
HAL Id: hal-02102067
https://hal-lara.archives-ouvertes.fr/hal-02102067

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Kleene Theorem for Piecewise Constant Signals
Automata (extended abstract)

Jérôme Durand-Lose

To cite this version:
Jérôme Durand-Lose. A Kleene Theorem for Piecewise Constant Signals Automata (extended ab-
stract). [Research Report] LIp RR-2002-43, Laboratoire de l’informatique du parallélisme. 2002,
2+10p. �hal-02102067�

https://hal-lara.archives-ouvertes.fr/hal-02102067
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du
Parallélisme
École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON
no 5668

A Kleene Theorem for Piecewise Constant
Signals Automata (extended abstract)

Jérôme Durand-Lose November 2002

Research Report No 2002-43

École Normale Supérieure de
Lyon

46 Allée d’Italie, 69364 Lyon Cedex 07, France
Téléphone : +33(0)4.72.72.80.37

Télécopieur : +33(0)4.72.72.80.80
Adresse électronique : lip@ens-lyon.fr

A Kleene Theorem for Piecewise Constant

Signals Automata (extended abstract)

Jérôme Durand-Lose

November 2002

Abstract

In this paper, we consider timed automata for piecewise constant signals. In
the model presented here, time elapses only during transitions; any constraint
on clocks should be satisfied during all the duration of the transition. Signal
automata are very different from un-timed and time-event automata because
piecewise constant signals may be split (and spliced) in an infinite number of
ways. We show that there exist signal regular expressions with renaming de-
scribing exactly the languages accepted by signal automata. The constructions
show the similarities and differences from the time-event model.

Keywords: Timed automata,piecewise constant signals, regular expression

Résumé

Dans ce rapport, nous considrons les automates temporiss sur des signaux
constants par morceaux. Dans le modle prsent, le temps s’coule durant les
transitions ; toute contrainte sur un transition devant tre vrifie durant toute la
transition. Les automates signaux sont trs diffrents de leurs homologues non
temporiss ou vnement-date car les morceaux constants peuvent tres dcoups
ou recolls d’une infinit de manires. Nous montrons qu’il existe des expressions
rationnelles de signaux coupls des renommages qui dcrivent exactement les
mmes langages que ceux accepts par les automates signaux. Les constructions
montrent les similarits et les diffrences avec le modle vnement-date.

Mots-clés: Automates temporiss, signaux constants par morceaux,
expressions rationnelles

A Kleene Theorem for Piecewise Constant

Signals Automata

Jérôme Durand-Lose

Abstract

In this paper, we consider timed automata for piecewise constant sig-
nals. In the model presented here, time elapses only during transitions;
any constraint on clocks should be satisfied during all the duration of
the transition. Signal automata are very different from un-timed and
time-event automata because piecewise constant signals may be split (and
spliced) in an infinite number of ways. We show that there exist signal
regular expressions with renaming describing exactly the languages ac-
cepted by signal automata. The constructions show the similarities and
differences from the time-event model.

1 Introduction

Classical automata deals with sequence of event, but they do not provide any
explicit notion of time (e.g. delay or duration). Timed automata are classical au-
tomata enhanced with clocks such that each transition must satisfy a constraint
over clocks and may reset some clocks [AD94]. They are one of the canonical
tools for the verification of real-time systems. In the usual, time-event, model,
inputs correspond to instantaneous actions. If the constraint is satisfied by the
clocks when the event comes, the transition can be instantaneously taken and
the indicated clocks are reset. Time elapses only between events, on states.

We consider here that everything has a duration and that time measure and
synchronization can not have infinite precision. This leads to the choices in the
next two paragraphs: signals and open intervals.

Inputs are piecewise constant signals, i.e. sequences of values with durations;
actions are not instantaneous. Time elapses during transitions and passing
through a state is instantaneous. Any transition constraint has to be satisfied
during the whole transition and clocks are reset at the end of the transition.
(Piecewise constant) signals can be split in many ways, e.g. reading a a of
duration 2 can be done in 1 transition or in many ones as long as their total
duration is 2. Conversely two consecutive elementary signals, i.e. constant parts,
with the same value may be spliced into the same transition. Signals which can
be split and spliced are considered in [Dim00], but time elapses on state (and
still there are only constraints on transitions) and there is only one clock (which
is known to be a strictly weaker model).

