Jean Duprat

Mario Fiallos
email: mallos@lip.ens-lyon.frduprat@lip.ens-lyon.fr

Aguilar March

Mario Fiallos Aguilar

Data ow dot product on networks of heterogeneous digit-serial arithmetic units

Keywords: Data ow, dot product, massive pipelining, digit on-line computation ot de donn ees, produit scalaire, \pipeline" massive, calcul en-ligne

In this paper we deal with a new high precision computation of the dot product. The key idea is to use hundreds of digit-serial arithmetic units that allow a massive digitlevel pipelining. Parallel discrete-event s i m ulations performed on a memory-distributed massively parallel computer show that with a limited number of arithmetic units, the computation of dot product when performed using a \classical" algorithmic technique (i.e. serial cumulative m ultiplications) is almost as fast as the case where an \optimal" divide-and-conquer algorithmic technique is used. Interconnection networks for both algorithmic techniques are considered.

Introduction

Matrix and vector operations based on dot product computation occur frequently in engineering and scienti c applications. A lot of work has been performed in order to obtain better algorithms and e cient implementations on parallel computers 16], 22], 21] 1 7], 5], 23]. Unfortunately, in computations of arithmetic algorithms that deal with the approximation of real numbers by oating-point representations, inaccurate calculations and representations lead to completely wrong results. These errors are produced by cancellation and truncation of the oating-point n umbers 27], 28]. A computer that allows the size of operands and results to be large enough to compute according to the needs of accuracy potentially resolves these problems. However, as high accuracy is achieved using very-long precision arithmetic, the representation of numbers needs a lot of bits, typically several thousands. It is more practical to carry all these bits serially than in parallel. In digit on-line mode of computation 11], 10], the operands and the results ow through the arithmetic operators or units (aus) serially, digit by digit, starting with the most signi cant, allowing a digit-level pipelining. This paper deals with the digit on-line mode computation of dot product. Floating-point digit online adders and multipliers are used to compute with a maximum accuracy of 1024 digits. Two di erent algorithmic techniques for computing the dot product are studied. The rst one is the \divide-and-conquer" technique, (a technique frequently used in parallel machines). The second consists basically in computing the dot product using cumulative m ultiplications, a technique frequently used in SISD computers. A comparison of the two algorithmic techniques is performed using analytical methods and parallel discrete-event s i m ulation on MasPar MP-1.

On-line and data ow modes of computation

As stated above i n digit on-line computation, the operands and the results ow b e t ween arithmetic units serially, most signi cant digit rst (MSD). Similarly, LSD means least signi cant digit. A consequence of this ow is the need of a redundant n umber system 1]. In such systems, addition is carry free and can be performed in parallel, or in any serial mode (MSD or LSD). The most usual arithmetic operations can be calculated in MSD mode too. Digit on-line arithmetic is the combination of MSD and redundant n umber system. An interesting implementation of a radix-2 carry-free redundant system is the Borrow S a ve notation, BS for short. In BS, the i ith digit x i of a number x is represented by t wo bits x + i and x ; i with x i = x + i ; x ; i . Then 0 has two representations, (0 0) and (1 1). The digit 1 is represented by (1 0) a n d the digit 1 i s r e p r e s e n ted by (0 1) . A BS oating-point n umber x with n digits of mantissa and p digits of exponent is represented by x = m x 2 ex , where m x = P n i=1 m xi 2 ;i and e x = P p;1 i=0 e xi 2 i . In our system the exponents and the mantissas circulate in digit on-line mode, exponent rst. The digit on-line systems are characterized by t h e i r delay, that is the number such t h a t p digits of the result are deduced from p + digits of the input operands. When successive digit on-line operations are performed in digit pipelined mode, the resulting delay will be the sum of the individual delays of operations and communications, and the computation of large numerical jobs can be executed in an e cient manner. We will assume that any communication has a delay of 1. See gure 1.

As we can see from gure 1, the computations in digit on-line mode can be described as a data A nodal operation can be executed only when the required information, a digit from all the input edges is received. Typically a nodal operation requires one or two operands and produces one result. Once that the node has been activated and the computations related to the input digits inside the arithmetic unit performed (i. e. the node has red), the output digit is passed to the destination nodes. This process is repeated until all nodes have been activated and the nal result obtained. Of course, more than one node can be red simultaneously.

