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The Limit Theory of Generic Polynomials

Pascal Koiran

September 2001

Abstract

We show that the set 7' of first-order sentences satisfied by all generic
polynomials of sufficiently high degree forms a complete theory. As
a consequence, complex polynomials of even degree cannot be distin-
guished from complex polynomials of odd degree by a first-order formula.
We ask whether T has an analytic model.

Keywords: model theory, definability, intersection.

Résumé

On montre que 'ensemble T des énoncés du premier ordre satisfaits
par tous les polynomes génériques de degré suffisament grand forme une
théorie complete. Il en résulte que les polynomes complexes de degré pair
ne peuvent pas étre distingués de ceux de degré impair par une formule
du premier ordre. Nous demandons si 7" admet un modele analytique.

Mots-clés: théorie des modeles, définissabilité, intersection.
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Abstract

We show that the set T of first-order sentences satisfied by all generic
polynomials of sufficiently high degree forms a complete theory. As a
consequence, complex polynomials of even degree cannot be distinguished
from complex polynomials of odd degree by a first-order formula. We ask
whether T has an analytic model.

Keywords: model theory, definability, intersection.

1 Introduction

A generic polynomial is a polynomial f : C — C of the form

f(x) =ciz + - +cqa®
where the coefficients cy, . . . , ¢4 are algebraically independent over Q. One could
work in the language of fields expanded with a unary function symbol f. Here
we prefer to work in the language of “curved fields”: the language of fields
expanded with a binary predicate C' (which stands for y = f(z)). This choice
emphasizes the connection with generic curves [2, 4] and turns out to be more
convenient for the explicit construction of a model by an amalgamation method
a la Hrushovski (see [7] for a survey on this topic).

In this paper we show that the parity of the degree of complex polynomials
is not definable. This means that there does not exist a first-order sentence F'
of the language of curved fields such that:

(i) F is true in C whenever C' is interpreted by the graph of a polynomial of
even degree.

(ii) F is false in C whenever C' is interpreted by the graph of a polynomial of
odd degree.

Note that the parity of the degree of real polynomials is definable. This follows
from the fact that a real polynomial is of odd degree if and only if it has different
limits at +00 (more on this in section 2).

Our undefinability result follows immediately from the following main re-
sult: a sentence of the language of curved fields is either true for all generic
polynomials of sufficiently high degree or false for all generic polynomials of
sufficiently high degree. The set T' of sentences which are true for all generic



polynomials of sufficiently high degree therefore forms a consistent and complete
theory: the “limit theory of generic polynomials”.

Starting from somewhat different motivations, Zilber has independently con-
structed a related theory [11]. He works in a richer language with countably
many binary predicates, which are to be thought of as the graphs of the higher
order derivatives of the original function.

In section 3 we give an axiomatization of a theory which is shown to be
consistent and (more crucially) complete. It will turn out in section 4 that this
theory really is the limit theory of generic polynomials.

By elementary equivalence the above results apply not only to the field of
complex numbers but to any algebraically closed field of characteristic 0. They
seem quite likely to hold also in positive characteristic (this is definitely true
for the consistence and completeness results of section 3).

One could naively imagine that generic polynomials are easier to understand
than generic curves. Even though the results and the general proof strategy are
similar, the opposite is true: the axiomatization is slightly more complicated
for generic polynomials, and it is significantly more difficult to show that the
axioms are satisfied when the degree is sufficiently high. The proof given in
section 4 relies on the intersection theorems of section 5 and of [5].

An intriguing open question is whether the limit theory of generic polyno-
mials admits an analytic model (more on this in section 6). Wilkie’s Liouville
functions [10] are plausible candidates. Some partial results in this direction
are already contained in [10].

2 Case of the Real Field

We have just seen that the set of real polynomials of even degree is definable.
Given p > 3, is it also possible to define the set of real polynomials whose degree
is a multiple of p 7 It turns out that the answer to this question is negative.

Proposition 1 Let p > 3 be an integer. There exists no sentence F of the
language of curved fields such that when the curve C' is interpreted by the graph
of a degree d polynomial, (R,C) = F if and only if d is a multiple of p.

