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Fr�ed�eric Prost
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Abstract

Constructive logic can be used to consider program speci�cations as logical formulas� The ad�
vantage of this approach is to generate programs which are certi�ed with respect to some given
speci�cations�

The programs created in such a way are not e�cient because they may contain large parts with
no computational meaning� The elimination of these parts is an important issue� Many attempts
to solve this problem have been already done� We call this extracting procedure�

In this work we present a new way to understand the extraction problem� This is the marking
technique� This new point of view enables us� thanks to a high abstraction level� to unify what
was previously done on the subject� It enables also to extend to higher�order languages some
pruning techniques developed by Berardi and Boerio� which were only used in �rst and second
order language�

Keywords� Program Veri�cation� Type Theory� Logic� Program proof� Extraction� Marking�

R�esum�e

La logique constructive peut �etre utilis�ee pour produire des programmes en les consid�erant comme
des formules de la logique� L�avantage d�une telle m�ethodologie est de produire des programmes
dont on est s�ur qu�ils v�eri�ent certaines sp�eci�cations�

Les programmes g�en�er�es par ces m�ethodes sont en g�en�eral peu e�caces car ils comportent de
larges parts qui ne servent pas au calcul �nal� Pour les rep�erer et les e	acer� de nombreuses
techniques ont d�ej
a �et�e d�evelopp�ees� On parle de technique d�extraction�

Dans ce travail nous donnons une nouvelle mani
ere d�approcher ce probl
eme� Il s�agit du mar�
quage� Ce nouvel angle de vision permet� gr�ace 
a un niveau d�abstraction �elev�e� d�uni�er les
connaissances relatives 
a l�extraction� Il permet aussi l�extension aux ordres sup�erieurs des tech�
niques de taillage exploit�ees par Berardi et Boerio� qui n��etaient valables qu�aux premier et au
second ordre�

Mots�cl�es� V�eri�cation de Programmes� Th�eorie des types� Logique� Preuves de programmes� Extraction�
Marquage�
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� Introduction

Methods of development of programs from the proof of their speci�cations are based on the Curry�Howard
isomorphism� For several years now systems using this approach have been developed� Nuprl ���� Coq ���
and PX are the most famous examples�
A proof showing that� for every object x of type A� there exists y of type B that satis�es a relation

R�x� y� de�nes implicitly a computable function from A to B� A constructive demonstration of a proposition
of this kind enables actually to build the function� In other words� we can construct a program from a proof
of its speci�cations�
This approach of programming is interesting� for it leads to error�free programs from its nature� Never�

theless nothing is free of charge and the cost of the certainty is time� Programs generated in this way are
ine�cient� The codes recovered contain too much useless terms from the algorithmic point of view� Indeed
a program just contains what is worthy to realize an algorithm� On the contrary a proof formalizes a great
deal of information which is not needed to compute the �nal result� For example the description of the task
to carry out� veri�cations of the method� the control of dependency between objects are contained in the
proof but are not needed for the computation of the result�
It seems a good idea to delete those ine�cient parts from the code to get a �good� program� We will use

the word of extraction to characterize this work� Several extraction techniques have been studied� One can
approximately divide those ones into two ways�
The �rst point of view is to realize the searched optimization within the syntax of the terms� C� Paulin

in ��� develops this approach for a higher order system� the Calculus of Construction� The basic idea is to
duplicate the system� One part is used for the logical annotations without computational meaning and the
second is used to express the parts of the program useful for the computation � This technique works while
the program developer is making his proof� One can easily �nd out what parts are ine�cient� these are the
ones which are typed in a certain prede�ned way� The last step is to erase them in order to get an e�cient
program�
The second approach consists in looking at the proof tree� and� by an appropriate study� to locate

subtrees without computational meaning� This point of view has been initiated by Goad in ���� and enriched
by Takayama in ����� The last developments of this approach have been done by Berardi and Boerio in ���
and ���� The basic idea is that the proof contains a lot of information regarding the corresponding program�
These techniques propose to use these informations in order to simplify the program obtained�When the
proof is done� we seek what parts of the tree are useless and prune them �we talk about Pruning techniques��
These methods have only been studied in languages of order less than or equal to two� In �
�� Berardi
and Boerio extend the technique to take in account more simpli�cations by a mechanism of subtyping� By
weakening some typing rules relatively to the application� they manage to avoid the formation of ill typed
terms� while the simpli�cation is performed�
We propose to develop a new approach of extraction by the means of marks� The idea is simple� We are

going to annotate the terms to express their computational meaning� So we are going to introduce in the
typing rules some constraints regarding the marking of terms� The aim is to formalize within the logic what
was already done technically by Berardi�Boerio�s pruning�
The �rst goal is to unify� thanks to this new formalization� the di	erent extracting methods already

known� Indeed� we will prove that marking technique is able to simulate all of them� This new level of
abstraction permits to extend to higher order language some result already obtained in �rst and second
order by Berardi and Boerio�
The paper is organized as follows� We �rst give a brief presentation of the most widely known extracting

techniques � the ones coming from the pruning� �rst developed in the �rst order by Berardi and then extended
by Boerio to the second order� We will see next the techniques proposed by C� Paulin for the Calculus of
Constructions� Finally� we will give a new way to approach both techniques by our marking techniques� and
we will extend the previous results on pruning to higher order thanks to marking techniques�

�



� Miscellaneous approaches of extraction

��� The Turin school

����� The Pruning

All the techniques developed by this school are based on a similar way to optimize terms � the pruning�
The pruning is de�ned as a relation between two trees� One says that a tree A is a pruning of another

tree B� if we can obtain A by erasing some subtrees of B�
Of course one can see any terms of a given formal language as a labeled tree� One naturally derives a

notion of pruning with respect to terms of a formal language� If this term is produced from a functional
system �typed or not�� the pruning can be seen as an optimization� Indeed� to prune a term corresponds to
delete some code judged useless� As the pruning suppresses some subterms one can expect that a term a�
which is a pruned version of a term b� can be evaluated in a easier way�
The Turin school has studied the behavior of terms in some typed systems regarding the pruning� First�

Berardi gives results for a typed system to the �rst order� results that Boerio then extends to the second
order� In both cases� the idea is to suppress the maximum of subterms while staying invariant relatively to
some observational equivalence� Schematically their paradigm is � since I do not modify the input�output
function of a term I can suppress a subterm��

����� The Berardi approach for the �rst order

In ��� Berardi studies the e	ects of pruning on terms of a variant of the G�odel system T � He shows that if two
terms have the same type and if one is a pruned version of the other� then they have the same input�output
function� Moreover� for all terms� the existence of a minimal term �with respect to the notion of pruning� is
proved�

The modi�ed G	odel system T

Informally� this system is a simply typed ��calculus having an atomic type N for integers� and the schema
of primitive recursion on N � It contains the arrow types� product types� projections� applications� and ��
abstractions �we will use the notation of the Calculus of Construction for ��abstractions� We will write
�x � N �x instead of �xN �x�� There are also algebraic constants � � and S of respective types N and N � N
and the constant of higher order for the primitive recursion recA of type N � A � �N � A � A� � A� for
every type A�
As the goal is to prune terms� we introduce a type U and a constant � denoting the hole which stays

after we have removed the useless subterm� � is be the only inhabitant of type U �
In a more formal way� this system is de�ned by �

�� If � is U or N �so an atomic type� then the types are de�ned by �

A ��� � j A� A j A� A

�� The set of constants is represented by an initial context �

�T
def
� � � U� � � N�S � N � N� recA � N �A� �N � A� A�� A


� If A is a type� x a variable of type A� and c a constant of T � the pseudo�terms are de�ned by �

t ��� c j x j �x � A�t j �t t� j� t� t � j ��i�A��A�
t�

�� Let t� f� a�� a� be pseudo�terms� A�B�A�� A� types

�



c � A � � x � A � �
� � c � A � � x � A

�� x � A � t � B � � f � A� B � � a � A

� � �x � A�t � A� B � � �f a� � B

� � a� � A� � � a� � A� � � t � A� � A�

� �� a�� a� �� A� �A� � � ��i�A��A�
t� � Ai

�� The reductions are the following� �� is the usual ��reduction� �� the standard ��conversion� ��

corresponds to a projection and rec� with recs are the reductions associated to the usual rules of
recurrence�

We will write �� for �� � �� � �recs � �rec� � The notations �
���n will have the usual meaning

with respect to ��� �R denotes the symmetric and transitive closure of �
��

The pruning

Lets A�B be two types� s a constant or a variable� x a variable� t� u two terms� We de�ne � by induction�
e � e�� where e and e� are two well formed expressions �i�e� that we can type� of the system� is read �e is a
pruning of e��

��� � � t for any term t�
�U � U � A for any type A�
�atom� � � � for any atom ��
��� A� B � A� � B� if A � A� and B � B��
��� A� B � A� �B� if A � A� and B � B��

�symb� sA � sA
�

if A � A��
���� �x � A�t � �x� � A��t� if A � A� and if t�x �� z� � t��x� �� z�

with z a fresh variable�
�app� �t u� � �t� u�� if t � t� and u � u��
���� � t� u ��� t�� u� � if t � t� and u � u��
��i� ��i t� � ��i t�� if t � t��

We extend naturally this notion to contexts� Let� and  be two contexts� we say that � �  i	 �x �
�x � A � ��� �	B 
 A��x � B �  ��

De�nition of observational equivalence

We de�ne the observational equality in the following manner� If �A is a variable of type A� then a context
with a hole �A is a closed term C��A�� where �Aoccurs exactly once� C�t� is the expression C��A� where �A

has been replaced by t� Now if t and u are two terms having the same type A in some common context we
de�ne �

�t �obs u� �� �C��A� � N binding every all variables in t� u � C�t� �R C�u�

In fact one has to consider C��A� as an observation� or an experience on the behavior of t and u� If no
experience allows to �nd any di	erence� then t and u are said observationally equivalent�

