N
N

N

HAL

open science

Generic Distributed Shared Memory: the DSM-PM2
Approach

Gabriel Antoniu, Luc Bougé, Raymond Namyst

» To cite this version:

Gabriel Antoniu, Luc Bougé, Raymond Namyst. Generic Distributed Shared Memory: the DSM-PM?2
Approach. [Research Report] LIP RR-2000-19, Laboratoire de I'informatique du parallélisme. 2000,

2+413p. hal-02102068

HAL Id: hal-02102068
https://hal-lara.archives-ouvertes.fr /hal-02102068
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lara.archives-ouvertes.fr/hal-02102068
https://hal.archives-ouvertes.fr

%

Laboratoire de I'Informatique du Parallélisme

. - CENTRE NATIONAL
Ecole Normale Supérieure de Lyon DE LA RECHERCHE

Unité Mixte de Recherche CNRS-INRIA-ENS LYON rf 8512 SCIENTIFIQUE

Generic Distributed Shared Memory:
the DSM-PM2 Approach

Gabriel Antoniu

Luc Bougé March 2000
Raymond Namyst

Research Report N° RR-2000-19

Ecole Normale Supérieure de Lyon

- SPI
EEEEN
EEEEN

46 Allée d'Italie, 69364 Lyon Cedex 07, France
Téléphone : +33(0)4.72.72.80.37 ﬁ 1 N R I A
Télécopieur : +33(0)4.72.72.80.80 !

Adresse électronique : 1ip@ens-1lyon.fr

Generic Distributed Shared Memory: the DSM-PM2 Approach

Gabriel Antoniu
Luc Bougé
Raymond Namyst

March 2000

Abstract

This paper describes DSM-PM2, a generic, multi-protocol distributed
shared memory library built for PM2, a multithreaded runtime system
with preemptive thread migration. DSM-PM2 allows threads running
on different nodes to communicate via a virtually shared address space
and supports multiple consistency models. For a given model, the user
can select among several alternative implementations, based for instance
on page migration, thread migration, or an adaptative combination of
them. Moreover, new consistency models or new implementations of ex-
isting models can be easily added using the available library routines.
DSM-PM2 is available on top of several UNIX systems and can use a
large variety of network protocols (BIP, SCI, VIA, MPI, TCP, etc.). We
report performance figures for platforms using different network proto-
cols: SISCI/SCI, BIP /Myrinet and TCP/Myrinet.

Keywords: Generic DSM, Thread migration, Multi-protocol DSM, Iso-address migration, PM2,
multithreading.
Résumeé

Nous décrivons DSM-PM2, une librairie générique et multi-protocole
pour la gestion de mémoire distribuée virtuellement partagée. Cette li-
brairie a été concue et implantée pour PM2, un environnement mul-
tithread distribué qui propose la migration de processus légers. Grace
a DSM-PM2, des processus légers qui s’exécutent sur différents noeuds
peuvent communiquer via un espace d’adressage commun. DSM-PM2
supporte plusieurs modéles de cohérence et, pour un modéle donné, plu-
sieurs implantations alternatives, basées sur la migration de pages, sur la
migration de processus légers, ou bien sur une combinaison des deux. De
plus, de nouveaux modeéles de cohérence peuvent étre facilement rajoutés,
ainsi que de nouvelles implantations des modéles existants. DSM-PM2
est disponible pour plusieurs systémes de type UNIX et peut utiliser
un grand nombre de protocoles reseaux (BIP, SCI, VIA, MPI, TCP,
etc.). Nous présentons de mesures de performances pour 3 platformes:
SISCI/SCI, BIP/Myrinet and TCP/Myrinet.

Mots-clés: MDVP générique, migration de processus léger, MDVP multi-multiprotocole,
migration, migration iso-adresse, PM2, multithreading.