Proof. Assume by contradiction that such a sentence exists for some even integer
p > 4. Write p = 2¢q. When we interpret C' by the graph of the polynomial
y = 2>, (R,C) [ F if and only if n is a multiple of ¢q. Let G(n,z,y) be the
following formula of language of the real exponential field:

(x =0Ay=0)V3Iz (exp(z) = 2% Ay = exp(nz)).

When n is an integer, G(n, .,.) defines the graph of the polynomial y = z>". Let
H (n) be the formula of the real exponential field obtained from F' by replacing
each instance C(z,y) of C by G(n,z,y). This formula should be true whenever
the integer n is a multiple of ¢, and false otherwise. This is impossible for ¢ > 2
since the real exponential field is o-minimal [9].

Assume now that p > 3 is an odd integer, and that it is possible to define the
set of real polynomials of degree multiple of p. Since the set of real polynomials



of even degree is definable, one could also define the set of real polynomials of
degree multiple of 2p. We have just shown that this is impossible. O

Several other undefinability results can be obtained by the same o-minimality
argument [3, 8]. Unfortunately, for algebraically closed fields we do not know
any theory which could play the same “universal” role. More ad-hoc construc-
tions are therefore necessary. The limit theory of generic curves is a tool which
makes it possible to obtain several undefinability results for algebraic curves [2].
The theory constructed and studied in the rest of this paper plays a similar role
for definability problems involving polynomials over an algebraically closed field
of characteristic 0.

3 Construction of the Limit Theory

In this section we work in an algebraically closed field K of arbitrary charac-
teristic. We denote by @ the prime field of K. Given n elements x1,...,x, of a
model, we denote the tuple (z1,...,2,) by 2. When there is a risk of confusion
between tuples and elements we may also write Z instead of x.

We consider the theory 7' defined by the following axioms.

1. The axioms of algebraically closed fields of a fixed characteristic.

2. The functional axiom
Vz,y1,y2 Cz,y1) A C(Z,92) = y1 = yo.

3. The function is everywhere defined: Vz3yC(z,y).
4. C(0,0).

5. The universal axioms. Let ¢(z1,y1,...,%n,Ysn) be a conjunction of poly-
nomial equations with coefficients in the prime field. If the subset of K?"
defined by ¢ is of dimension < n, we add the axiom

Vxlayla s Ty Yn A(xlayla N axn?yn) — ﬁ(ﬁ(fﬂy) (1)

where A(z1,Yy1,...,Tn,Yn) stands for

n n
N @) # (@5,0) AN\ wi 204 N Clai,y)
i#j i=1 i=1

Instead of these axioms, one could also use an equivalent set of universal
axioms in the style of [2].

6. The inductive axioms. Let ¢(x1,y1,...,%Zn,Yn,2) be a conjunction of
polynomial equations with coefficients in the prime field. For any fixed
value of the parameter Z, ¢ defines an algebraic subset Vz of K2". Let £(Z)
be a formula of the language of fields which states that Vz is irreducible



and is not contained in a subspace of the form z; = z; for some ¢ # j, or
of the form x; = ¢ for some element ¢ in the model.

Let € be a function which chooses one variable uf € {x;,y;} for ev-
ery i € {l,...,n}. For each value of the parameter Z, the formula
Juf,...,ul¢(T,7,Z) defines a constructible set C¢ C K™. As pointed
out in [2], there is a formula (%) of the language of fields which states
that Cf is dense in K™. Let 1(Z) be the disjunction of the 2" formulas
1)e(Z). Let 0 be the conjunction of £ and 1. We add the following axiom:

n

vz Elxlayla s Ty Yn 9(2) - /\ O(xlayl) A ¢(ana E) (2)
=1

3.1 Comnsistence

The consistence of T' follows from the results of section 4. In this subsection
we give a simpler and more direct proof. We shall construct a model K of T
which is the union of an increasing sequence of “curved fields” K;. Each K;
is an algebraically closed field of finite transcendence degree endowed with a
“curve” C; made up of finitely many points. We start from Ky = Q) with the
curve Cy = {(0,0)}. One goes from K; to K;;1 by application of one of the two
following steps:

(i) We choose some a € K; such that K; = Vy —-C(a,y). K;41 is the algebraic
closure of K; U {(a,b)} where b is transcendent over K;, and C;y; =

