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Abstract
I present an efficient algorithm which lists the minimal separators of a planar
graph in O(n) per separator.
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Résumé
Je présente un algorithme d’énumération des séparateurs minimaux des graphes
planaires dont la complexité est O(n) par séparateur.
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1 Introduction

In this paper, we address the problem of finding the minimal separators of a connected planar
graph G.

In the last ten years, minimal separators have been an increasingly used tool in graph theory
with many algorithmic applications (for example [4], [7], [8], [10]).

For example, minimal separators are an essential tool to study the treewidth and the minimum
fill-in of graphs. In [4], Bodlaender and al. conjecture that for a class of graphs which have
a polynomial number of minimal separators, these problems can be solved in polynomial time.
Bouchitté and Todinca introduced the notion of potential maximal clique (see [2]) and showed
that if the number of potential maximal cliques is polynomial, treewidth and minimum fill-in can
indeed be solved in polynomial time. They later showed in [3] that if a graph has a polynomial
number of minimal separators, then it has a polynomial number of potential maximal cliques.
Those results rely on deep understandings of minimal separators.

Some research has been done to compute the set of the minimal separators of a graph ([1],
[5], [6],[9]). In [1], Berry and al. proposed an algorithm of running time O(n3) per separator
which uses the idea of generating a new minimal separator from an older one S by looking at
the separator S ∪ N(x) for x ∈ S. This separator is not minimal but the neighbourhoods of the
connected components it defines are. This simple process can generate all the minimal separators
of a graph. The counterpart is that a minimal separator can be generated many times.

In this paper, we adapt this idea to connected planar graphs but to avoid the problem of
recalculation, we define the set Sa,B(S, O) of the a, b-minimal separators S′ for some b ∈ B that
are such that the connected component of a in G\S′ contains the connected component of a in
G\S but avoids the set O. This way we put restrictions on the minimal separators we compute to
ensure we do not compute the same minimal separator over and over.

2 Definitions

Throughout this paper, G = (V,E) will be a connected graph without loops with n = |V | and
m = |E|. For x ∈ V , N(x) = {y | (x, y) ∈ E} and for C ⊆ V , N(C) = {y 6∈ C | ∃x ∈ C, (x, y) ∈
E}.

A set S ⊆ V is an a, b minimal separator if a and b are in two distinct connected components
of G\S and no proper subset of S separates them. Sa,b is the set of the a, b-minimal separators
and Sa,B the set ∪b∈BSa,b. An a, ∗-minimal separator is an element of Sa,V . We will abbreviate
Sa,V in Sa. The set S]

a is the set of the minimal separators that run through a and S¬]
a is the set

of the minimal separators that does not. Ca(S) is the connected component of a in G\S. The
component Ca(S) is a full connected component if N(Ca(S)) = S. A set S is a minimal separator
if there exists a and b which make it an a, b-minimal separator or, which is equivalent, if it has at
least two full connected components. S is the set of the minimal separators of G.

We can order the a, ∗-minimal separators in the following way:

S1 4 S2 if Ca(S1) ⊆ Ca(S2).

For S an a, ∗-minimal separator B ⊆ V and O ⊆ V , the set Sa,B(S, O) is the set of the a,B-
minimal separators S′ such that S 4 S′ and O ∩ Ca(S′) = ∅. And if x ∈ V , the set Sx

a,B(S, O) is
the set of S′ ∈ Sa,B(S, O) such that x ∈ Ca(S′).

The set of the vertices b such that an a, ∗-minimal separator S is a a, b-minimal separator is
the identity of S denoted by BS .

We want to compute the set Sa. To do so, we will decompose it recursively in a union of sets
Sa,B(S, O). The following remarks and lemmas give us an obvious way to do it.

Property 1 Let S be an a, ∗-minimal separator, x ∈ S, O ⊆ V and Si be the neighbourhood of
the connected components of G\

(
N(Ca(S) ∪ {x})

)
.
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The sets Si are a, ∗-minimal separators. We have the disjoint unions:

Sa,BS
(S, O) = Sa,BS

(S, O ∪ {x})
⊔
Sx

a,BS
(S, O) and

Sx
a,BS

(S, O) =
⊔
i∈I

Sa,BSi
(Si, O).

Proof. The first equality is obvious.

Let us prove the second one.
The set T =

⋃
i∈I Sa,BSi

(Si, O) is clearly a subset of Sx
a,BS

(S, O).