Pseudo-normalization

In classical binary oating-point representation, a number is said normalized if its mantissa belongs to 1=2 1 or]1 1=2]. Normalization of numbers leads to more accurate representations and consequently results. In BS representation, to check i f a n umber is normalized may be necessary to examine all its digits. For this reason, we replace the concept of normalized numbers by t h a t o f pseudo-normalized numbers. A number is said pseudo-normalized if its mantissa belongs to 1=4 1 or]1 1=4]. It is very easy to ensure that a number is pseudo-normalized: it su ces to forbid a mantissa beginning by 0 1 , 0 1, 11 or 11. This pseudo-normalization is performed serially.

In the next sections we will describe brie y the two digit on-line oating-point arithmetic units (aus) used in the computation of dot product.

3 Fully digit on-line oating-point adder

As in classical oating-point adders, the fully digit on-line adder (add o, for short) 7], 8] performs three basic operations: exponent calculation, mantissa alignment and mantissa calculation. Figure 2 shows the di erent b l o c ks of the adder:

A serial maximizer computes the maximum of the two exponents.

A serial aligner performs the mantissa alignment with a shift register using the di erence between the exponents. A serial adder calculates the sum of the aligned mantissas.

A synchronizer is used to guarant e e t h a t o n l y a n u n a voidable carry appearing in the sum of the mantissas will provoke the truncation of the mantissa and the incrementation of the exponent of the result. The synchronizer (normalizer + carry detector in gure 2) must test the carry digit and the more signi cant digit of the mantissas sum. When these digits are equal to 1 0, 1 0 , 1 1 o r 1 1 respectively, the incrementation of the exponent and the truncation of the mantissa (the last digit is lost) are performed. When these digits are equal to 0 1, 0 1, 1 1 o r 1 1, the exponent is not modi ed and by substituting 1 1 b y 0 1 o r 1 1 b y 0 1, when necessary, the carry digit of the sum is 0. The operation performed by the synchronizer is di erent from the systematic incrementation of the exponent during all addition proposed by T u 3 2]. In this last case, the truncation of the mantissa of the result leads to a needless loss of information. In the solution we h a ve proposed 8] the incrementation is performed only when necessary. After the tests of the rst two bits of the mantissas sum, the exponent is incremented i the modi ed carry digit is not 0. Since the decision of incrementing or not can be made when the last digit of the exponent result is outputting the incrementer (see gure 3), the on-line delay o f add o, add becomes 3. T h e d i g i t p a i r 1 1 i s u s e d t o t r a n s m i t a 0 a n d t h e p a i r 0 0 f o r a n o n s i g n i c a n t transmission, so that the synchronization is insured automatically. Since the two input mantissas belong to 1=4 1 (in absolute value), the product belongs to 1=16 1 thus, if we w ant maintain the result pseudo-normalized it is necessary to shift up the mantissa up to 2 positions to the right. This kind of normalization requires the dynamic subtraction of 0, 1, or 2 to the exponent of the result. To generate the nal exponent, the last two digits of the exponent are controlled by the three digits of the mantissa product. The normalizer contains a decrementer followed by a n o ver ow detector which is similar to the one of the adder. The digit on-line delay o f the multiplier, mul is 6. The internal synchronization is similar to the ad o case.

Computing dot product in digit on-line mode

With the adder and the multiplier presented in the last two sections we e n visage computing the dot product of two v ectors in a massive digit-pipelined mode.

The dot product C of two v ectors, A = fa 1 : : : a n g and B = fb 1 : : : b n g, i s g i v en by:

C = n X i=1 a i b i (1)
The rst \fast" mode of computation arises immediately: compute the products in parallel rst, and after use adders to perform operations of reduction following a divide-and-conquer technique. See gure 4. The resulting data ow graph is a complete binary tree, CBT for short, with dlog 2 ne + 1 levels.