Generic Distributed Shared Memory: the DSM-PM2 Approach

Gabriel Antoniu* Luc Bougé* Raymond Namyst*

Contents
1 Introduction 2

2 DSM-PM2 overview
2.1 General features L e e e e e e e e
2.2 Architecture L e e e e e e
2.3 Using DSM-PM2: the programming interface

Uk W W

3 Specifying protocols
3.1 Sequential consistency using a classical approach oo oL
3.2 Sequential consistency using thread migration oL L.
3.3 Using DSM-PM2 as a runtime for compiled Java

© oo

4 Performance evaluation 10

5 Conclusion 11

“LIP, ENS Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07, France. Contact: {Gabriel.Antoniu,Luc.Bouge,Raymond.
Namyst}@ens-lyon.fr. This work has been supported by the INRIA ResCapA Research Coordinated Action, the
NSF/INRIA C*IT Cooperative Research Grant, the CNRS ARP Research Program and the ReMaP Project, INRIA
Rhone-Alpes.

1 Introduction

Distributed Shared Memory (DSM) libraries have been available for a dozen of years. In their
traditional flavor |7, 11, 12|, they allow a number of separate processes to share a common address
space according to some fixed consistency model: sequential consistency, release consistency, etc.
The processes may usually be physically distributed among a number of distant computing nodes
interconnected by some communication library. The design of the DSM library is usually highly
dependent on the selected consistency model and on the communication library.

Most existing DSM libraries are bound to one specific consistency model. Recently, it has been
observed that the availability of multiple consistency models within the same library would allow
the designer to tune applications more efficiently. Also, the interaction of the DSM library with
the underlying communication library are often poorly structured. Adapting DSM libraries to new
optimized communication libraries based on recent high-performance networks such as Myrinet or
SCI has shown difficult. Finally, the advent of multithreading facilities in modern operating systems
has raised the problem of the interaction between threads and DSM |[8, 9].

This conjunction of factors has considerably hindered the development of generic, portable and
efficient DSM libraries in the past years. Actually, attempting to enhance an existing DSM library
with extra consistency protocols while merging it with an existing communication library on top of
an existing thread library sounds like a nightmare... To our knowledge, no existing DSM system
tackles all these three problems at once [1, 5, §].

We believe that the right approach is to reconsider the problem from scratch with the primary
goals of genericity, portability and efficiency in mind. Our portable and efficient distributed mul-
tithreaded environment called PM2 [10] (Parallel Multithreaded Machine) provides an interesting
basis to address this challenge. We have therefore designed a new prototype DSM library called
DSM-PM2, built on top of PM2. The DSM-PM2 library is designed so as to inherit from PM2 its
wide spectrum of portability across platforms, and the efficiency of its thread management. Also,
using the portable communication library of PM2 guarantees optimized performance across a vari-
ety of networking protocols. We have done one additional step by designing the library as a generic
toolbox. It implements various consistency models, and even provides multiple implementations
(thereafter called protocols) for the same model. A number of protocols are built-in. The user can
easily add extra models or specific implementations of some existing model. This is an extremely
valuable feature if the DSM library is to be targeted by compilers (Java, OpenMP, HPF, etc.): it is
possible to easily tune the implementation so as to take advantage of the specific semantic features
of the generated code.

Our work is related to that of DSM-Threads [8, 9], a system which extends POSIX multithreading
to distributed environments by providing a multithreaded DSM. Our approach is different essentially
by the generic support and the ability to support new, user-defined consistency protocols. Another
system integrating threads with Distributed Shared Memory is Millipede [6]. While Millipede is
designed for a single execution environment (Windows NT cluster with Myrinet) and focuses on
sequential consistency, DSM-PM2 proposes multiple consistency models and protocols on top of
several UNIX systems and can use a large variety of network protocols (BIP, SCI, VIA, MPI, TCP,
etc.).

In this paper, we introduce our DSM-PM2 prototype library. Its general structure and program-
ming interface are presented in Section 2. Section 3 discusses in more detail how to select/define
protocols. Two implementations of the sequential consistency model are described, a first one based
on page migration, and the second one using thread migration. Finally, we illustrate the portability
and efficiency of DSM-PM2 by reporting its performance on top of different platforms using different

network protocols: SISCI/SCI, BIP /Myrinet and TCP/Myrinet.