Cz' U {(av b)}

(i) We choose a conjunction of polynomial equations ¢(%,7,Z) and a tuple
z of parameters from K; which satisfies formula 6 in (2). K;i1 is the
algebraic closure of K; U {(a1,b1),...,(an,by)} where (a1,bi,...,an,by)
is a generic point over K; of the irreducible variety Vz, and C), 11 = C,, U
{(a1,b1),...,(an,by)}. Note that the ai,...,a, all lie outside K; and are
distinct from each other due to condition £(Z) in the inductive axioms.
Moreover, for any subset I' of {(a1,b1),...,(an,by)} the transcendence
degree of I' over K is at least equal to the cardinality of I' due to condition

»(2).

A straightforward induction on ¢ shows that n points on C; with nonzero first
coordinates must have transcendence degree at least nm over the prime field.
Hence all the K; (and K itself) satisfy the universal axioms. It is also true that
the K;, and therefore K, satisfy the functional axiom. This follows from the fact
that in step (i) we only consider a point a whose image is not already defined,
and that in step (ii) ay,...,a, are distinct elements of K;;; \ K;. Finally, it
follows from a standard diagonal argument that we can alternate steps (i) and
(ii) in order to obtain a function which is defined everywhere and satisfies the
inductive axioms.



3.2 Completeness
We start with a strengthening of the inductive axioms.

Lemma 1 Let M be a model of T and ¢(x1,y1,--.,Tn,Yn,Z) a conjunction of
polynomial equations where the tuple Z of parameters satisfies the formula 0 in
the inductive azioms. Let S be a finite subset of M?. There exist n distinct

points in C'\ S whose 2n coordinates satisfy ¢.

Proof. Let S = {(a1,b1),...,(as,bs)}. We add a pair (zg,yo) of new variables
and consider the formula ¢’ in 2n + 2 free variables (and the parameters z/ =

Z" (a1,b1,...,as,bs)) which is the conjunction of ¢ and of the formula
Yo H (i —x5) ¥ H (zi —aj) = 1.
0<i<y 1,7>0

Note that o does not appear in ¢’. We just have to check that z’ satisfies the
condition 0’ = ¢ A’ which is associated to ¢’ in the inductive axioms.

The variety V' defined by ¢’ is irreducible since the same is true of ¢.
Let (ag,B0,--->Qn,Bn) be a point of V' which is generic over &' = Q(Z').
By the hypothesis on ¢ each «; is transcendent over k', and these n + 1 co-
ordinates are distinct from each other. Moreover there exist n coordinates
ur € {a1,B1},...,un € {an, B} such that (ag,u1,...,uy,) is of transcendence
degree n+1 over k'. Hence we can indeed apply the inductive axiom associated
to ¢'. O

Let M be a model of T and k£ an algebraically closed subfield of M of
finite transcendence degree. We define d(k) = tr.deg(k) + 1 — |C N k?|. The
universal axioms imply that d(k) > 0 for all k. We say that k is self-sufficient
if for all algebraically closed subfields I C M of finite transcendence degree,
k C I implies (k) < 0(I). Any algebraically closed subfield of M of finite
transcendence degree has a self-sufficient extension (consider an extension of ¢
as small as possible).

An extension k C [ with k and [ self-sufficient is said to be minimal if there
exists no self-sufficient structure ¥’ with & C ¥’ C I. Any extension k C [ with
k and [ self-sufficient can be broken down into a tower of minimal extensions.

Lemma 2 Let M be an w-saturated model of T and k a self-sufficient substruc-
ture of M. There exists oo € M \ k such that the algebraic closure | of kU {a}
is self-sufficient and there is no point on the curve in 12\ k2.