Let S1 ∈ Sx
a,BS

(S, O) and b ∈ BS such that S1 is an a, b-minimal separator. Let C be the
connected component of b in G\

(
N(Ca(S)∪{x})

)
. The neighbour S2 of C is a minimal separator.

Indeed, C is a full component for S and Ca(S2) contains Ca(S) and x which implies that Ca(S2)
is also a full component. Clearly, Cb(S1) ⊆ Cb(S2) so S2 4 S1. We have S1 ∈ Sa,BS2

(S2, O) and
S1 ∈ T which proves that Sx

a,BS
(S, O) is a subset of T .

Now let us prove that the union is disjoint.
The sets Bi and Bj are disjoint (i 6= j). Otherwise, let b ∈ Bi ∩ Bj and C be the connected

component of b in G\
(
N(Ca(S) ∪ {x})

)
. By definition Si = N(C) = Sj which is absurd.

Let S′ ∈ Sa,BSi
(Si, O). BS′ ⊆ BSi

which proves that Sa,BSi
(Si, O) and Sa,BSj

(Sj , O) are
disjoint for otherwise Bi ∩Bj 6= ∅.

This proves that the second union is disjoint. ut
Property 1 proves that the following algorithm is correct.

ALGORITHM: _calc2_
input:

G = (V,E) a graph
a a vertex of G
S an a, ∗-minimal separator
O a subset of S

output:
Sa,B(S, O)

begin
if S\O = ∅ then

return({S})
else

B ←_calc_B(G, a, S)
let x ∈ S\O
S ←_calc2_(G, a, B, S,O ∪ {x})

for each Si in find_min_elements(G, a, x, S,O)
Bi ←_calc_B(G, a, Si)
S ← S∪_calc2_(G, a, Bi, Si, O)

return(S)
end

To compute find_min_elements and _calc_B, we can use a graph search but if Sx
a,B(S, O) is

empty, we still need the graph search. And in the worst case, all these sets are empty which leads
to a running time of O(nm/separator).

3 Planar graphs

In a planar graph, m = O(n). The running time of this algorithm is O(n2/separator).
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We will now prove that the complexity of finding the a, ∗-minimal separators of a planar graph
is O(n/separator) and that the complexity of finding all the minimal separators of a planar graph
is O(n/separator).

Let Σ be the plane. A plane graph GΣ = (VΣ, EΣ) is a graph drawn on the plane, that is
VΣ ⊂ Σ and each e ∈ EΣ is a simple curve of Σ between two vertices of VΣ in such a way that the
interiors of two distinct edges do not meet. We will denote by G̃Σ the drawing of GΣ. A planar
graph is the abstract graph of a plane graph. We will consider plane graphs up to a topological
homeomorphism.

A face of GΣ is a connected component of Σ\G̃Σ.

3.1 Minimal separators of 2-connected planar graphs

Property 2 In a planar graph, if S and S′ are minimal separators and S ⊂ S′, then |S| ≤ 2.

Proof. Suppose that S ⊂ S′ are two minimal separators of a planar graph and |S| > 2.
Let a, b, c and d be vertices such that S′ is an a, b-minimal separator and S is a c, d-minimal

separator. Since S is not an a, b-minimal separator, either Cc(S′) or Cd(S′) is disjoint with Ca(S′)
and Cb(S′). Suppose that Cc(S′) is such a component. Cc(S) = Cc(S′) and N(Cc(S)) = S.

But then G admits K3,3 as a minor for if we contract Ca(S′), Cb(S′) and Cc(S′) into the vertices
a′, b′ and c′, all these vertices have S in their neighbourhood and |S| ≥ 3. This contradicts the
fact that G is planar. ut

We say that a curve µ of Σ is GΣ nice if µ ∩GΣ ⊆ VΣ.

Property 3 Let µ be a GΣ nice lace that separates at least two vertices a and b of VΣ.
The set V (µ) is an a, b-separator of GΣ.

Proof. Let p be a path in GΣ from a to b. Since a and b are not in the same connected
component of Σ\µ, p̃ intersects µ. By construction, p̃∩µ ⊆ VΣ. This implies that every path from
a to b meets V (µ) and so V (µ) is an a, b-separator. ut

Property 4 Let S be an a, b-minimal separator of G. There exists a GΣ nice Jordan lace µ that
separates the vertices of Ca(S) and Cb(S) and such that V (µ) = S.