2 DSM-PM2 overview

PM2 (Parallel Multithreaded Machine) [10] is a multithreaded environment for distributed architec-
tures. Its programming interface is based on Remote Procedure Calls (RPC). Using RPC, the PM2
threads can invoke the remote execution of user defined services. Such invocations can either be
handled by a pre-existing thread or they can involve the creation of a new thread. Threads running
on the same node can freely share data. Threads running on distant nodes can only interact through
RPC. This mechanism can be used either to send/retrieve information to/from the remote node, or
to have some remote action executed. The latency of an LRPC is 6 ps on SISCI/SCI and 8 us on
BIP /Myrinet.

PM2 has two main components. For multithreading, it uses Marcel, an efficient, user-level,
POSIX-like thread package. For communication, PM2 relies on Madeleine [4], an efficient and
portable library implemented on top of high-performance protocols such as BIP, SCI, VIA, as well
as on traditional protocols such as TCP, MPI and PVM.

PM2 provides a thread migration mechanism that allows threads to be transparently and pre-
emptively moved from one node to another during their execution. Such a functionality is typically
useful to implement dynamic load balancing policies. In the original version of PM2 [10], no provi-
sion was made to maintain the relationship between a migrating thread and the data it is accessing:
this was left to the designer, and only ad-hoc hook functions were provided. Coupling thread mi-
gration and data migration becomes a pretty complex issue in this context. The DSM-PM2 library
addresses namely this point: it provides migrating threads with the illusion of a uniformly shared
memory on top of a distributed architecture efficiently exploited by PM2.

Given that existing DSM applications require different consistency models, it makes little sense
to dedicate a DSM library to a specific model. Therefore, DSM-PM2 has been designed to be
generic and to support multiple consistency models. Moreover, thanks to the thread migration
facility provided by PM2, DSM-PM2 can propose alternative mechanisms to implement a given
model. The user can for instance choose to migrate the thread to the data it accesses, or to migrate
the pages containing the accessed data to the thread, or any suitable combination of both. This
is done by selecting the appropriate library protocols. The user can even dynamically switch from
one policy to another. Moreover, new protocols can be built using existing library components.

2.1 General features

The main features characterizing DSM-PM2 are the following ones.

Multiple consistency models DSM-PM2 has been designed so as to support a number of consis-
tency models. Sequential consistency and Java consistency are now operational, but other
consistency models can be supported using the existing internal DSM mechanisms.

Multithreaded features DSM-PM2 has been designed so as to be compatible with PM2’s program-
ming interface, which allows threads to be created locally or remotely (via Remote Procedure
Calls). Since all threads may access shared data, regardless of their location, all available pro-
tocols and their supportive data structures guarantee thread-safety. To ensure this property,
classical protocols (such as Li and Hudak’s dynamic distributed manager algorithm) had to
be adapted to a multithreaded execution context. On the other hand, thread-related features

provided by PM2 (such as thread migration) have served as a basis for the design of the
consistency protocols themselves.

Generic multi-protocol support We call consistency protocol a possible implementation of a given
consistency model. DSM-PM2 proposes alternative mechanisms to implement the same consis-
tency model. For instance, we currently provide two built-in protocols implementing sequential
consistency: the first one uses page replication and page migration, whereas the second one
relies on thread migration exclusively. The user can explicitly associate protocols with shared
data.

Adaptive protocols Users may also choose hybrid approaches by building new protocols out of
existing library routines. Protocols may mix page replication, page migration and thread
migration. Moreover, one may build protocols able to dynamically switch from one policy to
another depending on external factors such as load information or access histories.

Access detection DSM-PM2 provides a multithreaded DSM interface: static and dynamic data
can be shared by all the threads in the system. Since the programming interface is intended
both for direct use and as a target for compilers, no pre-processing is assumed in the general
case and accesses to shared data are detected using page faults. Nevertheless, an application
can choose to bypass the fault detection mechanism by controlling the accesses through calls
to get/put primitives which explicitly handle consistency. In some cases, the resulting cost
may be smaller than the overhead of the underlying fault handling subsystem. DSM-PM2
copes with this approach as well, as illustrated by the implementation of the Java consistency
model discussed in Section 3.3.