In the constraints, only open intervals of time are considered: constraints
are unions of products of open intervals over clocks (i.e. no =, ≤, ≥ nor ¬);
constraints denote open sets. This means that no constant appearing in a con-
straint may have to correspond to the instantaneous passing through a state;

1

no exact rendezvous can be set. Perfect synchrony does not exist, nevertheless
synchrony up to any constant can be achieved.

Although splicing and splicing are great differences from the time-event
model, signal automata can mostly be manipulated the same way. Regular
expressions for signals like the ones of [ACM97, ACM02] for time-event (we
think that it also works with the ones of [BP02]) are defined. They denote
the same languages as the signal automata up to renaming. The constructions
are not optimal, but the aim of this paper is simplicity and to stress on sig-
nals singularities. No formal proof is given, they are straightforward from the
constructions.

The paper is articulated as follows. All the definitions are gathered in Sect. 2.
The inductive transformation from signal regular expression to signal automaton
is given in Sect. 3. The computation of a signal regular expression and a renam-
ing corresponding to the language accepted by a signal automaton is given in
Sect. 4. It is done in two phases: splitting the automaton into 1-clock automata
and then considering only these automata. A brief conclusion is presented in
Sect. 5.

2 Definitions

Let Σ be a finite (non empty) set of signal values / letters.

2.1 Piecewise constant signals

A piecewise constant signal, or just signal, is defined by the sequence of states
associated with durations. It is denoted σπ1

1 σπ2
2 . . . σπl

l where all σi belong to Σ
and all πi to IR∗

+. Its duration is |m| =
∑l

i=1 πi. The empty signal is denoted ε;
its duration is 0. An elementary (piecewise constant) signal is just a constant
signal (some σπ). The starting date of the ith elementary signal of m, ζi, is
defined by: ζ1 = 0 and ζi+1 = ζi + πi (1 ≤ i ≤ l). If σi and σi+1 are equal
then the value at ζi+1 is defined and equals σi, otherwise it is undefined. In
case of equality, the two elementary signals can be spliced and it is still the
same signal. Conversely, any elementary signal can be split into finitely many
elementary signals with the same value and total duration. This is illustrated in
Fig. 1 where three different decompositions of the same signal are presented. In
the time-event model, 2 consecutive identical inputs correspond to 2 transitions;
whereas consecutive elementary signals of the same value can be spliced and then
correspond to 1, 2 or more transitions. This adds non determinism in the way
a signal could be split / spliced by a signal automaton.

a

b

c

0 1 4.5 6
| | | | |

a

b

c

0 1 4.5 6
| | | | | |

a

b

c

0 1 4.5 6
| | |

a1 c3.5 b1.5 a1 c1.5 c2 b0.5 b1 a0.7 a0.3 c1 c1.5 c1 b1.5

Figure 1: Normal form and sub-splittings.

A signal m′ is a sub-split of m if m′ can be obtained by splitting elementary

2

signals of m. Any two signals which represent the same signal, i.e. they are both
sub-splits of it, have a common sub-split (by merging the sets of starting dates).

Concatenation is defined as usual. Let us note that, for splicing reasons, the
location of concatenation may be lost (e.g. a1.a3=a4). This splitting / splicing
property justifies the exponent notation.

2.2 (Piecewise constant) signal automata

Let Z be a finite set of clocks. Each clock has a value in IR+ which increases
regularly as time elapses. The only operations available on clock are comparisons
to constants and resetting to 0. Let Zt denote the values of the clocks at time
t, Zt+d means d added to each clock.

2.2.1 Clock constraint.

A constraint over Z is a propositional formula using the connectors ∨ and ∧ over
atomic formulae of the form z<c or c<z where z is a clock and c is a constant
in Q+. The set of all constraints is denoted Φ(Z). It is possible to construct a
constraint always satisfied, it is denoted true or just left blank.

Since atomic formulae denote open intervals (of IR∗
+), and only intersection

and union are used, each formula represents a finite union of products (over
clocks) of open intervals. It is impossible to create a constraint equivalent to
z=c or z≤c. Exact rendezvous are impossible as shown below.