Proof. Let (x1,91),...,(Tn,ys) be the (finitely many) points on the curve in k2,
and (a1,...,a,) a transcendence basis of k. We define three families F,G, H
of first-order formulas in one free variable ¢. The first family is made of all
formulas of the form P(ai,...,ar,¢) # 0 where P is a nonzero polynomial
with integer coefficients. Obviously, any point o which satisfies this family lies
outside k. The second family is made of all formulas of the form

_IE|IE,y [¢(C) /\P(xaala"'aahc) :OAQ(yaala"'aahc) =0
/\C((I,‘,y) A A?:l(xay) 7& (xzayz)]

5



where P and () are nonzero polynomials with integer coefficients, and ¢ states
that none of the two univariate polynomials z — P(z,ay,...,a,,¢) and y —
Q(y,a1,...,ar,c) are identically zero. If o satisfies this family, any point on
the curve with both coordinates in the algebraic closure of kU {a} is in fact in
k2. Moreover, this family is satisfied by all o € k since (z1,¥1),..., (2, ;) are
the only points on the curve with both coordinates in this algebraically closed
field.
The third family is made of all formulas of the form

—3u, v ALy C(uivi) A(@,0,@,¢) AO(c) AN; j(ui,vi) # (35,9;)

where @ = (u1,...,up), ¥ = (v1,...,0m), @ = (a1,...,a,), 1 is a conjunction
of polynomial equations with integer coefficients, and 6 states that the subset
of all (uy,...,Un,v1,...,0,m) € M?™ which satisfy (@, 7,@,c) has dimension

at most m — 1. If « satisfies this family, the algebraic closure of k U {«a} is
self-sufficient. Moreover, all « € k satisfy this family since k is self-sufficient.

By w-saturation we just need to check that F UG U H is finitely satisfiable.
This is clear since any finite subset of F is satisfiable by an element of k, and
any element of k satisfies all of G and H. O

We also need the “independent marriage lemma” from [2].

Lemma 3 Let K be a field. Fiz an arbitrary set {(z1,y1),-..,(Tn,Yn)} of n
points of K2, and a subfield k C K. The two following properties are equivalent:

(1) There exist n coordinates t1 € {z1,y1},...,tn € {Tn,yn} which are alge-
braically independent over k.

(ii) For any integer m < mn and any subset {(x; ,vi,),---,(zi, i, )} of our
set of n points, the transcendence degree of (Ti,,Yi,,---»Ti,,,Yi,,) over k
15 at least m.

The completeness of T' follows immediately from the next proposition.

Proposition 2 Let M and M’ be w-saturated models of T. The family of partial
isomorphisms between self-sufficient substructures of M and M' has the back-
and-forth property.

Proof. Let o : k — k' be such an isomorphism. By symmetry it suffices to
show that for every o € M \ k there exists a partial isomorphism 7 between
self-sufficient substructures which extends ¢ and is defined in a. Two cases can
be distinguished:

(i) There exists an extension ! of kU {a} such that 0(]) = (k).
(ii) There is no such extension.

In the first case [ is self-sufficient since k is self-sufficient. Without loss of
generality we may assume that the extension k£ C [ is minimal. This leaves only
two possibilities:



(a) There exists a point (a,b) on the curve with a € k and b € [\ k.

By minimality of [, (a,b) is unique and [ is the algebraic closure of k U {b}.
There is a unique b’ € M’ such that M’ = C(o(a),b’). Let I' be the algebraic
closure of k' U {b'}. Since b is transcendent over k and b’ over k', there exists
an isomorphism of fields 7 : [ — [’ which extends o and maps b to &'. By
self-sufficiency (a, b) is the only point on the curve of M in [\ k?, and (o(a),b’)
is the only point on the curve of M’ in I’”?\ k2. This isomorphism of fields is
therefore an isomorphism of curved fields.

(b) The points (ay,b1),..., (an,b,) on the curve in [ \ k? all have their first
coordinates outside k.

We can view (a1,b1,...,an,b,) as a generic point over k of an irreducible vari-
ety Vz defined by a conjunction ¢(z1,y1,. .., Zn,Yn,Z) of polynomial equations.
Here Z is a tuple of parameters from k. This variety has dimension n since
d(l) = d(k). Our tuple of parameters Z satisfies the formula ¢ which is associ-
ated to ¢ in the inductive axioms since ay, ..., a, are pairwise distinct (by the
functional axiom) and transcendent over k. Since k is self-sufficient, by Lemma 3
this tuple satisfies formula 1) as well. The tuple o(Z) must therefore satisfy £ A.
By application of an inductive axiom there exist n points (a/,b}), ..., (al,, b)) on
the curve of M’ whose 2n coordinates satisfy ¢(Z,7,0(Z)). In fact, by Lemma 1
we can choose these points so that they are all distinct from the (finitely many)
points of the curve in k"2, and distinct from each other. This choice implies