Portability DSM-PM2 requires no specific system support, is fully operational on top of Linux
and Solaris and is portable over a large set of communication networks and communication
protocols (such as BIP, SCI, VIA, MPI, TCP) thanks to Madeleine, PM2’s communication
library. The implementation contains only a few OS/architecture-dependent instructions for
segmentation fault information (address, fault type, etc.).

Efficiency DSM-PM2 adds only a very small overhead (10-15%) to the cost of the communication
operations required to take consistency actions (which gives a lower bound for the overall cost).
This is illustrated and discussed in Section 4 with figures for 3 different platforms. Hence we
can claim DSM-PM2 is well-suited as a target DSM runtime system for high-performance
applications.

2.2 Architecture

DSM-PM2 is structured in layers (Figure 1). At the high level, a DSM protocol policy layer is
responsible for building consistency protocols out of a subset of the available library routines and
for associating each application data with its own consistency protocol. The library routines (used
to bring a copy of a remote page to a thread, to migrate a thread to a remote page, to invalidate
all copies of a page, etc.) are grouped in the lower-level DSM protocol library layer. Finally, these
library routines are built on top of two base components: the DSM page manager and the DSM
communication module. The DSM page manager is essentially dedicated to the low-level manage-
ment of memory pages. It implements a distributed table containing page ownership information
and maintains the appropriate access rights on each node. This table can be exploited to implement
protocols which need a fixed page manager, as well as protocols based on a dynamic manager |7].

DSM-PM2

DSM protocol policy

DSM protocol lib

-

DSM page manager] [DSM comm

\ J

PM2 PM2
Thread subsystem Comm. subsystem

\

Figure 1: Overview of the DSM-PM2 software architecture

The DSM communication module is responsible for providing elementary communication mecha-
nisms, such as delivering requests for page copies, sending pages, invalidating pages or sending diffs.
This module has been implemented using PM2’s RPC mechanism, which meets very well our needs.
For instance, requesting a copy of a remote page for read access can essentially be seen as invoking
a remote service. On the other hand, since the RPC are implemented on top of the Madeleine com-
munication library, the DSM-PM2 communication module is portable across all networks supported
by Madeleine (SCI, BIP, MPI, TCP, PVM) with no extra cost.

2.3 Using DSM-PM2: the programming interface

Figure 2 shows a sample DSM-PM2 code. The program uses a single shared variable (c¢) which
is shared by all threads on all nodes. Static shared data are declared within a special section,
bracketed by the macros BEGIN _DSM_ DATA and END DSM _DATA. The program is SPMD and
is intended to run on two nodes. First, the default DSM protocol is selected (in this case, a protocol
implementing sequential consistency using a variant of Li and Hudak’s dynamic distributed manager
algorithm |7], adapted by Mueller |8, 9] for a multithreaded context). Note that we use a library
protocol in this case, but custom protocols can be used, too, as explained in Section 3.

On each node, the function my func() is invoked (through a direct call on node 0 and through a
RPC on node 1). The function increments 1,000,000 times the shared variable ¢, whose final value
diplayed by node 0 will be 2,000,000. As a more complex code exemplifying multithreading, we
could create multiple threads on each node, each of them calling my func() and incrementing c.
For simplicity, we do not illustrate this feature here.

3 Specifying protocols

A protocol is a set of actions destined to guarantee consistency according to a consistency model.
In our current implementation, a protocol is specified through six functions that are automatically
called by the generic DSM support, as described in Table 1. These functions are grouped in a struc-
ture (dsm_ protocol t) which needs to be passed as an argument to the DSM protocol initialization
primitive: void pm2_init_dsm_protocol(dsm_protocol t xprot).

