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Abstract

In this paper we deal with a new high precision computation of the dot product� The
key idea is to use hundreds of digit�serial arithmetic units that allow a massive digit�
level pipelining� Parallel discrete�event simulations performed on a memory�distributed
massively parallel computer show that with a limited number of arithmetic units� the
computation of dot product when performed using a �classical� algorithmic technique
�i�e� serial cumulative multiplications� is almost as fast as the case where an �optimal�
divide�and�conquer algorithmic technique is used� Interconnection networks for both
algorithmic techniques are considered�

Keywords� Data�ow� dot product� massive pipelining� digit on�line computation�

R�esum�e

Ce document d�ecrit un produit scalaire �a haute precision� L�id�ee principale est d�utiliser
plusieurs centaines d�unit�es arithm�etiques permettant le 	pipeline
 au niveau du chi�re�
Des simulations parall�eles d��ev�enements discrets faites sur des machines parall�eles �a m�e�
moire distribu�ee montrent que lorsque le produit scalaire est calcul�e avec un nombre �xe
d�unit�es� un ordononnancement de multiplications cumulatifs est presque aussi rapide
qu�un ordononnancement 	divide�and�conquer
� Les r�eseaux d�interconnection pour les
deux techniques sont aussi present�es�

Mots�cl�es� �ot de donn�ees� produit scalaire� 	pipeline
 massive� calcul en�ligne�
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� Introduction

Matrix and vector operations based on dot product computation occur frequently in engineering and
scienti�c applications� A lot of work has been performed in order to obtain better algorithms and
e
cient implementations on parallel computers ����� ����� ���� ����� ���� �����
Unfortunately� in computations of arithmetic algorithms that deal with the approximation of real
numbers by �oating�point representations� inaccurate calculations and representations lead to com�
pletely wrong results�
These errors are produced by cancellation and truncation of the �oating�point numbers ����� ����� A
computer that allows the size of operands and results to be large enough to compute according to
the needs of accuracy potentially resolves these problems�
However� as high accuracy is achieved using very�long precision arithmetic� the representation of
numbers needs a lot of bits� typically several thousands� It is more practical to carry all these bits
serially than in parallel�
In digit on�line mode of computation ����� ����� the operands and the results �ow through the arith�
metic operators or units �aus� serially� digit by digit� starting with the most signi�cant� allowing a
digit�level pipelining�
This paper deals with the digit on�line mode computation of dot product� Floating�point digit on�
line adders and multipliers are used to compute with a maximum accuracy of ���� digits�
Two di�erent algorithmic techniques for computing the dot product are studied� The �rst one is
the 	divide�and�conquer
 technique� �a technique frequently used in parallel machines�� The second
consists basically in computing the dot product using cumulative multiplications� a technique fre�
quently used in SISD computers�
A comparison of the two algorithmic techniques is performed using analytical methods and parallel
discrete�event simulation on MasPar MP���

� On�line and data�ow modes of computation

As stated above in digit on�line computation� the operands and the results �ow between arithmetic
units serially� most signi�cant digit �rst �MSD�� Similarly� LSD means least signi�cant digit�
A consequence of this �ow is the need of a redundant number system���� In such systems� addition
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is carry free and can be performed in parallel� or in any serial mode �MSD or LSD�� The most
usual arithmetic operations can be calculated in MSD mode too� Digit on�line arithmetic is the
combination of MSD and redundant number system�
An interesting implementation of a radix�� carry�free redundant system is the Borrow Save notation�
BS for short� In BS� the iith digit xi of a number x is represented by two bits x�i and x�i with xi �
x�i � x�i � Then � has two representations� �� �� and �� ��� The digit � is represented by �� �� and
the digit � is represented by �� ���
A BS �oating�point number x with n digits of mantissa and p digits of exponent is represented by
x � mx�ex � where mx �

Pn

i��mxi�
�i and ex �

Pp��
i�� exi�

i� In our system the exponents and the
mantissas circulate in digit on�line mode� exponent �rst�
The digit on�line systems are characterized by their delay� that is the number � such that p digits
of the result are deduced from p � � digits of the input operands� When successive digit on�line
operations are performed in digit pipelined mode� the resulting delay will be the sum of the individual
delays of operations and communications� and the computation of large numerical jobs can be
executed in an e
cient manner� We will assume that any communication has a delay of �� See
�gure ��
As we can see from �gure �� the computations in digit on�line mode can be described as a data
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Figure �� Digit�level pipelining in digit on�line arithmetic

dependence graph or data�ow graph� DFG� These graphs consist of nodes� which indicate operations
executed on arithmetic units� and edges from one node to another node� which indicate the �ow
of data between them� A nodal operation can be executed only when the required information� a
digit from all the input edges is received� Typically a nodal operation requires one or two operands
and produces one result� Once that the node has been activated and the computations related to
the input digits inside the arithmetic unit performed �i� e� the node has �red�� the output digit is
passed to the destination nodes� This process is repeated until all nodes have been activated and
the �nal result obtained� Of course� more than one node can be �red simultaneously�

��� Pseudo�normalization

In classical binary �oating�point representation� a number is said normalized if its mantissa belongs
to ����� �� or ��� ����� Normalization of numbers leads to more accurate representations and con�
sequently results� In BS representation� to check if a number is normalized may be necessary to
examine all its digits� For this reason� we replace the concept of normalized numbers by that of
pseudo�normalized numbers� A number is said pseudo�normalized if its mantissa belongs to ����� ��
or ��� ����� It is very easy to ensure that a number is pseudo�normalized� it su
ces to forbid a
mantissa beginning by ��� ��� �� or ��� This pseudo�normalization is performed serially�
In the next sections we will describe brie�y the two digit on�line �oating�point arithmetic units �aus�
used in the computation of dot product�



� Fully digit on�line �oating�point adder

As in classical �oating�point adders� the fully digit on�line adder �add�o� for short����� ��� performs
three basic operations� exponent calculation� mantissa alignment and mantissa calculation� Figure
� shows the di�erent blocks of the adder�

� A serial maximizer computes the maximum of the two exponents�

� A serial aligner performs the mantissa alignment with a shift register using the di�erence
between the exponents�

� A serial adder calculates the sum of the aligned mantissas�

� A synchronizer is used to guarantee that only an unavoidable carry appearing in the sum of the
mantissas will provoke the truncation of the mantissa and the incrementation of the exponent
of the result�
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Figure �� The on�line �oating�point adder

The synchronizer �normalizer � carry detector in �gure �� must test the carry digit and the more
signi�cant digit of the mantissas sum� When these digits are equal to � �� � �� � � or � � respectively�
the incrementation of the exponent and the truncation of the mantissa �the last digit is lost� are
performed� When these digits are equal to � �� � �� � � or � �� the exponent is not modi�ed and by
substituting � � by � � or � � by � �� when necessary� the carry digit of the sum is ��
The operation performed by the synchronizer is di�erent from the systematic incrementation of
the exponent during all addition proposed by Tu ����� In this last case� the truncation of the
mantissa of the result leads to a needless loss of information� In the solution we have proposed ���
the incrementation is performed only when necessary� After the tests of the �rst two bits of the
mantissas sum� the exponent is incremented i� the modi�ed carry digit is not �� Since the decision
of incrementing or not can be made when the last digit of the exponent result is outputting the
incrementer �see �gure ��� the on�line delay of add�o� �add becomes ��
The digit pair � � is used to transmit a � and the pair � � for a non signi�cant transmission� so that
the synchronization is insured automatically�

� Fully digit on�line �oating�point multiplier

The �oating point multiplier consists of three di�erent parts���� ����

� A serial adder for the exponents�

� A serial multiplier for the mantissas�

� A synchronizer� which ensures that if two input numbers are pseudo�normalized the output
will be pseudo�normalized too�
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Figure �� Synchronization in the on�line �oating�point adder