that (a},b,...,al,b)) is a generic point of the algebraic subset of M"" de-
fined by ¢ since this variety has dimension n and the transcendence degree
over k' of (a},b],...,al,, b)) must be at least n by the self-sufficiency of £'. Tt
follows that exists an isomorphism of fields 7 : [ — I’ which extends o and
maps ai,by,...,an, b, to af,b},... al,b,. Here l' is the algebraic closure of
K U{ay,b,... al, b, }. This isomorphism of fields is an isomorphism of curved
fields since (a},b}),...,(al,b,) are the only points on the curve in I'? \ k"2 by

self-sufficiency of k’. The analysis of case (i) is now completed.

In case (ii) we set | = k(c). Since we are not in case (i), [ is self-sufficient and
there is no point on the curve in /2 \ k2. Hence we just need to find o/ € M"\ ¥’
such that I = k'() is self sufficient, and there is no point on the curve in
I\ k"2. Any isomorphism of fields 7 : [ — [’ will then be good for our purposes.

The existence of o/ is given by Lemma 2 (applied to M'). O

4 Convergence to the limit theory

In this section we show that any axiom of T is satisfied by all generic polynomials
of sufficiently high degree. This implies immediately that any sentence F' in the
language of curved fields is satisfied by all generic polynomials of sufficiently
high degree if '+ F. Conversely, if F' is not a sentence of T' then T' - —F' by
completeness of T', so that F' is false for all generic polynomials of sufficiently
high degree.



4.1 Satisfaction of Universal Axioms

Given two sequences z = (1,...,Zy) and ¥y = (y1,...,yn) of elements of K,
we denote by W (z,y) the affine subspace of all (ay,...,aq) € K% such that
Z?Zl :chaj = y; for ¢ = 1,...,n. This set can be interpreted as the the set

of degree d polynomials without constant term which go through the n points
(xlayl)a sy (xnayn)

Lemma 4 Ifd > n and z1,...,z, are distinct and nonzero then W (z,y) has
dimension d —n.

Proof. If the x;’s are pairwise distinct and nonzero the matrix of the system
defining W (z,y) has rank n by the well-known property of Vandermonde de-
terminants. The solution space is thus of dimension d —n. O

Proposition 3 If d > n and a generic polynomial of degree d goes through n
distinct points (£1,Y1),- -, (Tn,yn) with x; # 0 for all i, their 2n coordinates
have transcendence degree at least n.

Proof. Since these 2n points are distinct and lie on the same polynomial curve,
their first coordinates are also distinct. It then follows from Lemma 4 that the
coefficients of the generic polynomial, which are of transcendence degree d over
the prime field, have transcendence degree at most d—n over {z1,y1,...,Zn,Yn}
These 2n coordinates must therefore be of transcendence degree at least n over
the prime field. O

It follows that a generic polynomial of degree d satisfies axiom (1) as soon
as d > n.

4.2 Satisfaction of Inductive Axioms

From now on we assume that K = C. Let ¢(r,n) = n(nr +n +r). We first
state two intersection theorems.

Theorem 1 Let V be an algebraic subset of C* of codimension r, defined over
an algebraically closed subfield k C C. Then VNW (z,y) # 0 if © and y satisfy
the following two conditions and if d > ¢(r,n):

(i) The z;’s are pairwise distinct and all lie outside k.

(1) There exists ur € {x1,y1},...,Un € {Tn,yn} such that (u1,...,u,) is of
transcendence degree n over k.

It is clear that the theorem fails if condition (i) is removed. We have shown
in [5] that condition (ii) is also necessary. We do not known whether the bound
n(nr+mn+r) in this theorem is optimal. A precise analysis [5] of the case where
V is an affine subspace yields the lower bound n(r + 1). The consideration of
more general algebraic sets could perhaps yield better lower bounds.

The second main ingredient is the following result.



Theorem 2 Let V be an irreducible algebraic subset of C* of codimension r,
defined over an algebraically closed subfield k C C.
Assume that d > n(2n+r+1) and that condition (ii) is satisfied as well as:

(i’) The z;’s are pairwise distinct and are all nonzero.

If VW (z,y) # 0 then this intersection contains a generic point of V (i.e., a
point of transcendence degree over k equal to the dimension V).