Protocol function Description

read fault handler Called on a read page fault

write_fault _handler Called on a write page fault

read server Called on receiving a request for read access
write server Called on receiving a request for write access
invalidate server Called on receiving a request for invalidation
receive page server Called on receiving a page

Table 1: DSM-PM2 protocol actions

Protocol Description

dsmlib_ddm li_hudak prot Implements sequential consistency using page replication on
read access and page migration on write access. Relies
on a variant of the dynamic distributed manager MRSW
algorithm described by Li and Hudak [7|, adapted by
Muller [8, 9].

dsmlib_migrate thread prot | Implements sequential consistency using thread migration on
both read and write faults.

dsmlib_hyp java prot Implements Java consistency. Non-standard MRMW proto-
col, based on explicit checks for locality, not on page faults.

Table 2: DSM-PM2 library protocols

There are three ways to specify protocols:

Using library protocols Users can select one of the pre-initialized dsm_ protocol t structures avail-
able in DSM-PM2. Their specific features are summarized in Table 2.

Building protocols using library routines Users can choose to build protocols by defining dsm
protocol t structures grouping library routines in approaches not provided by the library
protocols. One may thus choose hybrid approaches such as page replication on read fault and
thread migration on write fault. One may even embed a dynamic mechanism selection within
the protocol, switching for instance from page migration to thread migration depending on
ad-hoc criteria.

Building protocols using DSM-PM2 lower-level blocks Finally, users may build their own pro-
tocols using the programming interface of the lower-level DSM-PM2 libraries: dsm_page
manager for page management and dsm_comm for communication. Of course, this approach
is more difficult and more complex. The user is responsible for using these libraries in a
consistent way to produce a valid protocol.

In the following two subsections we describe our two built-in protocols for sequential consistency.

3.1 Sequential consistency using a classical approach

Li and Hudak [7] propose several algorithms for sequential consistency (fixed centralized manager,
fixed distributed manager, dynamic distributed manager, etc.). Though all these protocols could be
implemented using our two base modules (DSM page manager and DSM communication module),

#include "dsm-pm2.h"
#define N 1000000

BEGIN_DSM_DATA
int ¢ = 0;
END_DSM_DATA

dsm_mutex_t L; /* Global mutex */
int DSM_SERVICE; /* service id */
pm2_completion_t end; /* completion object */

void my_func () {
int i;
for (i = 0; i < Nj i++) {
dsm_mutex_lock (&L);
ct++;
dsm_mutex_unlock (&L);

}

void main () {
/* Select the DSM protocol: */
pm2_set_dsm_protocol (&dsm_lib_li_hudak_prot);

/* Register a user-level RPC: when DSM_SERVICE
is invoked on a remote node,
the function my_func is called: */
pm2_rpc_register (&DSM_SERVICE, my_func);

/* Initialize the global mutex: */
dsm_mutex_init (&L, NULL);

/* Call PM2’s init procedure */
pm2_init O}

/* The following code is executed on node O only */
if (pm2_self () == 0) {
/* Invoke DSM_SERVICE on node 1. This will result is a call
to my_func on node 1. The completion is then signalled
to node O using the object "end" x/
pm2_rpc (1, DSM_SERVICE, &end);

/* Call my_func on node 0 */
my_func ();

/* Wait for completion on node 1 */
pm2_wait (&end);

printf ("Final value = %d\n", c);
pm2_halt (Q;

Figure 2: Sample DSM-PM2 program.

we have chosen to implement the third one only, which shows good properties as regards scalability.
This algorithm has been adapted by Mueller [8, 9] in his implementation of DSM-Threads, in order
to take into account the extra complexity due to multithreading. As opposed to the simple case
presented by Li and Hudak, where all page faults on a node are processed sequentially, concurrent
requests may be processed in parallel in a multithreaded context, should they concern the same
page or different pages.