2.2.2 A (piecewise constant) signal automaton

is defined by:
• Σ, a finite set of values for elementary signals, the signal alphabet

• Q, a finite set of states,

• I ⊆ Q, the set of initial states,

• F ⊆ Q, the set of accepting states,

• Z, a finite set of clocks,

• ∆ ⊆ Q × Σ × Φ(Z) × P(Z) × Q, s.t. |∆| < ∞, is the set of transitions.
A transition δ is denoted (q, σ, φ, ρ, q′) and is represented as in Fig. 2. ρ is

the set of clocks which has to be reset at the end of the transition. The mapping
Reset, from clocks and a set of clocks to clocks, resets to zero all the clocks in
the set, other clocks are unaffected. When no clock is reset, this is indicated by
∅ or left blank.

q p
σ / φ/ ρ

Figure 2: Representation of transition (q, σ, φ, ρ, p).

A transition is valid from t to t′ if the input is σ on (t, t′) (open) and the
clock constrain φ is satisfied on [t, t′] (closed !). This means that for each clock
z, [zt, zt + (t′ − t)] has to be included in an union of products of open intervals,
which means strictly included and away from the bounds.

3

2.2.3 Run of an automaton.

Let A = (Σ, Q, I, F, Z,∆) be a signal automaton and m be a signal. Since m
can be split / spliced in an infinity of ways, it is useless to consider some precise
representation for it; instead, m is considered to be a piecewise constant function
from IR+ to Σ. Let mt the value of m at time t.

A run of m over A is a finite sequence of transitions and dates {(δi, ti)}1≤i≤n.
Let t0=0 and δi = (qi, σi, φi, ρi, pi). A run must satisfy:

1. ∀i, 1 ≤ i < n, pi = qi+1,

2. ∀i, 1 ≤ i ≤ n, ∀t ∈ (ti−1, ti), mt = σi,

3. Z0 = �0 (initialization),

4. ∀i, 1 ≤ i ≤ n, ∀δ ∈ [0, ti−ti−1], φi(Zti + δ) is satisfied,

5. ∀i, 1 ≤ i ≤ n, Zti = Reset(Zti−1 + ti−ti−1, ρi),

6. ∃d > 0, ∀i, 1 ≤ i ≤ n, d < ti−ti−1 (monotony and progression).
Let us note that the value of m at ti is not considered (2.) whereas (4.) clock
constraints φi−1 and φi have to be satisfied at ti (without resetting the clocks
for φi−1). Condition 6. implies that there is no Zeno configuration (i.e. no ac-
cumulation point).

A run is accepting iff q1 ∈ I and pn ∈ F . The language accepted by A,
L(A), is the set of all signal for which there exists an accepting run.

2.3 (Piecewise constant) signal regular expression

The set of signal regular expressions over Σ, R(Σ), is defined inductively using
ε, σ, ϕ1∨ϕ2, ϕ1∧ϕ2, ϕ1·ϕ2, ϕ∗ and 〈ϕ〉I , s.t. a ∈ Σ, ϕ, ϕ1, ϕ2 ∈ R(Σ) and I is
an open interval of IR+ either (d, d′) or (d,∞) s.t. d, d′ ∈ Q and 0 ≤ d < d′.
The semantic of regular expressions is:

1. �ε� = {ε},
2. �σ� = {σr | r ∈ IR∗

+},
3. �ϕ1 ∨ ϕ2� = �ϕ1�

⋃
�ϕ2�,

4. �ϕ1 ∧ ϕ2� = �ϕ1�
⋂

�ϕ2�,

5. �ϕ1 · ϕ2� = {m1.m2 |m1 ∈ �ϕ1� ∧ m2 ∈ �ϕ2�},
6. �ϕ∗� =

⋃∞
i=0(�ϕ

i�) s.t. �ϕ0� = {ε}, ϕ1 = ϕ, ϕn+1 = ϕn · ϕ,

7. �〈ϕ〉I� = {m ∈ �ϕ� | |m| ∈ I }.

3 From regular expressions to automata

Basic (signal) regular expressions are shown to correspond to (signal) automata
and then that automata are closed for the same operators. All is done follow-
ing usual constructions for the un-timed and time-event models. Emphasis is
made on substantially different constructions: the automata product used for ∧
(possible splittings have to be considered) and duration restrictions.