We can also try to compute dot product by c u m ulative m ultiplications (see gure 4): we compute the rst product. This result is added then, to the next using an adder and so on until the nal result is reached. The DFG resulting is a linear array of operators (LA)1 .

digits addition product

Complete binary tree of operators Linear array of operators Figure 4: Two resulting graphs for dot product computation Three cases arise when the dot product is performed in digit on-line mode:

The number of arithmetic units is greater than the number of operations to perform and a minimum delay is obtained.

The number of arithmetic units is less than the number of operations to perform but, reusing the idle operators, it is possible to compute with minimum delay. The number of arithmetic units is less than the number of operations to perform and though the idle operators are reused as soon as possible, it is not possible to compute with minimum delay.

Note that in the last two cases a scheduling policy must be used.

Computing dot products with a number of aus larger or equal than n

With mul = 6 , add = 3 and assuming that any c o m m unication has a delay o f 1 , i t i s e a s y t o n d that the minimum delay for computing a dot product using the divide-and-conquer technique (see g. 4) is: CBT = mul + (add + 1) log 2 n = 6 + 4 l o g 2 n (2) Similarly, the minimum on-line delay for the computation of the dot product using cumulative multiplications is: CM = mul + (add + 1) n = 6 + 4 n (3) As we stated the two cases above are not realistics.

Reusing the aus to compute with minimum delay

The problem of reusing operators is unavoidable in a real machine where the number of them cannot be grown inde nitely. H o wever, it is possible to reuse the aus to obtain a minimum delay. On a not digit on-line computer, (i. e. it receives all digits of the operands in parallel), reusing is simple. For the complete binary tree this can be achieved with n 2 adders and n multipliers. In a similar way it is possible to reduce the number of operators to compute in digit on-line mode. But, here the situation is more complex because as the numbers are transmitted serially, digit by digit, the predecessor operators may be computing the last or some middle digits of the result number whose other digits are being consumed by t h e successor nodes, and then the predecessors cannot be reused until them have produced the last digit of the result. A similar situation occurs in the LA of operators. We will present rst the case for the complete binary tree graph and after the case for the linear array of operators.

Reusing aus in the tree

It is not possible to reach the minimum CBT without using n multipliers. The problem is to know how m a n y adders are necessary to compute with minimum delay h a ving n multipliers. We n o t e u i as the level on the CBT of operators (the multipliers are at level 1), and L, t h e n umber of digits used to code the numbers. It is possible to reuse only the rst level of adders. The beginning and ending time of adders (tbeg a , tend a) a n d m ultipliers (tbeg m , tend m) are: tbeg m = 0 (4) tend m = mul + L ; 1 = 5 + L

(5) tbeg a = (u i ; 2) add + mul + u i ; 1 = 4 u i ; 1

tend a = tbeg a + add + L ; 1 = 4 u i + 1 + L

The adders that have not begun their rst digit computation when the ones at the second level of the CBT have nished, are those with:

u j d (11 + L) 4)e (8)
For example, if L = 6 4 a n d n = 524288, the number of adders saved by reusing is only 1!. For CBT, searching for the minimum digit on-line delay is not realistic.

Reusing aus in the linear array

If we e n umerate the adders of the LA from the left to right a s a 0 : : : a n and the multipliers as m 0 0 and m 0 : : : m n (see gure 4), we can compute the beginning and ending time of the operators as following:

tbeg ai = mul + 1 + (add + 1) i = 7 + 4 i (9)
tend ai = tbeg ai + add + L ; 1 = 9 + 4 i + L

tbeg mi = tbeg ai ; mul ; 1 = 4 i (11)

tend mi = tbeg ai + L ; 2 = 5 + 4 i + L (12) (13)
For the rst adder, tend a0 = 9 + L. It can be reused at time tbeg re = 1 0 + L. Then, we l o o k f o r the adders whose beginning time are greater or equal than tbeg re : tbeg rea 10 + L (14)

7 + 4 i 10 + L) i d (3 + L) 4e
We note that i is the subindex that identi es each adder. For the other aus the situation is similar.

These results indicate that computation of dot product with minimum delay can be performed by using a number of operators which depends only on the length of the format of the number L, a n d not on the number of products, n.