The algorithm uses page replication on read and page migration (after invalidation of all copies)
on write. We illustrate page migration on Figure 3. It is carried out when a thread needs to write
to a page and does not have the appropriate access right. The access is detected through a page
fault and the thread executes the handler corresponding to the fault type (i.e., the second function
in the protocol structure, for a write access). The function consults the page table and requests the
page and its ownership to the supposed owner of the page (here, Node 1). Node 1 may no longer be
the owner of the page and in this case it forwards the request to the owner pointed by its page table
(i.e., Node 2). On receiving the request, Node 2 (which we assume to be the current owner) creates
a thread which calls the write server (4th function in the protocol structure), which invalidates all
page copies (here, only the local copy) and sends the page directly to Node 0, together with the page
ownership. On receiving the page, Node 0 creates a thread which executes the receive page server
(last function in the protocol structure): it installs the page, sets the appropriate access rights in
the page table, and eventually wakes up the waiting thread. Note that other threads may have tried
to access the page in the meantime, but in this case they have been blocked, waiting for the request
to be served. Therefore, all the threads waiting for the page are waked up when the page arrives.
On the other hand, multiple page requests may be concurrently issued by threads running on the
same node if they concern different pages.

% 777777777 rl andler
writ? z comm thread
page fault
ask probable z
owner — comm thread
%forward req %
comm thread to probable owner -
§ § invalidate
validate send page
page + ownership
; wake up thread
Node 0 Node 1 Node 2

Figure 3: Sequential consistency (classical solution): on a write page fault, the page and its owner-
ship are transfered to the requesting node

3.2 Sequential consistency using thread migration

For sequential consistency, we propose an alternative protocol based on thread migration. The
protocol structure is quite simple in this case, it only references PM2’s migrate thread function in
the first two fields of the protocol structure (i.e., for read fault and write fault), whereas the other
fields are set to NULL. When a thread accesses a page and does not have the appropriate access

rights, it executes the page fault handler which simply migrates the thread to the node owning the
page (as specified by the local page table). Observe that it is a remarkable feature of PM2 to be
able to migrate a thread which is just executing a fault handler! On reaching the destination node,
the thread exits the handler and repeats the access. If the access rights are appropriately set on
this node, the access is successful and the thread continues its execution. Otherwise, the repeated
access results in a new segmentation fault and the the thread is then migrated to the owner pointed
by the local page table. Note the simplicity of this protocol, which essentially relies on a single
function: the powerful thread migration primitive provided by PM2.

Let us also emphasize that the protocol works well thanks to our iso-address approach to data
allocation. DSM data is located at the same virtual address on all nodes and, consequently, on
exiting the fault handler after migration, the thread automatically repeats the access at the same
address, which does correspond to the same piece of data.

writ
page?aultz
migrate to
probableowner| | = _ ¢
§ end handler
DSM access
repeated:
success!
Node 0 Node 1

Figure 4: Sequential consistency using thread migration: on page fault, the thread migrates to the
node where the data is located

3.3 Using DSM-PM2 as a runtime for compiled Java

As explained above, the DSM-PM2’s API for protocol specification consists of a set of functions
automatically called by the generic DSM mechanism. This approach is well suited for implementa-
tions using page faults to detect accesses to shared data, like our two library protocols implementing
sequential consistency. We have also implemented a protocol for Java consistency [3]| to demonstrate
the genericity of the internal structure of DSM-PM2. This Java protocol relies on explicit checks
for data location. Accesses to shared data are controlled using specific get/put primitives and con-
sistency actions are partly taken automatically (on receiving a page request or on receiving a page),
partly using explicit calls to some extra protocol primitives (loadlntoCache, updateMainMemory,
flushCache) built on top of our low-level DSM-PM2 libraries: dsm _page manager and dsm _comm.
This has allowed us to use DSM-PM2 as a target for the Hyperion [2] distributed Java system.
See [3] for a detailed description of our protocol for Java consistency.

4 Performance evaluation

We have evaluated the raw performance of our basic protocol primitives on three different platforms.
The first column in Table 3 and in Table 4 corresponds to measurements carried out on a cluster of
450 MHz Pentium IT nodes running Linux 2.2.10 interconnected by a SCI network using the SISCI
protocol. The figures in the next two columns have been obtained on a cluster of 200 MHz Pen-
tium Pro nodes running Linux 2.2.13 interconnected by a Myrinet network using the BIP and TCP
protocols respectively. (Unfortunately, we could not use two platforms with the same processors.)