4

If more than one automaton is considered, the sets of states as well as sets of
clocks are assumed to be disjoint (renaming is used if needed) but the alphabets
are the same (or the union is considered). In the pictures, the dotted parts of the
automaton are discarded in the constructions, the dashed parts are preserved
but are not relevant and the dashed boxes delimit the automata.

3.0.1 Basic constructions.

Figure 3 shows the constructions for ε and a.
a / /

Figure 3: Automata for L(ε) and L(a).

Since automata are non-deterministic, the automaton for an union is very
easy to built: just gather the automata as in Fig. 4.

A2

A1

A1 ∪ A2

Figure 4: Automaton for L(A1) ∪ L(A2).

3.0.2 Intersection.

The classical way to make an intersection is to make a product of automata
and then to restrain initial and accepting states. The problem is that accepting
runs may be different, e.g. a1a3b1b2b1 on one automaton and a4b2b2 on the other.
These signals both represent a4b4 and have infinitely many common sub-splits
(e.g. a1a3b1b1b1b1), but it may happen that none of them corresponds to an
accepting run on both automata. Each automaton is transformed in order that
any sub-split of an accepting run also corresponds to an accepting run. This is
done by adding for each transition 3 transitions and a new state as depicted on
Fig. 5. The generated automaton accepts exactly the same language and any
sub-split of a sub-split corresponding to an accepting run also corresponds to
an accepting run.

q p
σ / φ / ρ

q qδ p
σ / φ / σ / φ / ρ

σ / φ /

σ / φ / ρ

Figure 5: Full split of transition δ = (q, σ, φ, ρ, p).

With this full split form, it is easy to construct the product and then the in-
tersection. Figure 6 shows the product of transitions; of course only and all pairs
of transitions with the same letter are considered. The set of initial (accepting)
states is the product of initial (accepting) states. If m is accepted by both A1

and A2 split as m1 and m2, then any sub-split m′ common to both m1 and m2

5

corresponds to an accepting run in the product of the full split automata. If m
is not accepted by A1 (or A2), then neither it is by the full split form of A1 and
neither by the product.

q1 p1

q2

p2

q1, q2

p1, p2

σ / φ1 / ρ1

σ
/

φ
2

/
ρ
2

σ
/
φ
1∧

φ
2 /

ρ
1∪

ρ
2

A1

A2

A1 ×A2

Figure 6: Product of transitions (q1, σ, φ1, ρ1, p1) and (q2, σ, φ2, ρ2, p2).

3.0.3 Concatenation and Iteration.

Concatenation of A1 and A2 is done by doubling each transition to an accepting
state of A1 to an initial state of A2; these copies reset all the clocks of A2 as
illustrated in Fig. 7. The initial states are the ones of A1 and the accepting
states are the ones of A2.

σ / φ/ ρ

σ / φ / Z2

A1 A2A1 · A2

Figure 7: Transition added for L(A1) · L(A2).

For the finite iteration (or Kleene star), copies of each transition to a final
state are made leading to each initial state; these copies reset all the clocks.
A copy of an automaton which recognize ε is added for zero iteration. This is
sumed up in Fig. 8.

σ / φ / ρ

σ / φ/ Z

AA∗

Figure 8: Transitions and state added for L(A)∗.

3.0.4 Duration restriction.

It can not be added directly to transitions leading to accepting states because
it might be satisfied at the end of the last transition but not during the whole
transition. This is handled by adding an extra state and adding for each tran-
sition leading to an accepting state a new state and two consecutive transitions
(one extra split in the run); the time duration restriction is only added in the

6

last constraint as depicted on Fig. 9. A new clock, z0 is added as well as a new
(and only) final state qf . It only appears in, and in every, final transition as
z0 ∈ I (remember I is open and its bounds are in Q). Since z0 is zero when the
run starts and is never reset, the total duration of any accepted input has to be
in I.

qi q p

qδ qf

σ / φ / ρ
σ /φ /

σ / φ ∧ z0∈I /

A

〈A〉I

Figure 9: Automaton for 〈L(A)〉I .

Finally, by induction:

Lemma 1 The signal languages described by signal regular expressions are ac-
cepted by signal automata.

If a renaming λ is applied to L(ϕ), it remains to apply it to every transition.

4 From automata to regular expressions

The construction is done in two steps: first separating a n-clock automaton A
into n deterministic 1-clock signal automata, one for each clock, {Az}z∈Z and
a letter renaming function λ.