Interactions between pruning and observational equivalence

Theorem � 
Berardi ����� Let t and u be two terms of same type A with a common context� Then
t � u� t �obs u�






The proof proceeds in the following way� One begins to check the validity of this theorem for a normal
�i�e� there are no more possible derivation from this term� and closed term� It is a crucial step because the
system T has the following property �

Property � The system T is Church�Rosser and strongly normalizing�

So it is possible to associate� by some reduction path� to each term a term which is closed and normal�
It is easy to see� thanks to the simplicity of the system� that the theorem is valid for a closed and normal

term� More exactly it has been showed that �

Lemma � If t � u and if u is closed and normal and has an atomic type� then either t � � or t � u�

After Berardi veri�es some lemmas about commutativity between � and substitution and reductions�
More precisely� Berardi demonstrates �

Lemma � If t � t� and t� �n u
� then one can �nd u � u� such that t��n u

Now the demonstration of the theorem is easy�

Proof�
Let�s take t� u closed of type A � N such that t � u� If e is the normal form of u� then there is a n such

that u�n e� by the preceding lemma one can derive the existence of d such that t��n d with d closed and
normal and d � e� From the �rst lemma we can deduce that d � e �otherwise d � � which is a trivial case�
and so we have t �R u� It concludes the proof in this case because it trivially implies that t �obs u�
Now suppose that t� u are of some type A such that t � u� Let C��A� � N be a suitable context �closing

the terms etc��� As � is compatible with term formation it is clear that C�t� � C�u�� Then one just have to
apply the preceding reasoning and get C�t� �obs C�u�� Hence the �nal result is reached�

�

Properties of �

Berardi has also showed some properties on the structure generated by �� The �rst is quite straightforward �

Property � � is an order relation on well formed terms �

He then de�nes two important structures �

De�nition � For any term t such that� � � t � T �

�� LE�t� � ft�jt� � tg

�� CLE�t� � ft�jt� � t��� � t� � T and �� � �g

He shows the following proposition �

Property � Let t be a term �

�� LE�t� is a �nite complete lattice with respect to ��

�� CLE�t� is a sublattice of LE�t��

One can deduce from this property and Theorem � that for each term u there exists an optimal version
�with respect to �� of this term� namely the greatest lower bound of CLE�u��
To see what kind of optimizations are allowed by pruning we are going to develop an example�

�



Example � 
C� Paulin� Let us consider a program which takes an integer n in input� having two param�
eters x� y of integer type� and two auxiliary functions f� g of respective types N � N and N � N � N and
which returns an integer�

Let a� b be the initial values of x� y� The program replaces x by �f x� n times and y by �g x y�� the
output being x�

To encode this program in the system T we proceed that way � we represent the pair � x� y � by a single
variable w of type N �N � then we de�ne �

u � �n � N ���� �rec n � a� b � h��

where

h � �m � N ��w � N � N � � �f ��� w��� �g ��� w� ��� w�� �

Then an optimized version t � u which does not contain the function g� having the same type 	N � N

is �

t � �n � N �����rec n � a� � � h���

where h� is �

h� � �m � N ��w � N � U � � �f ��� w��� � �

If we erase every occurrences of � which is the term which denotes the empty we �nd the simpler expres�
sion �

t � �n � N ��rec n a ��m � N ��w � N ��f w���

Discussion

Berardi has proposed a dynamic�completely automatic� technique� to optimize terms by deleting redundant
parts of it� To realize it� he only uses the information carried by the type of the term� Everything which
does not contribute to the type of the term is eliminated� that is to say replaced by ��
What is done� from a logical point of view� is nothing but marking �inside a proof tree� that we have

been able to prove something� but that the proof of this thing is useless� We then transform the tree in an
another one into an another system where all useless terms have been deleted�
As this system is applied to the �rst order� Berardi can mix the two steps � marking the tree and then

transformating it regarding this marking without trouble� At every moment only well formed terms are
manipulated�
Under this shape� this method is hardly extensible� By studying the F� system� Boerio had to switch the

way to see things�

����� Boerio
s extension for the second order

The extension of the preceding results in ��� can be situated in the straight line of Berardi�s work� It is
based on deleting subtrees judged useless regarding some criterions �here observational equality�� But if the
starting point of the problem is the same� it is not the case for the approach of how to solve it� This approach
represents a real contribution by introducing the notion of marking�

The Pruning in F�

Boerio considers the F� system� If the G�odel�s system T allows to describe the arithmetic of the �rst order�
F� is a propositional calculus of the second order� More precisely� F� is a stable extension of T which means
that every true statement of t is also a true statement in F�� Moreover these judgments have been added
the following elements �

�



�� Product types� If X is a variable of type and T a type� then �X�T is a type �one can note that instead
of �X�T we will write �X�T as in the Calculus of Constructions�� The primitive types are the same as
those in T � integers denoted by N and U the type denoting the hole�

�� Abstraction on types variables� If X is a type variable and t a term than �X�t is also a term�


� The applications for types� If t is a term than �t T � is also a term�

The new typing rules in this system are the following ones �

c � A � � x � A � �
� � c � A � � x � A

�� x � A � t � B � � f � A� B � � a � A

� � �x � A�t � A� B � � �f a� � B

� � a� � A� � � a� � A� � � t � A� � A�

� �� a�� a� �� A� �A� � � ��i�A��A�
t� � Ai

� � t � T � � t � �X��T

� � �X�t � �X�T � � �t A� � T �X �� A�

Where � is an environment containing all the constants de�ned in the system T � The di	erences between
the two systems can be summed up to the two last rules added � abstraction of types on terms and application
of types to terms�
We also add a ��reduction relatively to terms which are applied to types �

��X�t T ��� t�X �� T �

Boerio shows in a way close to Berardi that this system also veri�es the properties of the T system for
the pruning� If an order relation is introduced with respect to the pruning� as in the T system� then there
is an analogous of Berardi�s theorem � if t � u and both t� u have the same type then t �obs� u� where �obs�

is an observational equality de�ned as above in the T system�
One can also de�ne in F� the lattices LE�t�� CLE�t� as above�
Now the goal is to �nd explicitly the greatest lower bound of CLE�t� for a given u to get the optimal

version of u�

The pruning algorithm

In a simply typed system� it is not di�cult to delete subterms while keeping a well formed term� as the terms
only depend on terms� With the second order that is another story � terms can depend on types �think
to ��abstraction on types�� In particular� a simple algorithm like a data�!ow analysis recursive one� was
enough in a system of �rst order� Here it is no longer the case�
Instead of giving in extenso Boerio�s algorithm� we will give general ideas to understand how it works�

We provide an example at the end of this section� More precision can be found in Boerio�s paper ����
The ground idea is to work on the proof tree of the term and to transform it into a new optimized one�
Before going any further we introduce some important notions for the understanding of the algorithm�
In Boerio�s interpretation a mark is a label given to an atomic type� a constant or a variable� One

distinguishes two marks r and c� The �rst means that the labeled item is useless and the second that it
may be useful for the computation� After a correct marking of the tree� it will be possible to replace parts
marked with r by � for terms and U for types�
The simpli�ed tree is a syntactical tree in which every node marked with r is replaced by � or U �

Simplify�M� t� will denote such a tree for a markingM given on a term t�
To be more precise� we give the following de�nitions �

De�nition � If t is a term such that � � t � T then �
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Figure �� FDV �t� with an example of marking

�� The fully decorated tree of t� FD�t�� is the syntax tree of t in which each node that identi�es a subterm
is decorated by the type of the subterm itself�

�� The fully decorated version of � � t � T � FDV �� � t � T � is the ordered pair � �� FD�t� �� formed by
the context � and FD�t��

�� Let Lab be the set formed by two labels r and c� A marking M of FDV �� � t � T �� is a map from
the occurrences of atoms of the types which decorates the nodes and those of atoms in the types of the
variable of the context to Lab� When we talk of the marking M of t we talk about the restriction of the
map to FD�t��

Example � 
Boerio� Let t be the following term �

t � ����X � Prop��x � X�x ��� �����y � ��a��b�

�
With � an atom� a and b two variables of type ��
In the rest of this section we will call the marking� represented on Figure � by M��

De�nition � We call the simpli�ed tree� the syntactic tree in which every node labeled with r is replaced by
� or U � we will note Simplify�M� t� such a tree for a marking M given� on a term t�

The algorithm builds an optimum marking with regards to some criterions� Not every marking makes
sense regarding the pruning� Let us �rst give some new de�nitions�

De�nition � �� A markingM is canonical if for each node V of FDT �t� no atom in the types associated
to descendent nodes of V is marked with a c� when the type associated to V has all of its atom labeled
with r�
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�� A marking M of FDV �� � t � T � is consistent i� the simpli�ed tree generated is the syntactic tree of
a well formed term in some inferior 	with respect to pruning relation
 context to ��

�� A marking M is saturated if it is both consistent and canonical�


� Let M and M � be two markings of FDV �� � t � T �� One will state that M � M � if for all c assigned
in M it is also assigned in M ��

In our example M� is saturated� If we apply the simpli�cation map we get �

Simplify�M� � t� � ����X � Prop��x � X�x�U � �����y � U �a����

It is possible to show that each of the orders corresponds to the other� In other words� M � M � is
equivalent to Simplify�M� t� � Simplify�M � � t��
As we are not looking for the minimal marking� which is obviously the one that assigns r to every node

and� hence� produces � as the simpli�ed version�� but a marking which respects the observational equality�
one has to preserve the �nal type of the term� This observation leads to the de�nition of an initial marking
which expresses what we know a priori� The de�nition of the initial markingM� is the following one � given
a FDV �� � t � T �� M� is the marking which associates c to every atom of the type associated to the root
and the atoms in the type of the variables inside the context� and which sets all the other atoms to r�
The initial marking of a term is canonical but not consistent � The only remaining task to �nd the right

marking is to transform this initial marking to a consistent oneM �� superior to it� In order to do that� Boerio
develops an algorithm� named saturation algorithm� which is based on the installation of links between the
atoms of the fully decorated version of the term�
The idea of the saturation procedure is to build edges between the di	erent atoms of the tree to enable

the c information to �ow along those paths from the root to the totality of the tree with respect to some
conditions� One can sum up those conditions by the formula �If I have some contribution to the �nal type
I am marked with c� if not� I will keep my r mark ��

Discussion

Boerio�s work is important for our approach because it has showed the existence of a correspondence between
the pruning and the marking� But Boerio only uses this correspondence for technical reasons� It is just
mentioned in order to realize an algorithm�
Actually the notion of link introduced is very interesting� Indeed it shows how the marking can be

gradually built� But here too� one can not �nd explanations of this notion � he only uses it in a casual way
to build an optimal marking�
By a deeper abstraction of those two notions one could understand the semantique of the pruning� It

would permit to see why links are de�ned this way and why other options do not �t the problem�

����� Using subtyping for pruning ���

In their precedent works� Berardi and Boerio have developed pruning techniques� One of the weaknesses
of these ones leads to the fact that some optimizations are not done� because they could lead to ill typed
function applications�
To overcome those di�culties� they have developed a theory in which they introduce the notion of subtype�

Now a function application will be well typed if the type of the argument is not only equal but also included
in the input type of the corresponding function� This way more optimizations will be done � the extension
is conservative�

Brief presentation

This theory have been developed on a �rst order language which is an extension of the T language used by
Berardi� We will note T� the extension of T obtained by adding a special atomic Type #�
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De�nition � �� The Types of T� are de�ned inductively from the atomic types N and # using the �
and � operator�

�� Let A�A�� A�� B�B�� B� and C be types� The relation of inclusion on types of T� is de�ned by the
following rules �

N 
� #

N 
� N # 
� #

B� 
� A� B� 
� A� B� 
� A� B� 
� A�

A� � A� 
� B� � B� A� �A� 
� B� �B�

�� The notion of #�type is also de�ned� A type T will be said an #�type if it can be produced by the
following grammar �

O ��� #jA� OjO� O

where A is any type�

The preterms are the same ones as in the T system� The set of constants is extended by a set of constants
dO for each #�type O� They denote a canonical element for a given #�type�
The new typing rules are the following �

c � A � � x � A � �
� � c � A � � x � A

�� x � A � t � B � � f � A� B � � a � A� A� 
� A

� � �x � A��t � A� B � � �f a� � B

� � a� � A� � � a� � A� � � t � A� � A�

� �� a�� a� �� A� �A� � � ��i�A��A�
t� � Ai

The de�nitions of observational equality and context with hole are the same as in the T system� Moreover�
this system also veri�es the same properties as the T system� it is Church�Rosser and strongly normalizing�

Semantics of the new system

Let us discuss about the role of # and of the inclusion A� 
� A� One can consider that N is the set of
integers with standard equality� whereas # is the type of integers which are equivalent to each other� It
represents the useless integers� Indeed if a term is of type #� one knows that it is a number but nothing
more� The # type carries just this information whereas N brings more informations allowing to positively
identify the number� From the last point of view� the membership of # is weaker than the one of N � hence
the preceding inclusion�
One can now see clearly what means to simplify a term in this system� A set of subtypes and subterms

in a given term can be useless for the �nal computation and then replaced with # �useless type� and the
subterm with dO �useless subterm�� while keeping the well formation of the term�

Results obtained

The authors develop an order relation on the words of T� in a similar way as the one de�ned in T � The only
di	erence comes from the following rule �

O � U

dO � u

�



for u of any type U �
As in the precedent systems� they show that if a term is inferior to another with the same type� is

observationally equivalent to the previous one� Moreover� the structure generated by this relation is a
complete lattice� and the subsets formed by terms of a common type are sublattices�
So we have the same results for this system as for the two previous ones regarding the pruning�

Example � 
Boerio�Berardi� Now we are going to give an example which shows that this new method is
more powerful than the previous ones�

Let suppose the following extension of the constant set � it is added the constant set itA � fN � A �
�A� A�� AjAanytypeg to the original constant set ��� These constants implement iterations on natural
numbers� We also introduce new reduction rules which are �itA � a f� �it a and �ita �succ n� a f� �it

�f �itA n a f�� where a is of type A and f of type A� A�
Consider the expression �

t � �n � N ��v � N �N ���� itN�N n v F �

with

F � �w � N � N � � �f ��� w��� �g ��� w�� �

where f and g are free variables of type N � N �
t is of Type N � N � N � N � With the previous versions of the pruning one can not simplify t� Now

using the subtyping we get the simpli�ed t� term �

t� � �n � N ��v � N � #���� �itN�� n v F ���

with
F � � �w � N � #� � �f ��� w��� �g d�� �

����� Some comments on Turin school

The pruning presents without any doubt many advantages� The �rst is that it is an optimal technique
regarding this kind of optimization where it is only seeked to erase useless parts of a term� The second one
is its automatic aspect � the user has nothing to do but to watch the machine solving the problem�
Nevertheless� the fact that those techniques are only valid for �rst and second order is not satisfactory�

One would like to use these techniques in a more realistic frame� It would be �ne if such optimizations were
possible in systems like Coq or Nuprl�
Another bad point is clearly lightened by the evolutions of pruning� One has certainly notice that to

extend earlier results it has been each time necessary to build new theories� The lack of a uniform approach
suggests to search what are the common points of the di	erent pruning techniques�

��� C� Paulin�s approach ���

C� Paulin has developed another approach to the extraction in a the Calculus of Constructions�

����� The Calculus of Constructions

For a more complete presentation refer to ����
Actually� we will consider a slightly di	erent version compared to the original model� It is called the

Calculus of Constructions with Realizations�

��



Syntax of the language

We will denote by " the smallest language containing the following constructions�

� Three constants� Prop� Set� Type�

� An enumerable set of variables V �

� Applications� �M N � with M�N � "

� Products� ��x �M �N � with x � V and M�N � "

� Abstractions� ��x �M �N � with x � V and M�N � "

An environment is a list of bindings� x� � A�� � � � � xn � An where xi is a variable and Ai � "� We note the
empty list by ���
One can emit two sort of statements in this language�

�� � is valid where � an environment�

�� � � M � N which is read� M is well formed of type N in the environment �� If M and N are terms
of "�

Inference rules

We will denote by K one of the three constants Prop� Set� T ype�

�� is valid

� �M � K x � " does appear in � � is valid

�� x �M is valid

� is valid x � N appears in � N � "

� � x � N

� is valid � is valid

� � Prop � Type � � Set � Type

�� x � P �M � K

� � ��x � P �M � � K

�� x � P �M � N N �� Type

� � ��x � P �M � � ��x � P �N �

� �M � ��x � P �N � � � R � Q P ��� Q

� � �M R� � �N �x�R��

� �M � N � � P � K N ��� P

� �M � P

In spite of a uniform presentation which could let think that there are no distinction between terms� on
can derive some classes of terms� They are identi�ed with the distance between them and the constant Type�
More precisely� we have �

Property � Let M be a well formed term of " of type N � there are three di�erent cases �

�� N � Type

�� N is well formed of type Type�
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�� N is well formed of type Prop� or Set�

This property leads to the de�nition of levels in the Calculus of Constructions�

De�nition � � If N � Type then M is of level �� we talk about propositional types�

� If N is well formed of type Type� M is of level �� it is a propositional scheme� or� more simply a
proposition� if N � Prop�

� If N is well formed of type Prop or Set then M is of level � and we say that M is a proof�

This hierarchical structure is important to prove properties and give well formed inductive de�nitions�

����� Extraction in the Calculus of Constructions

To determine what parts of proof�s terms are useless on a computational point of view� C� Paulin duplicates
the original Calculus of Constructions thanks to the two constants Prop and Set� The constant Prop will be
used for the building of logical propositions �which will not be used in the �nal program�� whereas the Set
constant will denote terms that have an algorithmical content�The notion of �having an interesting content��
is introduced in the following manner�
A term will be said of empty content if �

� This term is Prop�

� If M is a term with an empty content then �x � N �M is also of empty content�

� If M is a term with an empty content then �x � N �M is also of empty content�

� If M is a term with an empty content then �M N � is also of empty content�

A variable that has a type of empty content is also of empty content�
If a term is not of empty content� it will be called positive�
The extraction technique consist in erasing all parts of the term that have an empty content�

����� Discussion

The main drawback of this technique is its lack of !exibility� Indeed� when a term is declared positive it can�t
in no way change its status and becomes a term of empty content� This is regrettable because the notion of
$algorithmic content of a term appears more as a contextual notion than syntactic� Consider map g which
takes an integer and returns this integer multiplied by �� In absolute terms� this map has an algorithmic
content� Now� one can easily design a program that takes a map from integers to integers as argument and
which gives back the �rst projection of the pair formed by n iterations of the g map� and m of the same
map� The term representing this program will have two subterms coding the g map� Nevertheless� from�
the observational point of view� only the code of the map which computes the �rst projection will have an
informative content� That way we have the case of a function which in absolute has an algorithmic content
but which can in some particular case have no longer interest because of the context which surrounds it�
Consider again the �rst example� With some slight modi�cations it appears that the Paulin�s extraction
technique one can not obtain the results of pruning�s extraction� Just replace the occurrence of the function
f by the function g� the second occurrence of g is erased by the pruning whereas the �rst is kept� As it is
impossible to type g with both Prop and Set� Paulin�s extraction can�t erased it�
Another remark about this method comes from the fact that it is the user which determines the extraction

procedure� It is him who chooses his variables being of type Set or Prop� Now it would be �ne if the system
was able to extract alone subterms without informative content�
The advantage of this approach is that it is valid for languages of higher order with dependent types as

the Calculus of Constructions�
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� A new approach of extraction by marking