The serial multiplier is described in ���� ���� ����� ���� The serial adder and the pseudo�normalizer�
are similar to the �oating�point adder ones and will not present here���� ����
Since the two input mantissas belong to ����� �� �in absolute value�� the product belongs to ������ ��
thus� if we want maintain the result pseudo�normalized it is necessary to shift up the mantissa up
to � positions to the right� This kind of normalization requires the dynamic subtraction of �� �� or
� to the exponent of the result� To generate the �nal exponent� the last two digits of the exponent
are controlled by the three digits of the mantissa product� The normalizer contains a decrementer
followed by an over�ow detector which is similar to the one of the adder� The digit on�line delay of
the multiplier� �mul is �� The internal synchronization is similar to the ad�o case�

� Computing dot product in digit on�line mode

With the adder and the multiplier presented in the last two sections we envisage computing the dot
product of two vectors in a massive digit�pipelined mode�
The dot product C of two vectors� A � fa�� � � � � ang and B � fb�� � � � � bng� is given by�

C �
nX

i��

aibi ���

The �rst �fast� mode of computation arises immediately� compute the products in parallel �rst� and
after use adders to perform operations of reduction following a divide�and�conquer technique� See
�gure �� The resulting data�ow graph is a complete binary tree� CBT for short� with dlog�ne � �
levels�
We can also try to compute dot product by cumulative multiplications �see �gure ��� we compute
the �rst product� This result is added then� to the next using an adder and so on until the �nal
result is reached� The DFG resulting is a linear array of operators �LA� ��

�The graph can be de�ned also as a strictly binary tree with n levels�
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Figure �� Two resulting graphs for dot product computation

Three cases arise when the dot product is performed in digit on�line mode�

� The number of arithmetic units is greater than the number of operations to perform and a
minimum delay is obtained�

� The number of arithmetic units is less than the number of operations to perform but� reusing
the idle operators� it is possible to compute with minimum delay�

� The number of arithmetic units is less than the number of operations to perform and though
the idle operators are reused as soon as possible� it is not possible to compute with minimum
delay�

Note that in the last two cases a scheduling policy must be used�

��� Computing dot products with a number of aus larger or equal than
n

With �mul � �� �add � � and assuming that any communication has a delay of �� it is easy to �nd
that the minimum delay for computing a dot product using the divide�and�conquer technique �see
�g� �� is�

�CBT � �mul � ��add � �� log� n � � � � log� n ���

Similarly� the minimum on�line delay for the computation of the dot product using cumulative
multiplications is�

�CM � �mul � ��add � ��n � � � �n ���

As we stated the two cases above are not realistics�

��� Reusing the aus to compute with minimum delay

The problem of reusing operators is unavoidable in a real machine where the number of them cannot
be grown inde�nitely� However� it is possible to reuse the aus to obtain a minimum delay�
On a not digit on�line computer� �i� e� it receives all digits of the operands in parallel�� reusing is
simple� For the complete binary tree this can be achieved with n� � adders and n multipliers�
In a similar way it is possible to reduce the number of operators to compute in digit on�line mode�
But� here the situation is more complex because as the numbers are transmitted serially� digit by
digit� the predecessor operators may be computing the last or some middle digits of the result number
whose other digits are being consumed by the successor nodes� and then the predecessors cannot be
reused until them have produced the last digit of the result� A similar situation occurs in the LA of
operators�
We will present �rst the case for the complete binary tree graph and after the case for the linear
array of operators�



����� Reusing aus in the tree

It is not possible to reach the minimum �CBT without using n multipliers� The problem is to know
how many adders are necessary to compute with minimum delay having n multipliers� We note ui
as the level on the CBT of operators �the multipliers are at level ��� and L� the number of digits
used to code the numbers� It is possible to reuse only the �rst level of adders� The beginning and
ending time of adders �tbega� tenda� and multipliers �tbegm� tendm� are�

tbegm � � ���

tendm � �mul � L� � � � � L ���

tbega � �ui � ���add � �mul � ui � � � �ui � � ���

tenda � tbega � �add � L � � � �ui � � � L ���

The adders that have not begun their �rst digit computation when the ones at the second level of
the CBT have �nished� are those with�

uj � d��� � L� � ��e ���

For example� if L � �� and n � ������� the number of adders saved by reusing is only ��� For CBT�
searching for the minimum digit on�line delay is not realistic�

����� Reusing aus in the linear array

If we enumerate the adders of the LA from the left to right as a�� � � � � an and the multipliers as m
�

�

and m�� � � � �mn �see �gure ��� we can compute the beginning and ending time of the operators as
following�

tbegai � �mul � � � ��add � ��i � � � �i ���

tendai � tbegai � �add � L � � � � � �i� L ����

tbegmi � tbegai � �mul � � � �i ����

tendmi � tbegai � L � � � � � �i� L ����

����

For the �rst adder� tenda� � �� L� It can be reused at time tbegre � ���L� Then� we look for
the adders whose beginning time are greater or equal than tbegre�

tbegrea � �� � L ����

� � �i � �� � L � i � d�� � L�� �e

We note that i is the subindex that identi�es each adder� For the other aus the situation is similar�
These results indicate that computation of dot product with minimum delay can be performed by
using a number of operators which depends only on the length of the format of the number L� and
not on the number of products� n�
Table � summarizes the number of operators required to compute with minimumdelay as function of
the number of digits used to represent the numbers �for adders� d���L���e�� and for multipliers�
d�� � L� � �e � ���



Number of digits Adders needed Multiplier needed
�� �� ��

��� �� ��
��� �� ��
��� ��� ���

���� ��� ���
���� ��� ���
���� ���� ����
���� ���� ����

����� ���� ����
Table �� Number of operators to compute with CM technique with minimum delay

����� A �rst comparison between the techniques and networks

The CM technique permits the computation of dot product with a number of aus that is independent
of the number of products to be performed� This contrasts with the divide�and�conquer technique
where the computation depends on both� the length of operands� L� and the dimension of the dot
product n�
It is true that the digit on�line delay of the LA is greater than the delay using the divide�and�conquer
technique but it is interesting to investigate what will happen in a real�world situation� where the
number of operators will be limited� In the next sections we will show that the advantages of
computing with the divide�and�conquer method may vanish when the number of operators is limited
and the number of digits to represent the numbers increases�
Moreover� it is easy to see that as the operators must be reused� the computation of dot products
by using cumulative multiplications can be performed on a ring of operators instead of on a LA�
That is� the output of the last adder of the computation is feedback to one of the inputs of the �rst
adder� See �gure �� From now we suppose that the computation of dot products using cumulative
multiplications will be performed on a ring of aus� Note also that the 	divide�and�conquer
 technique
suggests immediately to use a set of CBT interconnected aus�

product

addition

Ring of operators

Figure �� Computing dot�product using a ring of operators

��� Computing dot product with a greater delay than the minimum

We suppose now that we have less aus than necessary to compute with minimum delay�
To compute the dot�product we adopt a two phases scheduling algorithm� The �rst phase is the
assignment of a priority number for each task� Priorities are in decreasing order� The second phase
schedules the tasks according to their priority number and the number of available aus� As there
are two types of aus� adders and multipliers� the scheduling can be performed independently and in
parallel for each type� We will present this scheduling algorithm with more details in section ����
Let us present �rst the host computer where the scheduling algorithm and the dot product were
performed�



� Parallel simulation and the host machine

We use discrete�event parallel simulation ����� ����� ����� ���� ����� ���� ����� ���������� ����� ����� ���� in
our work� In the discrete approach to system simulation� state changes are represented by a series
of discrete changes or events at speci�c instants of time� In our case the events are the input and
output of digits of the aus�
MasPar MP��� the host computer of the simulation is a SIMD massively parallel computer ����� �����
In MP�� all processors change state in a simple� predictable fashion� The parallelism in MasPar is
achieved from the execution of single operation simultaneously across a large set of data� In MP���
it is easy to determine the program state� because all processes are either active or inactive and the
full synchronization guarantees that the value each processor retrieves is correct�
The processors �PEs� are interconnected by an xnet toroidal neighborhood mesh and a global mul�
tistage crossbar router network� The programming language used is MPL� a superset of C that
includes commands for the data�parallel programming mode�
The key idea to simulate several aus on MP�� is to map to several PEs� several aus processes� It is
possible to map several aus of the same or di�erent types to each PE� but all the processors would
simultaneously simulate the same type of operator� since MP�� is a SIMD computer�

� Description of the performed simulation

We have performed both the scheduling algorithm and the computations of dot�product using the
parallel facilities of MP���
The simulation can be viewed as a �nite succession of two di�erent steps� computation and communi�
cation� In fact� due to the data�parallel programming model of MasPar problems of synchronization
between the di�erent arithmetic units are easily solved� The computations are performed in one
type of operator at a time� Static or dynamic scheduling may be applied to our problem� We use
dynamic scheduling� As the digit on�line delay of the adders and multipliers is �xed static scheduling
seems more natural at �rst� But� in digit on�line mode of computation there are some arithmetic
operations as the division that cannot be computed with a constant digit on�line delay and conse�
quently the static scheduling cannot be used� However� in both cases of scheduling� the results will
be identical�
Some other features of the simulation are�

� The event list is partitioned or distributed on the PEs� In fact� each PE has a variable called
�priority� that contains its priority relatively to the other tasks of the same type�

� It exist a global counter for counting the number of cycles used to perform the computations
and local counters to describe the state of the operator� The local counters are used to control
the computational progress on the node they belong to� The global and local counters always
progress forward�

� The time is advanced according to the production of the next event� That is� after one step of
computation and communication� the time is incremented in one unit�

� Using the data�parallel paradigm it is guaranteed that the simulated computation time of each
node that produces output digit� is less than the virtual or simulated receive time of the node
that consumes the output digit�

��� Simulation of the fully�digit on�line �oating�point operators

Each node of the simulated DFG performs its discrete�event simulation by repeatedly processing
the inputs� performing some computation and outputting its results� In our simulation a BS digit is
represented by two bits� The �oating�point BS format chosen may have from �� to ���� digits for



the mantissa and from �� to �� digits for the exponent� Control of each arithmetic unit process is
assumed by a status variable� The process works like a global automaton which controls local ones �
maximum� over�ow detector and pseudo�normalizer� etc� and circuits �serial adder and incrementer�
etc�����

��� Mappings

It is necessary to map the tree���� and the linear array of operators on the mesh of MP��� The
mappings of the tree and of the linear array of processors DFGs for a ����multiplications dot product
are shown in �gures �� � respectively�

Figure �� Mapping of a ����products tree on a mesh

Figure �� Mapping of a ����products linear array on a mesh

	���� The simulation of the interconnection network

From �gures � and � we see that the communication distances are short� In order to take advantages
of this� the networks are simulated using the static mappings�
With this mode of simulation we will activate a number of operators less than or equal to the number
of available operators� The result is that the communication distances will be kept short and the
computation will be performed fast�
Note also that at this level of abstraction the simulation of the linear array of operators and the ring
are equivalent�

��� The scheduling algorithm and its simulation

From now� the terms task and node will be used as synonymous� A �ag will be used to indicate when
an operator has been scheduled� Counter C will store the number of iterations of the algorithm� An
information table will contain the beginning and ending time of computation for each operator in