A rst comparison between the techniques and networks

The CM technique permits the computation of dot product with a number of aus that is independent of the number of products to be performed. This contrasts with the divide-and-conquer technique where the computation depends on both, the length of operands, L, and the dimension of the dot product n. It is true that the digit on-line delay o f t h e LA is greater than the delay using the divide-and-conquer technique but it is interesting to investigate what will happen in a real-world situation, where the number of operators will be limited. In the next sections we will show that the advantages of computing with the divide-and-conquer method may v anish when the number of operators is limited and the number of digits to represent the numbers increases. Moreover, it is easy to see that as the operators must be reused, the computation of dot products by using cumulative m ultiplications can be performed on a ring of operators instead of on a LA. That is, the output of the last adder of the computation is feedback to one of the inputs of the rst adder. See gure 5. From now w e suppose that the computation of dot products using cumulative multiplications will be performed on a ring of aus. Note also that the \divide-and-conquer" technique suggests immediately to use a set of CBT interconnected aus.

Computing dot product with a greater delay than the minimum

We suppose now t h a t w e h a ve less aus than necessary to compute with minimum delay. To compute the dot-product we adopt a two phases scheduling algorithm. The rst phase is the assignment of a priority n umber for each task. Priorities are in decreasing order. The second phase schedules the tasks according to their priority n umber and the number of available aus. As there are two t ypes of aus, adders and multipliers, the scheduling can be performed independently and in parallel for each t ype. We will present t h i s s c heduling algorithm with more details in section 7.3. Let us present rst the host computer where the scheduling algorithm and the dot product were performed.

We use discrete-event parallel simulation 26], 24], 20], 6], 18], 4], 12], 19], 31], 13], 30], 13] i n our work. In the discrete approach to system simulation, state changes are represented by a series of discrete changes or events at speci c instants of time. In our case the events are the input and output of digits of the aus. MasPar MP-1, the host computer of the simulation is a SIMD massively parallel computer 29], 25]. In MP-1 all processors change state in a simple, predictable fashion. The parallelism in MasPar is achieved from the execution of single operation simultaneously across a large set of data. In MP-1, it is easy to determine the program state, because all processes are either active or inactive and the full synchronization guarantees that the value each processor retrieves is correct. The processors (PEs) are interconnected by a n xnet toroidal neighborhood mesh and a global multistage crossbar router network. The programming language used is MPL, a superset of C that includes commands for the data-parallel programming mode.

The key idea to simulate several aus on MP-1 is to map to several PEs, several aus processes. It is possible to map several aus of the same or di erent t ypes to each PE, but all the processors would simultaneously simulate the same type of operator, since MP-1 is a SIMD computer.

Description of the performed simulation

We h a ve performed both the scheduling algorithm and the computations of dot-product using the parallel facilities of MP-1. The simulation can be viewed as a nite succession of two di erent steps: computation and communication. In fact, due to the data-parallel programming model of MasPar problems of synchronization between the di erent arithmetic units are easily solved. The computations are performed in one type of operator at a time. Static or dynamic scheduling may be applied to our problem. We u s e dynamic scheduling. As the digit on-line delay of the adders and multipliers is xed static scheduling seems more natural at rst. But, in digit on-line mode of computation there are some arithmetic operations as the division that cannot be computed with a constant digit on-line delay and consequently the static scheduling cannot be used. However, in both cases of scheduling, the results will be identical. Some other features of the simulation are:

The event list is partitioned or distributed on the PEs. In fact, each P E h a s a v ariable called (priority) that contains its priority relatively to the other tasks of the same type. It exist a global counter for counting the number of cycles used to perform the computations and local counters to describe the state of the operator. The local counters are used to control the computational progress on the node they belong to. The global and local counters always progress forward. The time is advanced according to the production of the next event. That is, after one step of computation and communication, the time is incremented in one unit. Using the data-parallel paradigm it is guaranteed that the simulated computation time of each node that produces output digit, is less than the virtual or simulated receive time of the node that consumes the output digit.