��� Motivations and brief description

As the former approaches have been shown to be not satisfactory� we have to �nd another approach to extend
the results obtained� The idea of marking comes naturally � we will indicate by a new attribute whether the
term is useful for the computation or not� This idea was already present in Boerio�s algorithm �see �����
As one can already deduce from earlier studies� the marking should verify some requirements� It has to

be orthogonal to the typing mechanism� as Paulin�s method reveals that typing and informative content are
two di	erent things� It has also to allow to rely on the contextual feature of the informativity of a term�
Indeed� we have seen that the typing is too static to express the extraction�s optimization features� This last
remark suggests the creation of weakening rules� which transform a term with positive content into a new
one with negative content�
Moreover� one has to has clarify the part of the constraints introduced to mark the term by expressing

them inside the typing rules�

��� Application to a second order system F
m

�

In the rest of the paper� we will denote by "m the smallest language formed by the following rules�
We de�ne the sets �

Label � fr� cg

const � fProp� Typeg

Let V be a set of variables� In the rest of the paper� the indexes i� j� k� l � � � stand indistinctly for r or c
and we write N i for �N� i�� Moreover� we de�ne the order relation r � c on the set Label� The language "m
contains �

� Const � const � Label

� V � V � Label

� Applications�
�M i N j�kwith M i� N j � "m

� Abstractions�

��xi �M j�Nk�l with xi � V and M j� Nk � "m

� Products�

��xi �M j�Nk�l with xi � V and M j � Nk � "m

We will write x �i for xi � Ai�
An environment is a �nite list of bindings x� �

i� A�� x� �
i� A�� � � � � xn �

in An� where xj is a variable�
Aj � "m and ij is an element of Label�
We next de�ne the well formation rules of term in "m� These rules allow us to de�ne a second order

language� so polymorphic� that is a language in which one can abstract over types and � We will call this
language Fm

�
�

Judgments are of two di	erent kinds� If � is an environment� we have� � is valid and � �M � N � where
� is an environment� M and N are two terms of "m and this is to be read � the term M is well formed of
type N in the environment ���
Inference Rules �
We will take the convention that for every marking variable �i� j� k� � � � we will have the order relation�

i 
 i� 
 i�� 
 i��� � � �
Moreover� to have a more readable paper we will use the following syntactic sugars�
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� �Xi shall be read as �X �i Prop��

� "Xi shall be read as �X �i Prop��

� mark�occ�x�A�� will design the set of mark of the occurrences of the variable x in A�

sup�mark�occ�x�A��� will be the �usual� operator� except when the set mark�occ�x�A�� is empty� In
this case the value is not de�ned� Of course r is the good choice but� for greater generality� we will let
the choice to the user�see theorem ���

Here are the inference rules of this second order language�

� Environments�

��� �� is valid

���
� � Bi � Propi x doesn�t appear in �

�� x �i� B is valid

�
�
� is valid X does not appear in �

�� X �i Prop is valid

� Hypotheses�

���
� is valid x �i B appears in �

� � xi� � Bi�

���
� is valid X �i Prop appears in �

� � Xi� � Propi�

� Type formation�

���
� � Ai � Propi � � Bj � Propj

� � �Ai � Bj�j � Propj

���
�� X �i Prop � Aj � Propj i� � sup�mark�occ�X�A���

� � ��Xi� � Aj�j � Propj

� Abstractions�

���
�� x �i A � M j � N j � � N j � Propj i� � sup�mark�occ�x�M ���

� � ��x �i� A�M j�j � �Ai� � N j�j

���
�� X �i Prop � tj � T j � � T j � Propj i� � sup�mark�occ�X� t���

� � �"Xi� tj�j � ��Xi� � T j�j

� Applications�

����
� � tj

�
� �Ai � Bj�j � � ti� � Ai

� � �tj
�
ti
�
�j � Bj

����
� � tj � ��Xi� Bj�j � � T i � Propi

� � �tj T i�j � �Bj �Xi �� T i��j

One can already makes some remarks�
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� Marking and typing are not directly linked� For a given term� one can give several di	erent markings�
Meanwhile the marking respects some rules described in typing rules�

� There are two di	erent kinds of marks� The ones used to label variables only depend on the context�
whereas the ones used to label a term are inherited from the subterms it contains�

� One can only weaken a mark at the introduction of variable level �rules ��� and ����� This is clearly
needed if we consider the previous remark�

� The links built in Boerio�s algorithm have been translated within the typing rules�

To exploit this system we have to de�ne a new ��reduction �

De�nition � 
��reduction in a marked language� there are two cases �

�� If the argument is marked with r� we have a redex which looks like ���x �r A�M i�iN r�i� and the inference
rules on well formation for terms impose that every occurrence of x in M is marked r� We de�ne �

���x �r A�M i�i N r�i �� M
i�cr �� N r�

�� If the argument is marked with c� we only know that there is at least one occurrence of the binded
variable marked with c while the others can be marked with r� We have a problem to instantiate both
kind of variables� But we know that the weakening rules enable us to consider every term marked with
c as the same term but marked r 	one just have to mark with r every introduction of a variable during
the building of the term
� It leads to the following de�nition �

���x �c A�M i�iN c�i �� �M
i�xc �� N c��xr �� N

r
��i

where N
r
represent the term N in which every atom has been marked with r�

This de�nition looks reasonable because the following property holds�

Property � 
Invariance of marking under ��reduction� Let M i be a well formed term of Fm
� � we

have the following property�

M i �� M
�i

Proof�
Let consider a term M i� We show� by structural induction that substituting any subterm of M i it by

another one with the same mark does not change the mark of M �
This is trivially veri�ed for variables� Indeed the only subterm is the variable itself and so it will keep

the same mark�
Suppose that M � �ti� tj

�
�j� Then� if we substitute the subterm ti� by q

i the term will keep the same

mark� It is also the case if we substitute qj to tj
�
�

The other cases are treated in the same way�
�

����� Order introduced on terms by marking

We now de�ne an order on well formed terms of "m � This order is generated by the order relation previously
de�ned on the set Label set� We say that if two terms have the same syntactical tree �without looking at
the marks�� the one which has the longest number of �c� is the bigger�
This leads to the following de�nition �by structural induction��

� Ground cases�
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� For constants� Propr � Propc

� For variables� xr � xc

� Induction cases on types�

� If M � M �� N � and N are types � M � � N � �M � N if M � �M and N � � N �

� If X� X� are type variables and M M � are types then �X�M � � �XM if X� � X and ifM � �M �

� Induction cases on terms�

� If t�� t��� t� et t
�
�
are terms then �t�

�
t�
�
� � �t� t�� if t�� � t� and t�� � t��

� If t� t� are terms� T and T � types then �t��T ��� � �t�T �� if t� � t and T � � T �

� If M � M � are terms� A� A� types� then �x � A��M � � �y � A�M if A� � A and if M ��x �� z� �
M �y �� z� where z is a fresh term variable �this is to avoid problems linked to ��conversion��

� If M and M � are terms then "XM � � "YM if M ��X �� Z� � M �Y �� Z� where Z is a fresh
terms variable �it is to avoid problems linked to ��conversion�

����� Flexibility of Fm
�

We now show that our system is !exible by simulating the other extraction procedures� These di	erent
simulations are naturally obtained by playing on two parameters� The �rst parameter concerns the initial
conditions� it corresponds to the initial marking of Boerio�s algorithm� The second parameter deals with
the way the extraction is de�ned� In Boerio� for example� one can remove a subtree only if all atoms of this
subtree are marked with r while it is not the case� for Paulin�

� Simulation of Paulin
s Extraction

De�nition � The extracting function ExP is inductively de�ned by �

� ExP �x
c� � x

� ExP �Xc� � X

� ExP ��Ar � Bj�j� � ExP �Bj�

� ExP ��Ac � Bj�j� � ExP �Ac�� ExP �Bj�

� ExP ��� Xr �Aj�j� � � X�ExP �Aj�

� ExP ��� Xc�Aj�j� � ExP �A
j�

� ExP ��x �r A�M j�j� � ExP �M j�

� ExP ��x �
c A�M j�j� � �x � ExP �A��ExP �M

j�

� ExP ��tj T r�j� � ExP �tj�

� ExP ��tj T c�j� � �ExP �tj� ExP �T c�

� ExP ��t
j ur�j� � ExP �t

j�

� ExP ��tj uc�j� � �ExP �tj� ExP �uc��

Where x and X are fresh term and type variables� One can easily extend this de�nition to environments�

Theorem � If � �M c � N c is provable in Fm
� then ExP ��� � ExP �N c� � ExP in F ��

��



Proof�
To prove this theorem we look what is going on by induction on the term structure�
The ground case� the case of variables� is clearly veri�ed� Consider the case of a variable marked by c�

This the only case to be considered as extraction only works on c marked terms� We have ExP �vc� � v
which is a well formed term in F�� Indeed� as the variable is marked c� its declaration in the context is of
the kind v �c V � and so in the extracted context appears v � V � hence the announced result�
For induction cases we have the following options �

� Suppose� � � ��x �i A�M j�j � �Ai � Bj�j � Two cases are to be considered�

�� i � r� In this case we have ExP ���x �
i A�M j�j� � ExP �M

j� and ExP ��A
i � Bj�j� � ExP �B

j��
So it is su�cient to show that ExP ��� � ExP �M

j� � ExP �B
j�� which is exactly the induction

hypothesis�

�� i � c� Then we have ExP ���x �i A�M j�j� � �x � ExP �Ai��ExP �M j� and
ExP ��Ai � Bj�j� � ExP �Ai�� ExP �Bj�� One has to show that �
ExP ��� � �x � ExP �Ai��ExP �M j� � ExP �Ai� � ExP �Bj�� One uses the induction hypothesis
which says that � ExP ��� x �

c A� � ExP �M
j� � ExP �B

j�� In another terms ExP ���� x �
ExP �A

c� � ExP �M
j� � ExP �B

j�� This last remark shows that one can apply the abstraction
rule in F�� hence the result�

� Now if we have � � � �ti uj�i � T i� with � � ti � �U j � T i�i and � � uj � U j � We have the two
following subcases to treat�

�� j � r� We have ExP ��ti uj�i� � ExP �ti� and one has to show that
ExP ��� � ExP �t

i� � ExP �T
i�� But by induction hypothesis� one has � ExP ��� � ExP �t

i� �
ExP �U

j � T i� and as ExP �U
j � T i� � ExP �T

i� one has the researched result�

�� j � c� Now� one has ExP ��ti uj�i� � �ExP �ti�ExP �uj�� and one wants to show that
ExP ��� � �ExP �t

i� ExP �u
j�� � ExP ��U

j � T i�i�� we know by induction hypothesis that
ExP ��� � ExP �t

i� � ExP �U
j � T i� and also that �

ExP ��� � ExP �uj� � ExP �U j�� Now one has Exp�U j � T i�i� � Exp�U j� � ExP �T i�� Hence
by applying the application rule of F�� it comes
ExP ��� � �ExP �ti� ExP �uj�� � Exp�U j�� ExP �T i� in other words
ExP ��� � �ExP �t

i� ExP �u
j�� � ExP ��U

j � T i�i� � which demonstrates the result�

All other cases� abstraction of types� and application of types to terms are treated in the same way�
�

Theorem � One can simulate in Fm
� the extraction procedure proposed by C� Paulin for the Calculus of

Construction restricted to the second order�

Proof�
To the type Prop of the Calculus of Constructions one associates Propr and to Set one associates Propc�
Now� one only has to show that every term with empty content in Paulin�s system is marked with an r

in our system� It is simply done by induction on formation of empty content terms�

� Ground case� If M � Prop in Paulin�s system then by de�nition it will be translated in Propr in our
system�

� If M is a term of empty content in Paulin�s system and translated to a term with a mark c in our
system then�

� ��x � N �M � has an empty content� and is translated by ��x �i N �M r�r and so marked with r�

� ��x � N �M � has an empty content� and is translated by ��x �i N �M r�r and so marked with r�
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� �M N � has an empty content and is translated by �M r N i�r�

Hence� every term with an empty content can be translated in our system� It shows that one can simulate
Paulin�s extraction in Fm

�
�

�

� Simulation of Berardi�Boerio
s Extraction

The �rst thing to do is to de�ne a new extraction function� Indeed� for Boerio� a term can only be replaced
by � if it has all of its atoms marked with an r� This leads to the following de�nition�

De�nition � The extracting function ExB is inductively de�ned by �

� ExB�x
c� � x

� ExB�X
c� � X

� ExB��Ar � Bj �j� �

� If every atom of Ar is marked r then ExB�Bj �

� Else �ExB�A
r� ExB�B

j��

� ExB��Ac � Bj�j� � ExB�Ac�� ExB�Bj�

� ExB��� Xr �Aj�j� � ExB�Aj�

� ExB��� Xc�Aj�j� � �XExB�A
j�

� ExB��x �
r A�M j�j� �

� If every atom of Ar is marked r then � X�ExB�M j�

� Else �x � ExB�A��ExB�M j�

� ExB��x �c A�M j�j� � �x � ExB�A��ExB�M j�

� ExB��tj T r�j� �

� If every atom of T r is marked r then ExB�tj�

� Else �ExB�tj� ExB�T r�

� ExB��tj T c�j� � �ExB�tj� ExB�T c�

� ExB��tj ur�j� �

� If every atom of ur is marked r then ExB�t
j�

� Else �ExB�tj� ExB�ur�

� ExB��t
j uc�j� � �ExB�t

j� ExB�u
c��

Here too� one extends easily this notion for environments�

Theorem � If � �M c � N c is provable in Fm
�

then ExP ��� � ExP �N
c� � ExP in F ��
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Proof�
The proof is almost the same as the one used to prove the theorem �� One just has to check that terms are

uniformly marked with r or not� This condition does not in!uences the well formation of terms� Moreover�
every term extracted with Boerio�s extraction is also extracted in the same way by Paulin�s extraction� hence
the result�

�

Actually erasing subterms labeled by an r is like identifying terms of the form �t �� to t� U � B to B�
B � U to U in Boerio�s system�
This shows well that to the function Simplify we give a corresponding function which is ExB�
We are now going to exploit this correspondence to prove the following theorem�

Theorem � Let M be a saturated marking� in Boerio�s sense� of a term t� One can derive � � tj � T j in
Fm
�

in such a way that tj has the same marks on its atoms than the one associated by M to t in F��

Proof�
First let us recall the de�nition of a saturated marking� This is a marking which is both canonical �a

subterm marked by an r has all of its atoms marked by r� and consistent �the extraction of subterms marked
by r is done and the extracted term is well formed��
The theorem � already proves us that a marking in Fm

�
is always consistent�

It is easy to see that one can always build a canonical marking in Fm
� from a given marking� Indeed�

since a subtree is marked with an r one just has to instantiate the following rule of Fm
�

���
� is valid X �i Prop appears in �

� � Xi� � Propi�

to build the subtree� This rule can be read as �

���
� is valid X �i Prop appears in �

� � Xr � Propr

hence every of the subtree will be marked with an r�
So we can forget about the problem of canonicity�
Next one has to show that any consistent marking in F� can be realized in our marking system�
Let us prove it by absurdity� Suppose that we have a term tc� marked in such a way that we cannot build

its marking in our system although ExB�t
c� is well formed with respect to F�� or that we can �nd a lower

marking�
So� there exists at least a node in the proof tree which does not satisfy the constraints generated by Fm

� �
Let us consider the di	erent possibilities� The node can be�

� A term application formation node� In our system we have�

����
� � tj

�
� �Ai � Bj�j � � ti� � Ai

� � �tj
�
ti
�
�j � Bj

As the marking has to be impossible to build in our system� the node must have the following shape�

� � tj
�
� �Ai � Bj�j � � tk

�
� Ak

� � �tj
�
tk
�
�j � Bj

with k �� i� Now� let us extract this subterm� By our de�nition of extraction we have�

� ExB��t
j
�
tk
�
�j�� � ExB�t

j
�
� if k � r� and �ExB�t

j
�
� ExB�t

j
�
�� otherwise�

� ExB��A
i � Bj�j� � ExB�A

i�� ExB�B
j� if i � r� and ExBj otherwise�

Now one can easily check that� whether k � r or c� the extracted term will not be well formed�
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� A type application formation node� In our system we have�

����
� � tj � ��Xi� Bj�j � � T i � Propi

� � �tj T i�j � �Bj �Xi �� T i��j

if we don�t use those constraints� one can show as above that the extracted term will not be well
formed�

� An abstraction over terms node� In our system we have�

���
�� x �i A � M j � N j � � N j � Propj i� � sup�mark�occ�x�M ���

� � ��x �i� A�M j�j � �Ai� � N j�j

Now� to �nd a marking impossible to build in our system the node must looks like �

�� x �i A �M j � N j � � N j � Propj

� � ��x �i� A�M j�j � �Ai� � N j�j

such that i� � sup�mark�occ�X�N ���� As we have a two element domain this leads to the unique
solution i� � r�

Indeed� if i� � c while there is no occurrence of x in M � So mark�occ�x�M �� � � in Fm
�
and we can

choose i� � c � sup���� obtaining the same marking�

So� let us consider the case where i� � r whereas there exists an occurrence of x inM j which is marked
c� By extraction� we will erase the binder �x �i A� but not the occurrence of x in M � hence M will not
be well formed after extraction as it will contain a variable x which has no binder and no de�nition in
the context�

� Abstraction over types� The proof is the same as above�

Hence by absurdity we have proved the result�
�

This theorem is crucial for understanding of what marking is� It expresses thatin order to have a
coherent marking i�e� saturated� the marks have to verify certain constraints� precisely those constraints that
are encoded in the typing rules of Fm

�
�

Actually� the last theorem proves than in our system� we can at worse obtain the same results than in
the F� with pruning� Indeed� if we restrict Fm

�
to the terms having a saturated marking we will exactly �nd

the F� system studied by Boerio� In particular we can prove for this restriction of F
m
�
all what was proved

in F� by Boerio�
To optimize a term t of type T � it su�ces to �nd the greatest lower bound of CLEm�t� � ft�jt� � tand�� �

t� � T and �� � �g in the restriction of Fm
�
to saturated terms� For doing that� we follow the method

proposed by Boerio in �
�� The initial marking consists to set all marks to a fresh variable of mark� except
the ones of the global term and of the environments �terms of the environments are uniformly marked by
the same mark everywhere� which are marked with c� After that one just has to follow the typing rules and
generate constraints between the mark variables in the tree�
Let us consider a small example� Suppose we have�

� � ti� � �A
j � Bk�l � � tm� � An

� � �to
�
tp
�
�q � Bh

Then if we follow the associated typing rules� we can �nd that i � l � o � q � h and that j � m � n � p�
This way one can make the �nal c mark !ows from the root to the rest of the term�
Let us next develop a larger example to see how one can simulate Boerio�s algorithm�

��



Example � Consider the following term t � ���x � X��y � X�y u� v�� We will show how to simplify it using
the Fm

�
system� Suppose � � X �c Prop� u �c X� v �c X� We begin by giving its derivation tree in F��

�% y � X � y � X �% y � X � y � X

� � �y � X�y � X � X
�%x � X � x � X

� � �x � X��y � X�y � �X � �X � X��
� � u � X

� � ��x � X��y � X�y u� � X � X
� � v � X

� � ���x � X��y � X�y u� v� � X

Where � represents the following environment�X � Prop� u � X� v � X�
Now� we have to assign initial marks to start the algorithm� For that we begin to d�decorate our proof tree

to its root� We only know that the �nal type and term and the variables in the �nal environment have to be
conserved� and hence� marked with a c� It gives the following derivation tree �

�% y � X � y � X �% y � X � y � X

� � �y � X�y � X � X
�%x � X � x � X

� � �x � X��y � X�y � �X � �X � X��
� � u � X

� � ��x � X��y � X�y u� � X � X
� � v � X

� � ���x � X��y � X�y u� v�c � Xc

Now using the rule �

����
� � tj

�
� �Ai � Bj�j � � ti� � Ai

� � �tj
�
ti
�
�j � Bj

we can deduce the following decoration�

�% y � X � y � X �% y � X � y � X

� � �y � X�y � X � X
�%x � X � x � X

� � �x � X��y � X�y � �X � �X � X��
� � u � X

� � ��x � X��y � X�y u�c � �Xi � Xc�c
� � vi � Xi

� � ���x � X��y � X�y u� v�c � Xc

where i is a mark variable� One can already notice that this is the same as the one used to mark the �rst
occurrence of X in �Xi � Xc�c� It is here that the realization of the links used in Boerio�s algorithm is done
in our system with marking� Still using the same rule one can lift the mark on the left premise to �nally get�

�% y � X � y � X �% y � X � y � X

� � �y � X�y � X � X
�%x � X � x � X

� � ��x � X��y � X�y�c � �Xj � �Xi � Xc�c�
� � uj � Xj

� � ��x � X��y � X�y u�c � �Xi � Xc�c
� � vi � Xi

� � ���x � X��y � X�y u� v�c � Xc

Where j is a new mark variable� Now to progress in the tree on has to apply the following rule�

���
�� x �i A � M j � N j � � N j � Propj i� � sup�mark�occ�x�M ���

� � ��x �i� A�M j�j � �Ai� � N j�j

We then get�

�% y � X � y � X �% y � X � y � X

� � ��y � X�y�c � �Xi � Xc�c
�%x � X � xj � Xj

� � ��x � X��y � X�y�c � �Xj � �Xi � Xc�c�c
� � uj � Xj

� � ��x � X��y � X�y u�c � �Xi � Xc�c
� � vi � Xi

� � ���x � X��y � X�y u� v�c � Xc

Finally we obtain�
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�% y � X � yi � Xi �% y � X � yc � Xc

� � ��y � X�y�c � �Xi � Xc�c
�%x � X � xj � Xj

� � ��x � X��y � X�y�c � �Xj � �Xi � Xc�c�c
� � uj � Xj

� � ��x � X��y � X�y u�c � �Xi � Xc�c
� � vi � Xi

� � ���x � X��y � X�y u� v�c � Xc

One can notice that variables x and y have no marks in their declaration in the context � we recall that by
convention everything in the context is marked with c�

From the rule 	�
 it follows that i � c and one has to replace every occurrences of i by c in our tree� As
the j variable does not have any constraints and that we seek for the minimal marking we just have to choose
it equal to r� We obtain the following marked term ���x �r X��y �c X�yc uc�c vr�c � which � after extraction
gives ��y � X�y u�� Which was the result expected�

This very simple example shows how inference rules with marks can simulate the link of Boerio�

� Simulation of extraction with subtyping

The problem which has given birth to the subtyping was the fact that some optimizations were not allowed
because they would lead to ill typed terms� In our system� this is not the case� Indeed� as the marking is
independent from the typing mechanism� such problems are avoided�
Thus� we are able to simulate the subtyping mechanism simply by choosing the ExP extraction� It

represents an extension to the second order of the work done by Berardi and Boerio in �
��

Theorem � One can simulate the pruning technique with subtyping in Fm
� �

Proof�
One only has to check that there is� for each #�type of Berardi�Boerio�s system� a corresponding type

in Fm
� �
The �rst thing to do is to �nd an equivalent for #� Clearly N r � where N is the prede�ned constant

representing integers� is the good choice�
Now it is clear that for each #�type one can give a term representing it in Fm

�
� Indeed� an #�type is of

kind A� O or O �O� By induction� it is clear that we can build such types in Fm
�
�

One just has to add for each #�type T a declaration of the form dT �r T one which corresponds to the
dO constants in Berardi�Boerio�s system�
Now one has to �nd the correspondence for application rule� Let us recall that this rule is� for more

precision refer to section ������ of the form �

� � f � A� B � � a � A� A� 
� A

� � �f a� � B

while in our system one has the following application rule �

����
� � tj

�
� �Ai � Bj�j � � ti

�
� Ai

� � �tj
�
ti
�
�j � Bj

Now� let us look at the de�nition of 
� �

N 
� #

N 
� N # 
� #

B� 
� A� B� 
� A� B� 
� A� B� 
� A�

A� � A� 
� B� � B� A� �A� 
� B� �B�

If we follow our simulation� we have the following de�nition of 
� in our system�
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N 
� N r

N 
� N c N r 
� N r

B� 
� A� B� 
� A� B� 
� A� B� 
� A�

A� � A� 
� B� � B� A� �A� 
� B� �B�

One has to check that the typing rule ���� is equivalent to the one given for Boerio�Berardi system�
Clearly� as we have the same type� only marks are changing� In both parts of an expression of the form


� B we can build a derivation in Fm
�
such that � � f i � �Aj � Ci�j if there exists a derivation of

� � f i � �Bj � Ci�j

�

We have shown that our approach of extraction is relevant since it allows to represent every known
technique� On this basis we are going to extend Berardi�Boerio�s approach to higher level� The natural
language to consider is F�� because it is a higher order language simpler than the calculus of Construction
as there are no dependences from low level to high level�

��� Marking in a higher order language � Fm
�

����� Presentation of F� system

The F� system has been introduced by J��Y� Girard in ���� It is more powerful than F�� It presents some
features which make it the natural system to generalize Boerio and Berardi�s technic�

� The �rst point is the expressivity of the system� F� allows to express all programs and it has the same
computational power as the Calculus of Constructions�

� The second point concerns its hierarchical structure� The language is structured in such a way that
objects of an higher level cannot have an in!uence on objects situated below them� This makes the
task easier�

� The third important feature comes from how are structured the levels of objects in F�� Their structure
is such that� apart few remarks� they strongly remind languages of the �rst and second order� The
idea is to re�apply to di	erent levels what we already know�

We will note "F the language of F�� In this language we can distinguish three kinds of objects� Orders�
operators� terms� These three kinds of objects are de�ned in three successive levels beginning with orders
followed by operators� which can depend on orders and �nally terms which can depend on both orders and
operators� We will talk about level to designate orders� operators or terms�
More precisely� we have �

� Orders �level ��� The constant Data is an order and if A and B are orders� then A � B is also an
order�

� Operators �level ��� If 	� 
 are operators� X an operator variable and A an order then 	� 
 �functions��
�	 
 � �applications�� �X � A�	 �products� and �X � A�	 �abstraction� are operators�

� Terms�level �� � If s� t are terms and x a term variable �and by taking again the previous conventions�
then �s t�� �s 	�� �x � 	�s� �X � A�s are also terms�

An order context is a �nite sequence of pairs �X�A�� where X is an operator variable and A an order�
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Typing rules

As the notion of order is purely syntactical� we begin to de�ne the relation � � 	 � A� which means �the
operator 	 is well formed of type A in the order context ��

The typing rules for operators are �

if X � A appears in �

� � X � A

� � 	 � Data � � 
 � Data

� � 	 � 
 � Data

X � A�� � 	 � Data

� � �X � A�	 � Data

X � A�� � 	 � B

� � �X � A�	 � A� B

� � 	 � A� B � � 
 � A

� � �	 
 � � B

For terms we have also to de�ne the notion of environment� We want that the declaration of variables
precedes the declaration of operators� So� we introduce the following de�nition for environments�

� The empty sequence �� is a valid environment and the associated order context ��o is the empty sequence�

� If � is a valid environment� X an operator variable which is not in � and A an order then �� X � A is
a valid environment and ��� X � A�o � �o� X � A

� If � is a valid environment� x a term variable that does not appear in � and if there is a derivation
�o � 	 � Data where��� x � 	�o � �o then �� x � 	 is a valid environment and�

One now de�nes a typing relation for terms which will be noted � � t � 	 with � a valid environment� t
a term and 	 an operator�
The typing rules for terms �

x � 	 appears in �

� � x � 	

� � t � 	� 
 � � u � 	� 	 ��� 	
�

� � �t u� � 


�� x � 	 � t � 


� � �x � 	�t � 	 � 


� � t � �X � A�	 �O � 
 � A

� � �t 
 � � 	�X �� 
 �

�� X � A � t � 	

� � �X � A�t � �X � A�	
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����� Informal semantics of marking in this system

Our aim is to extend the techniques of the Turin school to Fm
� while keeping our approach of marking� We

have to think about what meaning have the marking and optimization on higher orders�
The �rst observation which comes to thought is that Fm

� is divided in three partsm� which are hierarchi�
cally comparable� The Level � �orders� does not raise big problems � to be an order is a too much syntactic
feature to search any optimization� Level one �operators� is already more interesting� At a �rst glance� one
could think that the language generated by it is a simply typed language �akin of G�odel T system�� like the
one studied by Berardi� Nevertheless� one rule shows us it is not exactly the case �

� � 	 � Data � � 
 � Data

� � 	 � 
 � Data
Indeed� the Data type is absorbent with respect to operators of kind �� This means that� if we wanted

to apply directly Berardi�s technique we would have a bad surprise� To detect the informative parts of a
term� Berardi uses the fact that one has just to conserve the �nal type of the term� � I serve for the building
of the �nal type� is the only information needed to �nd where we can prune or not� Now� it is clear that this
criterion is no longer enough in this system� Indeed� if 	� 
 are of type Data� then 	 � 
 and 
 will have
the same type if we follow the typing rule� So� the question is the contribution to the �nal type of 	 � 
 &
If this rule didn�t exist� one would have almost exactly Berardi�s system� Actually� as we will see later� one
just have to de�ne a suitable equivalence relation to solve the problem�
Level �� the one of terms� is alike� apart few details as a second order system� The only notable di	erences

are coming from the creation of the context� One can introduce a term variable only if the type of this variable
is a well formed operator� So� when we are in a leaf of the tree and this leaf corresponds to the introduction
of a variable� one has to build another proof tree for the well formation of the operator designing the type
of the variable� The second bridge between those two levels comes from the following rule �

� � t � 	� 
 � � u � 	� 	 ��� 	
�

� � �t u� � 


For this last rule� one has to go to the operator�s language to prove the equivalence between the two
operators� This means that� modulo the last remarks� we are in a second order system� in which one can
apply the already known methods to optimize terms�
Now� to optimize a term in F�� while keeping our point of view of marking� one has to solve the problems

raised by the operators of kind 	 � 
 � and the equivalence between two marked operators� We propose� in
the next section� a language Fm

� which enables to solve these problems�

����� The Fm
� language

Syntax of Fm
�

For the creation of Fm
� language we follow the general ideas already developed for F�� For uniformisation

reasons� we decided to mark orders� despite the remarks raised in the last section which have clearly shown
that we cannot expect optimization for those terms�
As usual� in the rest of the text� the indices i� j� k� � � � will indistinctly represent r or c� One �nd again

the main lines of F� language�

� Orders� The constants Datai are orders and if Ai and Bj are orders� then �Ai � Bj�j is also an order�

� Operators� If 	i� 
 j are operators�Xk an operator variable andAl an order then �	i � 
 j�m �functions��
�	i 
 j�m �applications�� �Xk � Al�	m �products� and �Xk � Al�	i �abstraction� are operators�

� Terms � if sn� to are terms and xp a term variable �and by taking again the previous conventions� then
�sn to�m� �sn 	i�m� ��xp � 	i�sn�m� ��Xk � Al�sn�m are also terms�

The syntax is the same than in F�� apart the fact that all subterms are marked with a r or a c� One still
has to de�ne typing rules for this language� One naturally extend those marking notions to the formation of
order context� and of environment for terms� The formation rules are the same as preceding ones� and one
simply adds marks�

��



Optimization in Fm
�

We have pointed out two points in the discussion on optimization in the last section� Let us see how we can
handle them� First we will denote Op the language de�ned by the typing rules on operators in F��
For the �rst point� we will simplify the language Op in such a way that we will obtain a simply marked

language�

De�nition �� The Tr function is inductively de�ned by �

Tr�	 � 
 � � Tr�
 �
Tr��X � A�	� � �X � A�Tr�	�
Tr��X � A��	� � �X � A��T r�	�
Tr��	 
 �� � �Tr�	� Tr�
 ��

We will denote by � the equivalence relation generated by Tr function� which is to say�

	 � 
 �� Tr�	� � Tr�
 �

One can already observe that 	� 
 � 
 � where 
 represents the equivalence class of 
 � This way a
particular representant of the class of an object formed by many�� is the rightmost situated subterm�

Theorem � The system generated by Op� � is a simply typed ��calculus�

So� one can apply the results precedently obtained for the �rst order in Op� ��
To obtain an equivalent to Fm

�
marked system� one has just to manage with equivalence classes in a

way to avoid to forget some informative subterms� In clear one has to force the terms of kind 	 � 
 to be
marked in the same way on the right and on the left of the arrow unless the user speci�es the contrary� Thus
this remark does not play its role at the logical level 	i�e� in typing rules
 but during the development of the
marking algorithm � It has to be understood as a marking strategy�
One obtains the following rules �

if X �i A appears in �

� � Xi� � Ai�

� � 	j � Dataj � � 
 i � Datai

� � �	j � 
 i�i � Datai

X �i A�� � 	j � Dataj i� � sup�mark�occ�X�	���

� � ��X �i� A��	j�j � Dataj

X �i A�� � 	j � Dataj i� � sup�mark�occ�X�	���

� � ��X �i� A�	j�j � �Ai� � Bj�j

� � 	i � �Aj � Bi�i � � 
 j � Aj

� � �	i 
 j�i � Bi

For the second point� one has to de�ne an equivalence between marked operators� Remember that types
represent set of terms� Now the question is not �when a marked term is equivalent to another marked term�
but � when two sets of terms are equivalent�� From this point of view� the answer comes more easily� When
you realize that a type marked with r means that it has no informative content you are getting very close
to the solution�
Knowing the semantics of the marking �Keep what is marked with c and erase what is marked with r�

the researched equivalence is easy to �nd� What we seek is the following�

� If the mark is r� we can forget about marks and only care about standard �� equivalence�

� In the case when the mark is c� we have to check both standard �� equivalence and also the compatibility
of marks inside the terms�

��



All these remarks lead to the following de�nition of equivalence between operators� We will note 	� the
F� term corresponding to the marked term 	i� 	� is simply obtained by erasing all marks in 	i�

De�nition �� We inductively de�ne �m by �

	i �� 

i

	i �m 
 i

	i �m 
 i 	i �m 
 i 
 i �m �i

	i �m 	i 
 i �m 	i 	i �m �i

	c �m 
 c 	r �m 
 r

��X �i A�	c�c �m ��X �i A�
 c�c ��X �i A�	r�r �m ��X �j A�
 r�r

	c �m 
 c 	r �m 
 r

��X �i A��	c�c �m ��X �i A�
 c�c ��X �i A��	r�r �m ��X �j A�
 r�r

	c �m 
 c �i �m 
i 	r �m 
 r �r �m 
r

��j � 	c�c �m �
j � 
 c�c ��j � 	r�r �m �
k � 
 r�r

	c �m 
 c �i �m 
i

�	c �i�c �m �

c 
i�c

	r �m 
 r �i �m 
i

�	r �j�r �m �

r 
k�r

One easily checks the following properties�

Property � Let 	i� 
 j be marked terms� The following facts are veri�ed �

�� 	i �m 
 i � 	� ��� 

�

�� 	� ��� 

� � 	r �m 
 r

From this equivalence relation� one obtains the typing rules for terms�

x �i 	 appears in �

� � xi
�

� 	i
�

� � ti � �	j � 
 i�i � � uj � 	�j 	j �m 	�j

� � �ti uj�i � 
 i

�� x �i 	 � tj � 
 j i� � sup�mark�occ�x� 	���

� � ��x �i� 	�tj�j � �	i� � 
 j�j

� � ti � ��X �j A�	i�i �O � 
 j � Aj

� � �ti 
 j�j � 	i��Xj �� 
 j ��i

�� X �i A � tj � 	j i� � sup�mark�occ�X� t���

� � �X �i
�

A�tj � ��X �i
�

A��	j�j

These rules are almost the same as ones developed in Fm
� � Only the de�nition of the ���equivalence and

the context formation di	er from a second order language�
Now� we prove the validity of our marking system by de�ning a new extracting function � EXF� �

De�nition �� The function EXF� is inductively de�ned as follows��

� On terms�

� EXF� �x
c� � x

��



� EXF� ��t
j ur�j� � EXF� �t

j�

� EXF� ��t
j uc�j� � �EXF� �t

j� EXF� �u
c��

� EXF� ���x �
r 	�tj�j� � EXF� �t

j�

� EXF� ���x �
c 	�tj�j� � �x � EXF� �	

c��EXF� �t
j�

� EXF� ��t
j 
 r�j� � EXF� �t

j�

� EXF� ��t
j 
 c�j� � �EXF� �t

j� EXF� �

c��

� EXF� ���X �
r 	�tj�j� � EXF� �t

j�

� EXF� ���X �
c 	�tj�j� � �X � EXF� �	

c��EXF� �t
j�

� On operators�

� EXF� �X
c� � X

� EXF� ��	
r � 
 i�i� � EXF� �


i�

� EXF� ��	
c � 
 i�i� � EXF� �	

c�� EXF� �

i�

� EXF� ���X �
r A�	j�j� � EXF� �	

j�

� EXF� ���X �
c A�	j�j� � �X � EXF� �A

c��EXF� �	
j�

� EXF� ���X �
r A�	j�j� � EXF� �	

j�

� EXF� ���X �
c A�	j�j� � �X � EXF� �A

c��EXF� �	
j�

� EXF� ��

j 	r�j� � EXF� �


j�

� EXF� ��

j 	c�j� � �EXF� �


j� EXF� �	
c��

� On orders�

� EXF� �Data
c� � Data

� EXF� ��O
r � P j�j� � EXF� �P

j�

� EXF� ��O
c � P j�j� � EXF� �O

c�� EXF� �P
j�

Theorem � If � � tc � 
 c is derivable in Fm
� then EXF� ��� � EXF� �t

c� � EXF� �

c� is derivable in F��

Proof�
We prove this theorem by a structural induction on orders� operators and terms�
On orders it is clear that extraction gives a well formed term� Indeed if an order is marked with c� then

at least one Data� namely the rightest one� will be conserved by extraction�
For the level of operators� one can re�use what was previously done for Fm

� � For the ground case it
works� since extraction on orders works� Now� we can reason by induction� It is clear that for the cases of
application and abstraction the result will be veri�ed �the proof is similar to what was done in Fm