The proof of these two theorems is postponed to the next section. Our im-
mediate goal is to show that any inductive axiom is satisfied by all generic
polynomials of sufficiently high degree.

Given r € N, consider any inductive axiom such that the tuple z of parame-
ters in (2) is of length at most r. Let C be the graph of a generic polynomial of
degree d. We claim that C satisfies the inductive axiom as soon as d > ¢'(r,n),
where ¢'(r,n) = n(nr +n+r + 1). Indeed, fix any Zz such that C = 0(z). The
tuple a = (a1, . . ., ag) of coefficients of C' can be viewed as a generic point over
Q(Z) of some irreducible algebraic set V of C?. Since Z is of length at most r,
V' is of codimension at most r.

Let V& be the subset of C?" defined by ¢(.,.,Z). Let (1,y1,...,Zn,Yn) be
a point of Vz which is generic over Q(Z). Conditions (i) and (ii) of Theorem 1
are satisfied by = = (z1,...,z,) and y = (y1,...,yn) since C = 0(z). The
intersection V' N W (x,y) is therefore nonempty since d > ¢'(r,n) > @(r,n).
By Theorem 2 this intersection contains a generic point 3 of V since ¢'(r,n) >
n(2n—+r+1). We conclude that the graph of the generic polynomial of coefficient
vector [3 contains n points whose 2n coordinates lie on Vz (and the same is true
of C since a and ( have same type over z). We have thus proved that the
inductive axiom is satisfied as soon as d > ¢'(r, n).

5 The intersection theorems

In this section we give the proofs of Theorems 1 and 2. We start with Theorem 2
since it is needed for the proof of Theorem 1.

5.1 Proof of Theorem 2

It is almost identical to the proof of the corresponding result in [2]. In particular,
the proof of Lemma 5 below differs from the proof of Lemma 7 from [2] only
by minor details. Here the main difference with that previous paper does not
lie in the proof of the theorem but in its hypotheses: we need to assume that
V N W(z,y) is nonempty whereas that condition was automatically satisfied
in [2] due to the projective nature of the problem.

Let k' be the algebraic closure of k(x,y). We denote the transcendence
degree of k' over k by n 4+ m. Note that m > 0 by condition (ii) and that
W (z,y) is of codimension n by condition (i’). Let us assume that W(z,y)
intersects V' and let 8 be a point of V N W(x,y) which is generic over £'.
“Generic” again means that the transcendence degree of § over k' is equal to
the dimension of V-N W (z,y), which is at least d — (n + r).



Lemma 5 Ifd > n(2n+r+1), "y is of transcendence degree at most m over

k().

Proof. Let ny be the cardinality of the set P; of the points (x;,y;) which are
algebraic over k(). We denote by P, the set of the remaining no = n —ny
points. Note that z; is transcendent over k(3) for every point (z,,y;). Indeed,
if z; was algebraic over k() the same would be true of y; since 5 € W (z,y).

Let 6 be the transcendence degree of P, over k(). We need to show that
6 < m if d is large enough. Note that tr.degk(P;)/k > ni by condition (ii).
Since tr.degk(Pi, P2)/k = ni1 + na + m by definition of m, this implies that
tr.degk(P1, P2)/k(P1) < ng+m. Now we consider [ = |(d—n1)/n2| independent
copies P 1,..., Py, of P,. More precisely, these new points should satisfy the
two following conditions:

1. Each set P, ; has same type over k(3) as Ps.
2. The transcendence degree over k((3) of their union is equal to [6.

Let @ be the union of P; and of the set of new points. The first coordinates
of the new points are all transcendent over k() and distinct from each other.
It follows that the first coordinates of the points of () are all nonzero and
distinct from each other. In particular, these points are all distinct so that
|Q| = n1 + Ing €]d — ng2,d]. We can now apply Lemma 4 since the polynomial
curve of coefficient vector 8 goes through all the points of Q. It follows that
that [ is of transcendence degree at most ny over k(Q). We can now compute
the transcendence degree of 8”@ over k in two different ways.

On the one hand, tr.degk(8" Q)/k = tr.degk(8)/k + tr.degk(8" Q)/k(5) >
d—(n+r)+16.