Proof. Let C be the connected component of a in G\S. Contract C into a super-vertex vC to
build the graph G/C . There is a (G/C)Σ nice lace µ/C which separates vC and the other vertices
of (G/C)Σ and such that V (µ/C) = N(vC).

Suppose that µ is not a Jordan lace. Let µ′ be the border of the connected component of b
in Σ\µ. The curve µ′ is a sub-lace of µ and is the border of two simply-connected components of
Σ\µ′ (the one containing vC and b) so µ′ is a Jordan lace.

In the graph GΣ, µ′ corresponds to a Jordan lace that separates a and b and such that V (µ) = S.
ut

Property 4 shows that the minimal separators of a planar graph G can be seen as a GΣ nice
Jordan laces. We can obtain from this point of view an exact criteria for the minimal separators
of a 2-connected planar graph.

3.2 Ordered separators

Definition 1 An ordered separator of G is a sequence of distinct vertices

(v0, . . . , vp−1), (p > 1) such that

i. there exists a face to which vi and vi+1 [ p ] are both incident;

ii. vi and vj are incident to a common face only if i = j + 1 [p] or j = i + 1 [ p ];
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iii. there is no face incident to vi, vi+1 [ p ] and vi+2 [ p ].

iv. if p = 2 then there exists 2 distinct faces f1 and f2 incident to both v0 and v1 such that if
(v0, v1) ∈ E, either f1 or f2 is not incident to (v0, v1).

The notation i [ p ] means i modulo p.
We say that a set S = {v0, . . . , vp−1} is an ordered separator if there exists a permutation σ

such that (vσ(0), . . . , vσ(p−1)) is an ordered separator.
If S = (v0, . . . , vp−1) is an ordered separator of G, then S is naturally associated to the set

{v0, . . . , vp−1}. We will either use an ordered separator as a sequence or as the corresponding set.

Remark 1 If p > 3, the third condition is a corollary of the second for vi et vi+2 [ p ] would be too
far apart.

Remark 2 If S is an ordered separator and S′ is a sub-ordered separator of S, then |S′| = 2.

Lemma 1 Every minimal separator S of G is ordered.

Proof. Let S be an a, b-minimal separator of G.
The property 4 states that there exists a GΣ nice Jordan lace µ that separates a and b and

such that V (µ) = S. Let v0, . . . , vp−1 be the vertices through which µ goes. We know that
S = {v0, . . . , vp−1}.

Let us prove that T = (v0, . . . , vp−1) is an ordered separator corresponding to S.

i. Since µ goes from vi to vi+1, without going through another vertex, vi and vi+1 are incident
to a common face.

ii. Suppose that vi et vj are incident to a common face f and that i+1 6= j [ p ] and j+1 6= i [ p ].
There is a curve ν from vj and vi. Let µ1 and µ2 be the two sub-laces of µ from vi and vj .

µ1.ν and µ2.ν are GΣ nice laces. Moreover, since either µ1 or µ2 separates a and b, property
3 states that there exists an a, b-separator strictly included in S which is absurd.

iii. With the remark 1, we can suppose that p = 3.

Suppose that v0, v1 et v2 are all incident to a common face f . If we add a vertex f to G that
we connect to the vertices v0, v1 and v2, the graph remains planar which is absurd for this
graph has K3,3 as a minor. Indeed, the connected component of a, the connected component
of b and the vertex f are all incident to v0, v1 and v2 which builds up a K3,3.

iv. Suppose that |S| = 2 and (v0, v1) is an edge of G. Since µ separates a and b, µ cannot go
through the faces incident to (v0, v1).

The sequence T is an ordered separator as required. ut
Conversely,

Lemma 2 Every ordered separator of G is a minimal separator of G.

Proof. Let S = (v0, . . . , vp−1) be an ordered separator of G.
First, S is a separator. Otherwise

• if p > 2, G\S would be connected or empty. In both cases all the vertices of S would be
incident to a common face;

• if p = 2, and v0 and v1 are both incident to two distinct faces f1 and f2 then (v0, v1) is an
edge of G and f1 and f2 are incident to (v0, v1) which contradicts the definition of S.

By induction on the number k of connected components of G\S.
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• if k = 2. Suppose that S is not a minimal separator. Then at least one of the connected
components of G\S (C) has a neighbourhood which is not S. If |N(C)| = 2, then S is also an
ordered separator of G\C which is absurd for S must be a separator of G\C. If |N(C)| > 2,
the neighbourhood of C is a sub-ordered separator of S which is also impossible.