Simulation of the fully-digit on-line oating-point operators

Each n o d e o f t h e s i m ulated DFG performs its discrete-event simulation by repeatedly processing the inputs, performing some computation and outputting its results. In our simulation a BS digit is represented by t wo bits. The oating-point BS format chosen may h a ve from 54 to 1014 digits for the mantissa and from 10 to 16 digits for the exponent. Control of each arithmetic unit process is assumed by a status variable. The process works like a global automaton which c o n trols local ones (maximum, o ver ow detector and pseudo-normalizer, etc) and circuits (serial adder and incrementer, etc) 7].

Mappings

It is necessary to map the tree 15] and the linear array of operators on the mesh of MP-1. The mappings of the tree and of the linear array of processors DFGs for a 128-multiplications dot product are shown in gures 6, 7 respectively. Figure 6: Mapping of a 128-products tree on a mesh Figure 7: Mapping of a 128-products linear array on a mesh

The simulation of the interconnection network

From gures 6 and 7 we see that the communication distances are short. In order to take a d v antages of this, the networks are simulated using the static mappings. With this mode of simulation we will activate a number of operators less than or equal to the number of available operators. The result is that the communication distances will be kept short and the computation will be performed fast. Note also that at this level of abstraction the simulation of the linear array of operators and the ring are equivalent.

The scheduling algorithm and its simulation

From now, the terms task and node will be used as synonymous. A ag will be used to indicate when an operator has been scheduled. Counter C will store the number of iterations of the algorithm. An information table will contain the beginning and ending time of computation for each operator in the computation (t beg , t end). If the two predecessors of a node have produced valid digits 2 , t h e n w e will say that the node is ready. We present t h e s c heduling algorithm applied to the CBT. The case for the LA of operators is similar. The algorithm can be stated as follows:

1. Assigns priorities to the nodes that represent the additions from one side to the other of the CBT beginning at the rst level of adders and ending at the level of the root. The node with 0 priority has the highest priority and the node n ; 1 t h e l o west one. In a similar way, assign priorities to the the nodes that represent t h e m ultiplications. 2. Set counter C to zero. 3. As long as there are nodes to be scheduled, do the following:

(a) For each t ype of task determine the number of ready nodes. Scheduled the maximum number of ready tasks according to the number of available operators of the type. (b) Set in the beginning time, t beg , of the arithmetic units selected in the last item, to the value of C. Compute for each node its t end too. (c) Wait computations of the cycle to be performed. As one of the inputs of an operator may be delayed in relation to the other, a synchronization must be provided. Latches are used to delay the input that is ready rst. The scheduling algorithm was performed using MPL and the parallel facilities of MP-1. The scheduling were performed in a type of operator at a time, but using data-parallel statements.

Performance of the techniques and networks

In order to compare the networks we adopt the following measures of performance:

1. Number of cycles means the number of necessary cycles to perform the computations. In fact the number of cycles is equal to the digit on-line delay +length of the operands. 2. The speed-up of computing with n operators of each t y p e i s d e n e d a s t h e r a t i o o f t h e n umber of necessary cycles to compute with 1 operator of each t ype and the number of necessary cycles to compute with n operators of each t ype. 3. E ciency is the ratio of the speed-up and the number of operators used.

Finally, traces show h o w the utilization of the di erent operators along the time are.

Number of cycles to perform computations

The gures 8 and 9, show that when the number of multiplications of the dot product is xed, the cumulative m ultiplications technique when performed on the ring has performances comparable to those of the binary tree. When the numb e r o f a vailable operators begins to increase, the performance of the binary tree, as can be expected, begins to be better. The gures 10 and 11 show the speed-up obtained for the tree and the ring respectively. In the tree the speed-up is better when the numb e r o f a u s i s a p o wer of 2. For the ring the speed-up reaches a maximum value relatively fast. ? Here we h a ve described a heterogeneous computer made up of digit on-line adders and multipliers working on the dot product problem. We h a ve described the simulation of the machine on a massively parallel computer, the MasPar MP-1. The main conclusion is that, due to the natural pipeline at digit level in digit on-line mode, linear arrays have performances very near of binary trees when the dimension of the problem is large compared to the number of arithmetic operators. This phenomena is augmented by the fact that working at the digit level, the dimension of the problem is the product of the number of inputs and the length of the number. Another interesting fact is the ability of a ring of digit on-line arithmetic units that with a reasonable number of them, may perform high precision calculus with large numbers. Other numerical computations are under study. This includes polynomial evaluation and the Gauss elimination algorithm to solve linear equations. We are working in a project to simulate and to build a digit on-line machine called CARESSE, the french abbreviation of Serial Redundant Scienti c Computer, that will made of heterogeneous digit on-line arithmetic units. A VLSI prototype of the multiplier has been projected and tested.