On the other hand, tr.degk(8°Q)/k = tr.degk(Q)/k+tr.degk(8°Q)/k(Q) <
tr.degk(P1)/k + l(na + m) + ny. Comparing these two expressions, we obtain
the inequality

d—(n+r)+10 <l(na+m)+2n; + no. (3)

Letting d (and consequently /) go to infinity in this inequality then shows that
6 > m is impossible. The specific bound d > n(2n +r + 1) can be derived from
a straightforward calculation which we do not detail completely. The first step
is to assume that # > m + 1. We obtain from (3) that [ < 2n + r, which implies
in turn d < n; + n2(2n + r). We finally conclude that the (probably rough)
bound d < n(2n+r + 1) holds if 6 > m. O

In order to complete the proof of Theorem 2 we compute the transcendence
degree of k(8,z,y) over k in two different ways. On the one hand, it is upper
bounded by tr.degk(5)/k + tr.degk(B,z,y)/k(5). By the above lemma this
is at most tr.degk(8)/k +m if d > n(2n + r + 1). On the other hand, this
transcendence degree is equal to tr.degk(z,y)/k + tr.degk(x,y,B)/k(z,y) =
n+m+dim(VNW(z,y)) which is at least n+m+d— (n+r) =m+d—r. A
comparison of these two expressions shows that tr.degk(5)/k > d—r =dimV.
Since B € V this inequality must be an equality, and g is indeed a generic point
of V.
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5.2 Pseudocylinders

Before moving on to the proof of Theorem 1 we need some geometric preliminar-
ies. In this subsection we work with the Euclidean topology on C?. We denote
by Z(fi,...,[fs) the zero set of s polynomials fi,...,fs € C[Xy,...,X,]. We
denote by P(dy,...,ds) the space of all tuples (fi,..., fs) of polynomials such
that deg(f;) < d; for i = 1,...,s. This space can be identified to CV for
N=TI[_( ‘;di), and it is also endowed with the Euclidean topology.

Lemma 6 (continuity of roots) Assume that s < p and that a point « of
CP lies on an irreducible component of Z(f1,...,fs) of codimension s. For
any neighbourhood O of «, there exists a neighbourhood O' of fi,...,fs in

P(deg(f1),...,deg(fs)) such that Z(f{,...,f)NO #0 for any (f{,...,fl) in
O

Proof. There exist n — s affine functions [y,...,l,_s such that
Z(f1,-- s fsyl1y-ooyln—s) = {a}. We can now apply the “extended geomet-
ric version” of Bézout’s Theorem from [1] since we have as many equations as
unknowns. We conclude that there exists a neighbourhood O’ of (fy,...,ss) in
P(deg(f1),...,deg(fs)) and a neighbourhood O" of ly,...,l,—s in P(L,...,1)
such that Z(f{,...,f5,0,...,ll_s) N O # 0 whenever (f{,...,fl) € O and
(,...,l,)e0". O

Let V' be an irreducible algebraic subset of CP of codimension r. Recall
that V is said to be a complete intersection if it can be defined by exactly r
polynomial equations. This is not always possible, but it is always possible
to find a a variety V' defined by r equations such that V is an irreducible
component of V' (see for instance Proposition 2.7 of [6]).

Corollary 1 Let V' be an irreducible algebraic subset of CP of codimension r
and W an affine subspace of codimension n where r+n < p. Let a be a point of
V which does not lie on any other component of V', where V' is as above. If a
lies on an irreducible component of VAW of codimension r+n then VOW' # ()
for any affine subspace W' of codimension n which is sufficiently close to W.

Proof. By choice of «, there is a neighbourhood O of this point such that
V'NO C V. Let us apply Lemma 6 to the system of s = r + n equations
defining V' N W. We conclude that V' N W' N O # () if W' is sufficiently close
to W, but VNW' NO CV NW' by choice of O. O

Proposition 4 Let V be an algebraic subset of CP of codimension r. For any
n < p—r, let I, be the set of points « € CP such that there exists an affine
subspace of codimension n containing « which does not intersect V. If I, is
dense in (P, there exists an affine subspace of codimension n in which V is of
codimension < r (i.e., VNW has codimension at most n+r —1).