• if k > 2, let S′ be a minimal separator included in S. Either S′ = S and we are done, or S′ is
a sub-ordered separator of S which implies that |S′| = 2. Let C be a connected component
of G\S with a |N(C)| = 2. Since |N(C)| = 2, S is also an ordered separator of G\C and by
induction, S is a minimal separator of G\C and thus, a minimal separator of G.

ut
From lemma 1 and 2, we have he following property:

Property 5 A set S ⊆ V is a minimal separator of a 2-connected planar graph G = (V,E) if and
only if it corresponds to an ordered separator of G.

4 Listing the a, ∗-minimal separators of a 2-connected pla-
nar graph

At this point, we have a characterisation of the minimal separators of a 2-connected planar graph.
Let us see how it enables us to find out whether Sx

a (S, O) is empty or not when O ⊆ S and
x ∈ S\O.

The landing site of an element x of an ordered separator S with O ⊆ S and x 6∈ O is the
subsequence lx(S, O) = (vi, . . . , vj) of S containing x and such that vk ∈ O (i ≤ k ≤ j) if and only
if k = i or k = j.

The following lemma gives a necessary condition for Sx
a,BS

(S, O) to be non-empty.

Lemma 3 Let S = (v0, . . . , vp−1) be an ordered separator of a 2-connected planar graph G =
(V,E).

Let O be a subset of S and vi 6∈ O.
If there exists a face which is incident to both y ∈ N(vi)\Ca(S) and vj 6∈ lvi

(S, O), then
Svi

a,BS
(S, O) = ∅.

Proof. Let µ be a GΣ nice Jordan lace that corresponds to S.
Suppose that y and vl 6∈ lvi

(S, O) are incident to a common face f . This hypothesis implies
that there exists a GΣ nice curve ν such that V (ν) = {vi, y, vl}.

Suppose for a contradiction that S′ is a minimal element of Svi

a,BS
(S, O). Let b be such that S′

is an a, b-minimal separator and µ′ be the GΣ nice Jordan lace corresponding to S′.
Since S′ is a subset of (S\{vi}) ∪ (N(vi)\Ca(S)), we can suppose that µ does not intersect

the connected component of a in Σ\µ. But then, since vl is not in the landing site of vi, µ′ must
cross ν and there is a GΣ nice Jordan lace µ′′ in µ′ ∪ ν that separates a and b. By construction
V (µ′′) ⊂ V (µ′) which contradicts the fact that µ′ is an a, b-minimal separator. ut

We can now prove the theorem

Theorem 1 Let S = (v0, . . . , vp−1) be an ordered separator of a 2-connected planar graph G =
(V,E), O be a subset of S and vi 6∈ O.

The set Svi

a,BS
(S, O) is not empty if and only if

i. there is no face incident to both y ∈ N(vi) ∩BS and vj 6∈ lvi(S, O);

ii. there exists v ∈ N(O) ∩BS which is not a neighbour of vi.

Proof. Suppose that Svi

a,BS
(S, O) is not empty and that S′ is an a, b-minimal separator of

Svi

a,BS
(S, O) which if minimal.

Lemma 3 proves that condition i is satisfied.
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Since S′ is the neighbour of the connected component of b in G\
(
S ∪ N(vi)

)
, and O ⊆ S′,

condition ii is also satisfied.

Suppose now that i and ii are true.
Number the neighbours (y1, . . . , yl) of vi in BS in clockwise order. Suppose that S is numbered

in such a way that y1 and vi−1 (resp. yl and vi+1) are incident to a common face. Let vm and vn

be the vertices of lvi
(S, O) which are also in O (vn and vm can be equal).

Since the vertices yi and yi+1 are incident to a common face. There exists a sequence P =
(vn, x0, . . . , xk, vm) in

(
S\{vi}

)
∪{y1, . . . , yl} such that xi and xi+1 are incident to a common face.

Take for example (vn, . . . , vi−1, y1, . . . , yl, vi+1, . . . , vm).
Let P be such a sequence between vn and vm of minimal length. Together with (vm, . . . , vn),

we claim that P forms an ordered separator T of G.