4.1 Separating the clocks

Various manipulations are made in order to finally get an automaton Az for
each clock z such that the intersection of the accepted languages is the one
accepted by A up to some renaming.

1. All disjunctions are removed. First all constraints are presented in normal
disjunctive form. No transition can be simply separated in two transitions
because the disjunction may be satisfied during the whole duration while
no single term is. Signals, and thus transitions, can be split and disjunction
can be disposed of as in Fig. 10 where φ1 and φ2 may still contain ∨.

2. All loops are removed by putting an extra state (and split) in each loop.

3. The automaton is made deterministic by replacing each transition letter
by a letter appearing only in this transition. Signals are lift to sub-splits

q p
σ / φ1∨φ2 / ρ

q qδ p

σ / φ1 /

σ / φ2 /

σ / φ1 / ρ

σ / φ2 / ρ

σ / φ1 /

σ / φ2 /

Figure 10: Removing disjunction in δ = (q, σ, φ1∨φ2, ρ, p).

7

where transitions are indicated. The inverse mapping from the large set
of letters to the original one is denoted λ.

4. One copy of the automaton is made for each clock, setting to true atomic
constraints over other clocks. From the deterministic association of letters
to transitions, any run in one automaton could only correspond to one run
(the same) for each copy. If a signal is accepted by A then it is accepted by
all the copies (constraints are only conjunctive). Reciprocally, if a signal
is accepted by all the copies, then it has to be with the same run which is
also accepting for A (conjunctions of constraints satisfied for all clocks).

Automaton A is thus transformed into {Az}z∈Z and a renaming function λ
such that:

L(A) = λ

(⋂
z∈Z

L(Az)

)
. (1)

Copies can be treated individually.

4.2 One-clock automaton to regular expression

Let Az = (Σ, Q, I, F, {z}, ∆) be a signal automaton with only one clock z. Let
0=τ0 < τ1 < τ2 · · · < τι < τι+1=∞ be the list of all critical times (plus 0 and
∞), the constants that appear in at least one elementary clock constraint in A.

Since constraints are conjunctions over atomic formulae z<τi or τj<z, they
corresponds to τα < z < τβ (or to false and are removed), since 0=τ0 and
τι+1=∞ all kinds of intervals are covered. Constraints are “constant” on each
(τi, τi+1), either satisfied or not.

Let ∆1 be the subset of reset-less transitions and ∆2 the subset of resetting
transitions (∆ = ∆1 ∪ ∆2).

4.2.1 One-clock automaton without reset.

Only the transitions in ∆1 are considered in this subsection. Let L(q, p, i) denote
the un-timed language corresponding to the runs from q to p using only transi-
tions whose constraints are satisfied on (τi, τi+1). There is an un-timed regular
expression for L(q, p, i). Let Lτi

q→p denote the signal language corresponding to
the runs from q to p of total durations strictly less than τi. The Lτi

q→p can be
computed recursively:

Lτ1
q→p = 〈L(q, p, 0)〉(0,τ1)

, (2)
Lτi+1

q→p = Lτi
q→p

∪
〈 ⋃

(r, σ, τα<z<τβ , ∅, p) ∈ ∆1
τα < τi < τβ

〈
Lτi

q→r

〉
(τα,∞)

.σ

〉
(τi−1, τi+1)

∪
〈 ⋃

(r, σ, τα<z<τβ , ∅, s) ∈ ∆1
τα < τi < τβ

〈〈
Lτi

q→r

〉
(τα,∞)

.σ
〉
(τi,τi+1)

.L(s, p, i+1)

〉
(τi, τi+1)

.(3)

Before τ1, the automaton is “constant”, to that classical language theory gives
an un-timed expression which only needs to have its duration restrained (2).
Equation (3) holds because duration could be less than τi, equals to τi (covered

8

by the second line) or be strictly between τi and τi+1. Equation (2) directly
gives a signal regular expression, (3) uses concatenation, finite union and regular
expression as constants, so all Lτi

q→p correspond to signal regular expressions.
Let Lq→p denote the language corresponding to the runs from q to p without

any duration restriction: Lq→p = L∞
q→p = L

τι+1
q→p.