Proof. Assume first that V is irreducible. Let a be a point of V' which does not
lie on any other component of V', where V' is as in Corollary 1. If I,, is dense
we can find a sequence of points o which converges to a and a sequence Wy
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of affine subspaces of codimension n containing «y, such that V N Wy = ). By
compactness of the set of directions of affine subspaces of codimension n, we
may assume (extracting a subsequence if necessary) that Wy converges to some
affine subspace W of codimension n. We claim that V N W has codimension at
most n+r—1. Indeed, assume by contradiction that V NW has codimension at
least n + 7. Since VNW # 0 (« is in the intersection) the codimension should
be exactly n + r. This is in contradiction with Corollary 1 (take W' = W, for
a large enough k). This completes the proof of Proposition 4 for irreducible
varieties. If V is not irreducible, we can apply the result to an irreducible
component. O

For instance, in the case » = 1 the conclusion of this proposition is that V
contains an affine subspace of codimension n. As an example of this situation,
take for V a cylinder in C3 (in this case p =3, 7 = 1 and n = 2).

5.3 Proof of Theorem 1

This theorem was obtained in [5] in the special case where V' is an affine sub-
space. More precisely, we proved the following result.

Theorem 3 Let V be an affine subspace of C¢ of codimension r, defined over
an algebraically closed subfield k C C.

If = satisfies condition (i) then VN W (z,y) # 0 as soon as d > n(r + 1),
and this intersection is of codimension v+ n in C%.

The proof of Theorem 1 relies on Theorem 3 as well as on an inductive argument
which is contained in the next lemma.

Lemma 7 Let V be an algebraic subset of C? defined over an algebraically
closed subfield k C C. Assume that there exists an affine subspace A of C* of
codimension s in which V is of codimension r > 1. Assume also that x and y
satisfy conditions (i) and (ii) and that V N W (z,y) = 0. There exists an affine
subspace A’ of C¢ of codimension s +n in which V if of codimension r — 1 as
soon as:

d>max(n(s+1),n(2n+s+1),n+r+s).

Proof. We shall assume that A is defined over k (there must exist such an
A since V is defined over k). If d > n(s + 1) the intersection A N W (x,y)
is nonempty by Theorem 3, and it is of codimension n in A. If additionally
d > n(2n+ s+ 1) this intersection contains a generic point of A by Theorem 2.
Obviously, ANW (x,y) does not intersect ANV since W (x,y) does not intersect
V. We can therefore apply Proposition 4 with p =d — s and A in place of CP.
This is legitimate as soon as n 4+ r < dim(A) = d — s. We conclude that there
exists an affine subspace A’ C A of codimension n in A such that V N A’ is of
codimension at most r — 1 in A’. O

Theorem 1 follows almost immediately from the above lemma. Indeed,
assume by contradiction that d > ¢(r,n) but VN W(z,y) = 0. We can apply
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the lemma iteratively for s = 0,n,2n,... up to s = (r — 1)n. This is legitimate
due the inequalities p(r,n) > n((r — L)n + 1), p(r,n) > n(2n + (r — 1)n + 1)
and ¢(r,n) > n+r+ (r—1)n. We conclude that V' contains an affine subspace
of codimension nr. Without loss of generality we can assume again that this
subspace is defined over k. Since ¢(r,n) > n(nr + 1) we can apply Theorem 3
one more time. This yields the contradiction V N W (z,y) # 0.

6 Remarks on Liouville Functions

In [10] Wilkie calls “Liouville function” a function H : C — C with a Talyor

series of the form
(o0}

H(z) = Z 2 /a;
i=1

where the a; are non-zero integers satisfying the condition: for every [ > 1,
lait1] > |az-|il for all sufficiently large ¢. It seems plausible to conjecture that
the first-order theory of the complex field expanded with H is the limit theory
of generic polynomials. As of now it is not even known whether all Liouville
functions have the same first-order theory. Some partial results towards this
conjecture can be found in [10]. Indeed, it is shown that any Liouville function
satisfies the universal axioms. Other results in the same paper imply that
some of the inductive axioms are also satisfied: those for which the tuple Zz of
parameters is of length 0. It follows from the results in the present paper that
any inductive axiom is satisfied by the partial sums Hg(z) = Zgzl 2! /a; for all
sufficiently large d.
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