• By construction, the first condition of an ordered separator is satisfied;

• Since no face is incident to both yk and lvi
(S, O) and since P is minimal, the second condition

of an ordered separator is satisfied;

• Suppose that |T | = 3 and there exists a face which is incident to all the elements of P . Then
all the vertices of N(O) ∩BS are also neighbours of vi which is absurd;

• If |T | = 2, then P = (x0, x1) with O = {x0} and x1 ∈ N(vi).

Since there exists a vertex z ∈ N(O) ∩ BS which is not a neighbour of vi, P is not an edge
of G which proves that the fourth condition of an ordered separator is satisfied.

The minimal separator T is clearly an a,BS-minimal separator. ut

4.1 An algorithm

Now we have all we need to build up an algorithm to compute the set Sa,BS
(S, O) with O ⊆ S.

ALGORITHM: _calc2_
input:

G a 2-connected planar graph
a a vertex of G
S = (v0, . . . , vp−1) an ordered a, ∗-minimal separator
O a subset of S
The landing sites of S are tagged i
The faces incident to a vertex not in the landing site i are tagged i
The vertices of Ca(S) are also tagged “Ca(S)”.

output:
Sa,BS

(S, O)

begin
if O = S then

return({S})
else

let v ∈ O be in a landing site i
let x ∈ S\O be next to v on S
tag if necessary the faces incident to v with i and v
S ←_calc2_(G, a, S,O ∪ {x})
untag if necessary the faces incident to v

for each y ∈ N(x) not tagged “Ca(S)”
if y is tagged i then

return(S)
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if O = {v} and there is no neighbour of v in BS\N(x) then
return(S)

for each S′ in find_min_elements(G, a, x, S,O)
S ← S ∪ _calc2_(G, a, S′, (v0, . . . , vi))

end

Property 6 The algorithm _calc2_ is correct. It computes the set Sa,BS
(S, O) of a 2-connected

planar graph.

Proof. The algorithm is just an application of property 1. ut

Property 7 The algorithm can be implemented to compute the set Sa,BS
(S, O) in time

O(n|Sa,BS
(S, O)|).

Proof. For each minimal separator S, the algorithm does the following:

i. the function find_min_elements produces S;

ii. for every x ∈ S\O, there is a recursive call to _calc2_ to extend the set O;

iii. S is returned.

The function find_min_elements does a graph search to compute the sets Si, and to tag the
vertices in Ca(Si). It orders Si, tags the landings sites and the faces incident to Si. In a planar
graph, the number m of edges satisfies 0 ≤ m ≤ 3n− 6, so all this costs O(n).

Each call to _calc2_ costs O(d(x)) to tag and untag the faces incident to x, and O(d(x)) to
check whether Sx

a (S, O) is empty or not. Since every time a different x is chosen, the recursive
calls to _calc2_ cost O(n).

The overall complexity of function _calc2_ is O(n|Sa(S, O)|). ut
The algorithm _calc2_ does a kind of depth first search. We can use a variant that does a

breadth first search which can be implemented using a queue.
The set of all the a, ∗-minimal separators of G is equal to ∪i∈ISa,BSi

(Si, ∅) for Si, the minimal
separators included in N(a). The running time of an algorithm calc_a using _calc2_ to list all
the a, ∗-minimal separator of a 2-connected planar graph is O(n/separator).

From now on, a will be a vertex of degree at most five of G.

4.2 Listing the minimal separators that run through a

A minimal separator that runs through a is a b, ∗-minimal separator for b ∈ N(a). So the set S]
a

of the minimal separators of G that run through a is equal to ∪b∈N(a)Sb,V . With at most five run
of calc_a, we can list the elements of S]

a. And since a separator of S]
a can be computed at most

five times, the running time of this algorithm calc_cross is O(n/separator).

5 Listing the minimal separators of a planar graph

It is easy to see that if (Gi)i∈I are the 2-connected components of a graph G = (V,E), then
S(G) =

{
v | v is a cut-vertex of G

}
∪

⋃
i∈I

S(Gi).

Since all the cut-vertices and the 2-connected components of a graph can be computed in
O(n + m), we can consider 2-connected planar graphs.

Property 8 If S is an a, ∗-minimal separator of size two which is minimal for 4, and S′ is a
minimal separator such that a 6∈ S′ and such that S′ intersects both Ca(S) and another connected
component of G\S. Such a minimal separator cuts S.

Then S′ is an a, ∗-minimal separator.
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Proof. If S′ is not an a, ∗-minimal separator, then the neighbourhood of Ca(S′) is a minimal
separator S′′ included in S′.