Q

the computation �tbeg� tend�� If the two predecessors of a node have produced valid digits �� then we
will say that the node is ready�
We present the scheduling algorithm applied to the CBT� The case for the LA of operators is similar�
The algorithm can be stated as follows�

�� Assigns priorities to the nodes that represent the additions from one side to the other of the
CBT beginning at the �rst level of adders and ending at the level of the root� The node with
� priority has the highest priority and the node n� � the lowest one� In a similar way� assign
priorities to the the nodes that represent the multiplications�

�� Set counter C to zero�

�� As long as there are nodes to be scheduled� do the following�

�a� For each type of task determine the number of ready nodes� Scheduled the maximum
number of ready tasks according to the number of available operators of the type�

�b� Set in the beginning time� tbeg� of the arithmetic units selected in the last item� to the
value of C� Compute for each node its tend too�

�c� Wait computations of the cycle to be performed�

�d� Return to the group of available operators� whose which interval of computation have
expired�

�e� Increment C�

�� End�

As one of the inputs of an operator may be delayed in relation to the other� a synchronization must
be provided� Latches are used to delay the input that is ready �rst�
The scheduling algorithmwas performed using MPL and the parallel facilities of MP��� The schedul�
ing were performed in a type of operator at a time� but using data�parallel statements�

	 Performance of the techniques and networks

In order to compare the networks we adopt the following measures of performance�

�� Number of cycles means the number of necessary cycles to perform the computations� In fact
the number of cycles is equal to the digit on�line delay �length of the operands�

�� The speed�up of computing with n operators of each type is de�ned as the ratio of the number
of necessary cycles to compute with � operator of each type and the number of necessary cycles
to compute with n operators of each type�

�� E
ciency is the ratio of the speed�up and the number of operators used�

Finally� traces show how the utilization of the di�erent operators along the time are�

��rst outputs di�erents from ��



Q

��� Number of cycles to perform computations

The �gures � and �� show that when the number of multiplications of the dot product is �xed� the
cumulative multiplications technique when performed on the ring has performances comparable to
those of the binary tree� When the number of available operators begins to increase� the performance
of the binary tree� as can be expected� begins to be better�
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��� Speed�up

The �gures �� and �� show the speed�up obtained for the tree and the ring respectively� In the tree
the speed�up is better when the number of aus is a power of �� For the ring the speed�up reaches a
maximum value relatively fast�
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Q

��� E	ciency

In the tree ��g� ��� the e
ciency is better when the number of aus is a power of �� The e
ciency
for the ring is self explanatory �see �g ����
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��
 Traces of adders and multipliers

From �gure ��� we see that the peak value of the adders used for the tree is reached a number
of times equal to the ratio of n �the dimension of the dot product�� per number of available aus�
For the ring ��gs� �� and ��� the maximum number of multipliers and adders is reached fast and
maintained practically constant until the end of computation�
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 Concluding remarks and future work

Here we have described a heterogeneous computer made up of digit on�line adders and multipliers
working on the dot product problem� We have described the simulation of the machine on a massively
parallel computer� the MasPar MP���
The main conclusion is that� due to the natural pipeline at digit level in digit on�line mode� linear
arrays have performances very near of binary trees when the dimension of the problem is large
compared to the number of arithmetic operators� This phenomena is augmented by the fact that
working at the digit level� the dimension of the problem is the product of the number of inputs
and the length of the number� Another interesting fact is the ability of a ring of digit on�line



arithmetic units that with a reasonable number of them� may perform high precision calculus with
large numbers�
Other numerical computations are under study� This includes polynomial evaluation and the Gauss
elimination algorithm to solve linear equations�
We are working in a project to simulate and to build a digit on�line machine called CARESSE� the
french abbreviation of Serial Redundant Scienti�c Computer� that will made of heterogeneous digit
on�line arithmetic units� A VLSI prototype of the multiplier has been projected and tested�
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