Table 3 reports the time (in us) taken by each step involved when a read fault occurs on a node,
assuming that the associated implementation of the protocol is page transfer based. First, the
execution of the faulting instruction raises a signal (page fault). This signal is caught by a handler
that inspects the page table to locate the real owner on the page and protects the associated table
entry from being further accessed by other threads (fault handling). Then, a request message is sent
(request transmission) to this owner. Once its arrival is detected on the owner node, the request is
processed (request service) and the asked page is sent back to the other node (page transmission).
Finally, the page is installed, the appropriate access rights are set on the corresponding address area
and the faulting instruction is restarted (page installation).

Note that we had to use two distinct ping-pong test programs in order to measure the exact
respective transfer times for page request and page transfer.

Operation PII 450 MHz | PPro 200 MHz | PPro 200 MHz

SISCI/SCI | BIP/Myrinet | TCP/Myrinet
Page fault 18 56 56
Fault handling 1 2 2
Request transmission 17 30 190
Request service 1 2 2
Page transmission 85 134 412
Page installation 12 24 24

| Total (us) \ 134 | 248 | 686 |

Table 3: Performance analysis of the processing of a read-fault under page-migration policy.

As one can observe, the processing overhead of DSM-PM2 with respect to the raw transmission
time is only 10-15%. The overhead related to page installation includes a call to the mprotect
primitive to set the write access right on the page and a call to malloc to allocate the page bitmap
necessary for recording local modifications. This latter cost could be further improved using a
custom malloc-like primitive.

In Table 4 we report the cost (in us) for processing a read fault assuming a thread migration
based implementation of the consistency protocol. As one may guess, the page foult processing time
is the same as with the page-transfer based implementation. However, the fault handling time is
now insignificant, because the associated processing is just an access to the page table, to determine
the owner of the page. The last step merely consists of a call to the underlying runtime to migrate
the thread to the owner node. That’s all!

We can observe that this migration-based implementation outperforms the previous one, because
thread migration is very efficient. Note however, that this migration time is closely related to the
stack size of the thread, because it has to be entirely migrated on the remote node along with the
thread descriptor. In our test program, the thread’s stack was very small (about 1 kB), which is

10

Operation PIT 450 MHz | PPro 200 MHz | PPro 200 MHz
SISCI/SCI | BIP/Myrinet | TCP/Myrinet

Page fault 18 o6 o6
Fault handling - - -
Thread migration 24 75 257

| Total (us) \ 42 | 131 | 313 |

Table 4: Performance analysis of the processing of a read-fault under thread-migration policy.

typically the case in many applications, but not in all applications. Thus, choosing between the
implementation based on page transfer and the one based on thread migration deserves careful
attention. Moreover, it may depend on other criteria such as the number and the location of the
threads accessing the same page, etc. This is a research topic we plan to investigate in the future.

5 Conclusion

We have introduced our DSM-PM2 prototype, a DSM library for our PM2 distributed, multi-
threaded runtime environment. DSM-PM2 provides an integrated framework to handle migrating
threads sharing a uniform memory space across a network of distributed nodes. DSM-PM2 inherits
the portability and efficiency of PM2. It is available on a large number of platforms and intercon-
nection protocols, from standard, general-purpose ones (PVM, MPI) to high-performance, specific
ones (SCI, Myrinet, VIA, etc.). Instead of being dedicated to one consistency model, DSM-PM2 is
able to handle multiple consistency models, and even multiple implementations of a single model.

The distinguished feature of DSM-PM2 is its ability to support user-defined consistency proto-
cols through an internal programming interface. A number of predefined protocols are available,
and the user can freely redefine and/or combine them. Most interestingly, this allows the user to
provide alternative implementations for some existing models, which takes advantage of the specific
semantic features of the application. For instance, sequential consistency may be implemented by
migrating pages to threads, or by migrating threads to pages, or by dynamically selecting on each
access fault which of the alternative is the best one. Some existing implementation may be moreover
enhanced by pre-fetching pages according to the behavior of the application, or by modifying on
the fly the ownership of the pages. DSM-PM2 sets no limits to the inventiveness of the user! Its
interface has proved generic enough to support the Java consistency model.