Since S is minimal, S′′ is not included in Ca(S) but since S′ intersects Ca(S), S′′ ∩Ca(S) 6= ∅.
Let b be the vertex in S′′∩Ca(S). b is a cut-vertex of Ca(S) and the neighbourhood of Ca(S∪{b})
is a separator of G of size two. Since G is 2-connected, it is an a, ∗-minimal separator of size two
which is smaller than S. This is absurd. So S′ is an a, ∗-minimal separator. ut

An a, ∗-minimal separator of size two which is minimal for 4 is an a-critical separator.
Let S be an a-critical separator, Ga

S is the graph G[Ca(S)] with an edge between the vertices
of S, G¬a

S is the graph G with the connected component Ca(S) replaced by an edge between the
vertices of S and G]

S is the graph G with a new vertex vS connected to the vertices of S.

Property 9 Let S be an a-critical separator of G. We have the disjoint union:

S¬]
a (G) = {S} t S¬]

a (Ga
S) t S(G¬a

S ) t {S′ a, ∗-minimal separator | S′ cuts S}.

Proof. Let S′ be a minimal separator that avoids a.
By construction, the union is clearly disjoint.
Since Ga

S (resp. G¬a
S ) is obtained from G by contracting a connected component into a super-

vertex (of size two), any minimal separator of Ga
S (resp. G¬a

S ) is a minimal separator of G. So we
have:

{S} t S¬]
a (Ga

S) t S(G¬a
S ) t {S′ a, ∗-minimal separator | S′ cuts S} ⊆ S]

a(G).

Conversely,
i. if S′ ⊂ Ca(S)∪S and S′ 6= S, let b be such that S′ is an a, b-minimal separator. If b ∈ Ca(S),

then S′ is a minimal separator of Ga
S . Otherwise, since S′ 6= S, b is in the same connected

component of G\S′ as one of the vertices of S and S′ is a minimal separator of Ga
S ;

ii. if S′ cuts S, then property 8 proves that it is an a, ∗-minimal separator;

iii. if S′ ∩ Ca(S) = ∅, then S′ is a minimal separator of G¬a
S . ut

Before we describe the algorithm that lists the minimal separators of G, we can remark that
the set of the a, ∗-minimal separators that cut S is the set {S′\{vS} | S′ ∈ Sa(G]

S) and vS ∈ S′}.
The algorithm that lists the minimal separators of a 2-connected planar graph does the follow-

ing:

• Find a of degree at most 5;

• Run the algorithm calc_cross(G, a);

• Run the breadth first search variant of the algorithm calc_2 on a and each time a new
minimal separator S is found

– Check if |S| = 2;

– Check if S cuts a minimal separator S′ of size two.

The first time a minimal separator of size two is found, it is a critical separator

• compute G¬a
S and run calc(G¬a

S );

• for each couple (S′, O) still in the queue,

– if S′ cuts S, then run _calc2_(G]
S , S ∪ {vS}, O ∪ {vS})

– if not, then continue the breadth first search but on the graph Ga
S .

Property 10 The algorithm calc is correct.
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Proof. It lists the elements of S]
a(G) and S¬]

a .
To list the elements of S¬]

a , it uses property 9.
All the minimal separators produced by the breadth first search variant of _calc2_ are minimal

separators of S¬]
a (Ga

S) and once a critical separator is found, it goes on with the listing of the
elements of S¬]

a (Ga
S), S(G¬a

S ) and the a, ∗-minimal separators that cut S.

Property 11 The running time of calc is O(n/separator).

Proof. The running time of calc_cross is O(n/separator).
By induction on the size of G, the graphs Ga

S and G¬a
S are smaller than G so by induction

hypothesis, the listing of the elements of S¬]
a (Ga

S) and S(G¬a
S ) takes O(n/separator). The graph

G]
S is bigger than G but there are at most n critical separators in G for a so the total running

time is O(n/separator).

6 Conclusion

In the conclusion of [1], Berry and al. note that their algorithm may compute a minimal separator
up to n times and that this could be improved. This paper confirms this feeling for this is exactly
what we have gained for planar graphs. We feel, just like Berry and al., that there could be a
better general algorithm to compute the minimal separators of a graph.

This paper gives another proof that planar graphs and their minimal separators in particular
are peculiar. We feel that topological properties such as property 4 are yet to be found and that
such properties are the key to compute the treewidth of planar graphs.
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