� �� There
are only two cases left�

�� The operator is of the form �	i � 
 c�c� this means that the rule

� � 	i � Datai � � 
 c � Datac

� � �	i � 
 c�c � Datac

has been applied� By de�nition� ExFm� �	
i � 
 c� � ExFm� �


c� if i � r and ExFm� �	
i� � ExFm� �


c�
if i � c� In both cases� one can use the induction hypothesis to prove that both terms are of type
ExFm� �Data

c� � Data�

�� The operator is of the form ��X �i
�

A�	c�c� Here too� the extracted order will be Data and it is clear�
from the de�nition of extraction that whether i � c or r that the extracted term will be of type Data
in F�

��



Now one has to prove the �nal result� i�e� the extracting function on terms gives well formed terms in
F��
The ground cases� as the cases of abstraction of operators and terms on terms as well as the application

of operators on terms� are veri�ed in the same way than what was done for Fm
�
� It remains the case of

application of terms on terms� The novelty comes from the utilization of equivalence on types�
Let us consider the term s � �tc uj�c� This means that the rule

� � tc � �	j � 
 c�c � � uj � 	�j 	j �m 	�j

� � �tc uj�c � 
 c

has been applied� Two subcases are to be considered �

�� j � r� ExFm� �s� � ExFm� �t
c� � But�ExFm� ��	

r � 
 c�c� � ExFm� �

c�c� This allows to conclude by

induction hypothesis� Indeed this hypothesis states that ExFm� ��� � ExFm� �t
c� � ExFm� ��	

r � 
 c�c��
which can be rewritten ExFm� ��� � ExFm� �t

c� � ExFm� �

c�� hence the result�

�� j � c� We have to show that ExFm� ��� � ExFm� �t
c uc� � ExFm� ��	

c � 
 c�c�� We know by de�nition
of extraction that �

� ExFm� ��t
c uc�c� � �ExFm� �t

c� ExFm� �u
c���

� ExFm� �

c � 	c� � ExFm� �


c�� ExFm� �	
c�

Hence� we have to prove that ExFm� ��� � �ExFm� �t
c� ExFm� �u

c�� � ExFm� �	
c� which is clear if we look

at the induction hypothesis which are the following �

� ExFm� ��� � ExFm� �t
c� � ExFm� �	

c � 
 c�

� ExFm� ��� � ExFm� �u
c� � ExFm� �	

�c�

� 	c �m 	�c

If we can prove that 	c �m 	�c implies that ExFm� �	
c� ��� ExFm� �	

�c� then the case will be proved�
This is easy to show� Indeed we have shown in Property � that the marking is stable under ��reduction�
Thus if 	c �� 	

�c� then all subterms marked with r in 	c will also be marked with an r in 	�c hence the
extraction� which erase terms marked with c� will leave two terms such that ExFm� �	

c���
� ExFm� �	

�c��

�

��	 Marking in the Calculus of Constructions

Now� using what was previously done in F� we propose a marking system for the calculus of constructions�
The di	erence between F� and the calculus of construction comes from the dependent types� So our �rst
aim will be to handle the problems raised by this feature� Until now� we have always performed extraction
within the same system� For example in Fm

� � when extraction was done it was giving a new term typable in
F�� The same remark was also valid for F� � an extracted term of F

m
� was an F� term� For the Calculus

of Construction this is no longer the case� We will extract from the Calculus of Constructions to F�� Thus
one has to erase these kind of dependences�
The language of our system� the Calculus of Constructions with marks� will be "m already de�ned for

Fm
� � Here too� two kinds of judgments will be done� � is a valid environment and � �M � N � which has to
be read � M is well formed of type N under the valid environment ���

� Environment formation�

�� is valid

� �M i � Ki x � " does appear in � � is valid

�� x �i
�

M is valid

��



� Propositional type formation�

� is valid x �i N appears in � N i � "m

� � xi
�

� N i�

� Hypotheses�

� is valid

� � Propi � Typei

� Product �

� Propositional types�

� � P i � Propi �� x �i
�

P � N j � Typej

� � ��x �r P �N j�j � Typej

� � Oi � Propi � � P i� � Oi� �� x �i
��

P � N j � Typej

� � ��x �r P �N j�j � Typej

� � P i � Typei �� x �i
�

P � N j � Typej i�� � sup�mark�occ�x�N ��

� � ��x �i
��

P �N j�j � Typej

� Propositional schemes �

� � P i � Typei �� x �i
�

P � N j � Propj i�� � sup�mark�occ�x�N ��

� � ��xi
�

P �N j�j � Propj

� Abstraction �

� Propositional schemes�

� � N j � Typej �� x �i P � M j � N j i� � sup�mark�occ�x�N ��

� � ��x �i
�

P �M j�j � ��x �i
�

P �N j�j

� � N j � Propj �� x �i P �M j � N j

� � ��x �r P �M j�j � ��x �r P �N j�j

� Proofs�

� � N j � Propj �� x �i P �M j � N j i� � sup�mark�occ�x�N ��

� � ��x �i
�

P �M j�j � ��x �i
�

P �N j�j

� Application�

� Propositional schemes �

� �M j � ��x �i P �N j� � � Ri � Propi P i �m Propi

� � �M j Ri� � �N j�xi�Ri��

� �M j � ��x �i P �N j� � � Ri � Qi � � Qi � Propi P i �m Qi

� � �M j Rr� � �N j�xr�Rr��


�



� Proofs�

� �M j � ��x �i P �N j� � � Ri � Qi � � Qi � Propi P i �m Qi

� � �M R� � �N �x�R��

� Equality�

� �M i � N i � � P i � Ki N i �m P i

� �M i � P i

�m is inductively de�ned as in Fm
� by induction �

De�nition �� we inductively de�ne �m by �

M i �� N
i

M i �m N i

M i �m N i M i �m N i N i �m P i

M i �m M i N i �m M i M i �m P i

M c �m N c M r �m N r

��X �i A�M c�c �m ��X �i A�N c�c ��X �i A�M r�r �m ��X �j A�N r�r

M c �m N c M r �m N r

��X �i A��M c�c �m ��X �i A�N c�c ��X �i A��M r�r �m ��X �j A�N r�r

M c �m N c P i �m Qi

�M c P i�c �m �N
c Qi�c

M r �m N r P i �m Qi

�M r P j�c �m �N
r Qk�r

One can notice that the case of dependent types has been dealt by the typing rules� If there is a
dependence from a lower level to a higher level� than the term realizing this dependence is marked with an
r� So it will be erased by extraction� hence we will obtain a term typable in F� by extraction� We de�ne the
extraction function as follows �

De�nition �� The function EXCCm is inductively de�ned by �

� EXCCm �Propc� � Prop

� EXCCm ���x �r M �N c�c� � EXCCm �N i�

� EXCCm ���x �c M �N c�c� � �x �M �EXCCm �N i�

� EXCCm ���x �r M �N c�c� � EXCCm�N i�

� EXCCm ���x �
c M �N c�c� � �x �M �EXCCm�N

i�

� EXCCm ��M c N r�c� � EXCCm �M c�

� EXCCm ��M
c N c�c� � �EXCCm�M

c� EXCCm �N
c��

Theorem � 
Validity of EXCCm� If � �M c � N c in CCm then

EXCCm��� � EXCCm �M
c� � EXCCm�N

c�

is valid both in the Calculus of Constructions and F��


�



Proof�
The proof is essentially the same as done in section 
�
�
� For the application� abstraction� product�

introduction of variables it is exactly similar�
Only the case of type equality is di	erent� But� since it has been shown that if M c �m N c implies that

EXCCm �M c� ��� EXCCm�N c�� which is shown in the proof of the validity of EXFm�
� then the �rst part of

the demonstration is ended�
Now� we have still to show that the extracted term is well typed in F�� Since we have erased the

dependences of inferior types to superior types� we can apply the result shown in ��� to prove that the term
is well typed in F��

�

Theorem �� One can simulate Paulin�s extraction in the calculus of constructions in CCm�

Proof�
The simulation will be conducted in the same manner as for the calculus of constructions restricted to

the second order� If a term is typed by Prop in Paulin�s system� we will type it by Propr in CCm� and if it
is typed by Set we will type it by Propc in CCm�
We have already shown that� under these assumptions� the terms marked with an r in our system and

terms having an empty content in Paulin�s system correspond� Moreover� we know that the dependences are
handled correctly� Hence� the result announced�

�

� Conclusion and future works

We have proposed a new frame to report on problems linked to extraction � the marking�This new approach
allows us to unify various approaches known in this domain� By modifying some aspects of a marking system�
i�e� the extraction function and the initial conditions� one can simulate all of the extraction techniques� So�
it seems that marking is a sound point of view� Moreover� marking systems are !exible� The user can� if he
wants to� mark certain parts of the proof tree� The system will then just check that the marking rules can
be applied to �nd a term with such a marking� By using this !exibility and soundness approach we have
been able to extend immediately Berardi and Boerio�s approach regarding sub�typing to second order�
To higher orders� one could easily �nd a semantics of extraction� The observational equality was a good

device to conduct extraction� An interesting work is suggested by the research of such a device for higher
orders� Indeed� if we have shown that extraction is valid for higher orders it still remains to �nd how to
build a marking satisfying some condition on the extracted term� In ����� Paulin has developed a notion
of realizability to encounter this problem� It is maybe a good way to go further in the understanding of
marking� but one can also try to develop a semantics based on c�p�o� or another interpretation domain�
One can also remark that we have developed a speci�c approach for the Calculus of Construction� We

have chosen to perform extraction with F� as target language� This has led to introduce the rules which
explicitly destroy the dependences of low level to high level� One could now study what would happen if we
choosed to extract within the Calculus of Constructions � how the mark are going to react & Are they going
to behave like in our proposed system and �destroy by themselves� dependences&
In the future� we will work on the Calculus of Construction with marks to provide a theoretical study

which is still to be done� Also we will try to develop a logical point of view for various software techniques�
as we have done here for marking�
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