Currently, DSM-PM2 is operational on Linux and Solaris and our preliminary tests on top of
SISCI/SCI, TCP/Myrinet and BIP/Myrinet have been successful. The three protocols mentioned
in Table 2 are available and hybrid protocols mixing thread migration and page replication can also
be built out of library functions. We are currently working on the dynamic memory allocator and
on the distributed synchronization mechanisms.

We intend to further develop our generic low-level components by providing support for other
consistency models and protocols (such as release consistency). Using the remote read/write features
provided by the SCI communication interface also seems a promising topic to investigate. Finally,
we plan to evaluate DSM-PM2 using the SPLASH-2 [13] benchmarks.

11

Acknowledgments

We thank Frank Mueller for his helpful explanations about the implementation of DSM-Threads.
We also thank Phil Hatcher for our fruitful collaboration regarding Java consistency.

References

1]

2]

3]

4]

5]

(6]

7]

18]

19]

[10]

[11]

C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and
W. Zwaenepoel. TreadMarks: Shared memory computing on networks of workstations. IEEE
Computer, 29(2):18-28, February 1996.

G. Antoniu, L. Bougé, P. Hatcher, M. MacBeth, K. McGuigan, and R. Namyst. Compiling
multithreaded Java bytecode for distributed execution. Research Report RR2000-08, LIP, ENS
Lyon, Lyon, France, February 2000. Submitted for publication.

G. Antoniu, L. Bougé, P. Hatcher, M. MacBeth, K. McGuigan, and R. Namyst. Implement-
ing Java consistency using a generic, multithreaded DSM runtime system. In Parallel and
Distributed Processing. Proc. Intl Workshop on Java for Parallel and Distributed Computing.,
Lect. Notes in Comp. Science, Cancun, Mexico, May 2000. Held in conjunction with IPDPS
2000, Springer-Verlag. To appear.

L. Bougé, J-F. Méhaut, and R. Namyst. Efficient communications in multithreaded runtime
systems. In Parallel and Distributed Processing. Proc. 3rd Workshop on Runtime Systems
for Parallel Programming (RTSPP ’99), volume 1586 of Lect. Notes in Comp. Science, pages
468-182, San Juan, Puerto Rico, April 1999. Held in conjunction with IPPS/SPDP 1999,
Springer-Verlag.

A. ITtzkovitz and A. Schuster. MultiView and Millipage — fine-grain sharing in page-based
DSMs. In Proc. 8rd Symposium on Operating Systems Design and Implementation (OSDI),
pages 215228, February 1999.

A. Ttzkovitz, A. Schuster, and L. Shalev. Thread migration and its application in distributed
shared memory systems. J. Systems and Software, 42(1):71-87, July 1998.

K. Li and P. Hudak. Memory coherence in shared virtual memory systems. ACM Transactions
on Computer Systems, 7(4):321-359, November 1989.

F. Mueller. Distributed shared-memory threads: DSM-Threads. In Proc. Workshop on Run-
Time Systems for Parallel Programming (RTSPP), pages 31-40, Geneva, Switzerland, April
1997. Held in conjonction with IPPS ’97.

F. Mueller. On the design and implementation of DSM-Threads. In Proc. Int’l Conf. on
Parallel and Distributed Processing Techniques and Applications (PDPTA’97), pages 315-324,
June 1997.

R. Namyst. PM2: an environment for a portable design and an efficient execution of irreqular
parallel applications. Doctoral thesis, Univ. Lille 1, France, January 1997. In French.

B. Nitzberg and V. Lo. Distributed shared memory: A survey of issues and algorithms. [EEE
computer, 24(8):52-60, September 1991.

12

[12] J. Protic, M. Tomasevic, and V. Milutinovic. Distributed shared memory: concepts and sys-
tems. IEEFE Paralel and Distributed Technology, pages 63—-79, 1996.

[13] S. C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. The SPLASH-2 programs: Char-
acterization and methodological considerations. In Proc. 22nd Annual Int’l Symp. on Comp.
Arch., pages 24-36, Santa Margherita Ligure, Italy, June 1995.

13