 Figure 1: Digit-level pipelining in digit on-line arithmetic

Figure 2 :

 2 Figure 2: The on-line oating-point adder

Figure 3 :

 3 Figure 3: Synchronization in the on-line oating-point adder

Figure 5 :

 5 Figure 5: Computing dot-product using a ring of operators

 (d) Return to the group of available operators, whose which i n terval of computation have expired. (e) Increment C. 4. End.

Figure 8 :Figure 9 :

 89 Figure 8: Number of cycles needed to perform a 256-elements dot product with L = 64

Figure 14 :

 14 Figure 14: Traces of utilization of multipliers on the tree for a 256-elements dot product with L = 64

Figure 15 :Figure 16 :

 1516 Figure 15: Trace of utilization of adders on the tree for a 256-elements dot product with L= 64

Figure 17 :

 17 Figure 17: Traces of utilization of adders on the ring for a 256-elements dot product with L = 64

Table 1 :

 1 Table 1 summarizes the number of operators required to compute with minimumdelay as function of the number of digits used to represent t h e n umbers (for adders, d(3+L) 4e + 1a n df o rm ultipliers, d(6 + L) 4e + 1) . Number of operators to compute with CM technique with minimum delay

	Number of digits Adders needed Multiplier needed 64 18 19 128 34 35 256 66 67 512 130 131 1024 258 259 2048 514 515 4096 1026 1027 8192 2050 2051 16384 4098 4099

 Traces of adders and multipliersFrom gure 15, we see that the peak value of the adders used for the tree is reached a number of times equal to the ratio of n (the dimension of the dot product), per number of available aus. For the ring (gs.16 and 17) the maximum numb e r o f m ultipliers and adders is reached fast and maintained practically constant u n til the end of computation.

	0 50 100 150 200 250 8.3 E ciency S p e e d -u p In the tree (g. 12) the e ciency is better when the numb e r o f a u s i s a p o wer of 2. The e ciency 0 50 100 150 200 250 300 Number of arithmetic units L = 6 4 + + + + + + + + + + + + + ++ + + + + ++ + ++ + + + + + + L = 128 L = 256 ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? for the ring is self explanatory (see g 13). 40 50 60 70 80 90 100 0 50 100 150 200 250 300 E f f c i e n c y Number of arithmetic units L = 6 4 + L = 1 2 8 L = 2 5 6 ? ? ? ??? Figure 12: E ciency on the tree for a 256-element dot product 140 0 100 200 300 400 500 600 Cycles 700 8.4 0 20 40 60 80 100 120 O p o d e s u s r t a e r 32 aus 64 aus 128 aus ?
		Figure 10: Speed-up on the tree for a 256-element dot product	
	S p e e d -u p E f f c i e n c y	0 10 20 30 40 50 60 10 20 30 40 50 60 70 80 90 100 0 Figure 13: E ciency on the ring for a 256-element dot product 0 50 100 150 200 250 L = 6 4 + + + + + + + ++++++++ + + + + + + + + L = 1 2 8 L = 2 5 6 ? L = 6 4 + + + + + + + + L = 1 2 8 ? ??? ? ? ? ? ? ? ? ? ? ? L = 2 5 6 ? + ? + + ? ? ? ? ? ? ? + + + + + + + + + + + + 0 50 100 150 200 250 Number of arithmetic units Number of arithmetic units	300 300
		Figure 11: Speed-up on the ring for a 256-element dot product	

This work is part of a project called CARESSE which is partially supported by the "PRC Architectures Nouvelles de Machines" of the French Minist ere de la Recherche et de la Technologie and the Centre National de la Recherche Scienti que.y Supported by CNPq and Universidade Federal do Cear a, Brazil.

The graph can be de ned also as a strictly binary tree with n levels.