = 2 and M l o (G) 3. Then M l o (G) Or(G)8dMlo(G) 6 It will be shown that it is possible to use the same proof as for case k = 1, but we m ust give a more precise de nition of color sets. In fact, the construction is even simpler (at step 3) because of Lemma 6 D max dMlo(G) 2The statement follows directly from lemma 4.Proof: De ne the colors in the interval 8d

Figure 4 :

 4 Figure 4: Green vertex v can borrow 8 v ertices.

Fact:

  At step 2, after application of r-g-b coloring, there is only demand at most d ! 6 e at any v ertex. (Proof: demand D max ; using the lemma 6. )The last observation implies the following:(a) colors of X can be assigned to one, and colors of Y to the other partition at step 2. (b) colors assigned to the same vertex always di er by at least k = 2 .

5 Case k 3

 3 Assignment1 k + 1 2k + 1 : : : d max k to red, 13 2 k + 2 2k + 2 : : : d max k + 1 to blue and 3 k + 3 2k + 3 : : : d max k + 2 to green vertices is always proper.Therefore, the di erence between order Or(G) a n d M l o (G) i s a l w ays 0,1 or 2. Proposition 4 Let k 3. Then M l o (G) Or(G) M l o (G) + 2 6 Conclusion We conclude with a couple of open problems.
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Let H to be the graph obtained after the (! 1 ! 2 ! 3 ) r ed]-b lue]-g reen] coloring to the graph G.

By Lemma 1, we know that there is no triangle in H . F urthermore, the vertices of H are either isolated or free with respect to one color or not free. In the second step we s h o w, that in each case the vertex can be colored by at most ! max additional colors.

Step 2.1. Let v be a vertex isolated or with degree one in H . v is free according to at least one color, say c. L e t u be a neighbor of v in G with color c and maximal demand (among c-color neighbors), d u . let us denote the number of colors which w ere available for u in the r-b-g coloring by ! u . Then we can color with (! u ; d m ) spare colors of the neighbor u. After that, the demand of the edge uv is at most ! ; ! u ; ! v ! max and we can ful ll it with ! max additional (white) colors.

Note that since v is isolated in H , there is no possible con ict for using white colors at the rest of H .

Step 2.2. gives coloring of the free vertices which h a ve degre at least 2 in H . It is easy to color these red free vertices by u n used red colors, for example as follows. Choose one of the partitions of the set of red vertices, and for any v ertex of this partition take a s m a n y 'high' red colors as needed. For the other partition of this set, at any v ertex, some of the 'low' colors may h a ve been used for red neighbors and some 'high' colors may h a ve been used for red free neighbors.

Fact: there must be enough 'middle' colors to ful ll the demand. (Proof: if not, then we g e t a c o n tradiction by summing up the demands.)

Step 2.3. N o w w e color the rest of the graph, i.e. the vertices, which are not free. Denote the graph induced on this set of vertices K .

Since K is a union of paths and isolated vertices, it is bipartite. Take any of the two independent sets and color vertices of it by ' l o w' white colors. Vertices of other bipartition can clearly be colored by the 'high' white colors. (Proof: if not, sum up the demands and get a contradiction.) Therefore, all demands were full lled by ! + ! max colors.

Algorithm All information we n e e d i s t h e f o l l o wing:

-demand of the vertex and of its neighbors -! and the \global addresses" of the vertex and its neighbors 10

The addresses are used for determining which o f t h e s e t s t h e v ertex is in (in r-b-g coloring of the rst step) and second, it can be used to uniquely determine which bipartition of K the vertex is in, i.e. will it receive ' l o w' or 'high' white colors.

is isolated or c-free with degree 1 then let v' be the heaviest neighbor of v in G with color c v receives the colors from the c set not used in v' and all colors of the w set else if v is a c-free vertex then Let c1=color(v) and c2 be the 2 colors of the vertex of this c-free componant Let c' be the subset of the c set not needed by the c neighbor of v if c1>c2 then v receive the highest color of c' needed to fillful its demand else v receive the lowest color of c' needed to fillful its deman endif else Let x be the index in which differ from its neighbors i f x i s o d d t h e n v receive the highest color of w set needed to fillful its demand else v receive the highest color of w set needed to fillful its demand endif endif endif Remark: recall that as soon as (! 1 ! 2 ! 3 ) i s k n o wn frequency planning can be made locally by each c e l l . If the global ! W changes it has to be broadcasted to all cells and they can update their frequency plan dynamically. Therefore, if F is the maximal number of available frequencies for the cellular service to be planned, one can set ! 1 + ! 2 + ! 3 to 3F=4. But note that this algorithm guarantees the solution only if ! 1 + ! 2 + ! 3 3F=4.