4.2.2 One-clock automata with reset.

The resetting transitions, i.e. the ones in ∆2, are now considered, together with
the ones in ∆1. Let ∆2 = {δ1, δ2, . . . δκ} and δk = (qk, σk, ταk

<z<τβk
, {z}, pk).

Let Lδ1..δk

s, δl
be the language corresponding to the runs starting from s, using

only resetting transitions δ1, δ2, . . . δk and ending by δl (l ≤ k). The following
recurrence equations are satisfied:

Lδ1
s, δ1

=
〈〈

Ls→q1

〉
(τα1 ,∞)

.σ1

〉
(0,τβ1)

.

(〈〈
Lp1→q1

〉
(τα1 ,∞)

.σ1

〉
(0,τβ1)

)∗
, (4)

Lδ1..δk

s, δk
=


〈〈Ls→qk

〉
(ταk

,∞)
.σk

〉
(0,τβk

)
∪
⋃

1≤l<k

L
δ1..δk−1
s, δl

.
〈〈
Lpl→qk

〉
(ταk

,∞)
.σk

〉
(0,τβk

)




.


〈〈Lpk→qk

〉
(ταk

,∞)
.σk

〉
(0,τβk

)
∪
⋃

1≤l<k

L
δ1..δk−1
pk, δl

.
〈〈
Lpl→qk

〉
(ταk

,∞)
.σk

〉
(0,τβk

)



∗

,(5)

Lδ1..δk

s, δl
= L

δ1..δk−1
s, δl

∪ Lδ1..δk

s, δk
.L

δ1..δk−1
pk, δl

(l < k) , (6)

L(Az) =
⋃

s∈I, t∈F


Ls→t ∪

⋃
1≤l≤κ

Lδ1..δκ

s, δl
.Lpl→t


 . (7)

Resetting transition δ1 has to be done at least once, then the run can go back
to it any number of times (4). The same holds for a run ending by δk, it has
to be done once, and can come back to it, each time other allowed resetting
transitions may be used or not (5). A run ending by δl do not use δk after the
last passage, if any, through δk (6).

All these equations start with (and use) signal regular expressions, and use
their inductive operators. So, the set of signal languages accepted by one-clock
signal automata is included in the set of signal languages described by regular
expressions. From (1) and (7) comes:

Lemma 2 The signal languages accepted by signal automata can be described
by signal regular expressions and renaming.

5 Conclusion

Theorem 3 The set of signal languages accepted by signal automata is equal to
the set of signal languages described by signal regular expressions and renaming.

Renaming seems to be unavoidable as proved in the time-event model [Her99].
The emptiness of a language accepted by a signal automaton should also be in-
vestigated, as well as special composition or verification of specifications given
in term of another signal automaton.

9

We believe that complexity and feasibility are not too different from the ones
in the time-event context. We also believe that there is some algebraic context
(like in [Asa98, ACM02]) and that infinite duration and zeno configurations can
be approached with techniques as in [BP00].

References

[ACM97] Eugene Asarin, Paul Caspi, and Oded Maler. A Kleene theorem for
timed automata. In IEEE Logic in Computer Science, pages 160–171,
1997.

[ACM02] Eugene Asarin, Paul Caspi, and Oded Maler. Timed regular expres-
sions. Journal of the ACM, 49(2):172–206, 2002.

[AD94] Rajeev Alur and David L. Dill. A Theory of timed automata. Theo-
retical Computer Science, 126(2):183–235, 25 April 1994.

[Asa98] Eugene Asarin. Equations on timed languages. In HSCC, pages 1–12,
1998.

[BP00] Béatrice Bérard and Claudine Picaronny. Accepting zeno words: a
way towards timed refinements. Acta Informatica, 37(1):45–81, 2000.

[BP02] Patricia Bouyer and Antoine Petit. A Kleene/Büchi-like theorem for
clock languages. Journal of Automata, Languages and Combinatorics,
2002. To appear.

[Dim00] Cǎtǎlin Dima. Real-time automata and the Kleene algebra of sets
of real numbers. In STACS ’00, volume 1770 of Lecture Notes in
Computer Science, pages 279–290, 2000.

[Her99] Philippe Herrmann. Renaming is necessary in timed regular expres-
sions. In FSTTCS ’99, number 1738 in LNCS, pages 47–59, 1999.

10

