Fr Ed

Eric Prost

Marking techniques for extraction

Keywords: Program Veri cation, Type Theory, Logic, Program proof, Extraction, Marking V eri cation de Programmes, Th eorie des types, Logique, Preuves de programmes, Extraction, Marquage Logic, Programs proof, Extraction, marking. Contents c : A 2, x : A 2

Constructive logic can be used to consider program speci cations as logical formulas. The advantage of this approach is to generate programs which are certi ed with respect to some given speci cations. The programs created in such a w ay are not e cient because they may c o n tain large parts with no computational meaning. The elimination of these parts is an important issue. Many attempts to solve this problem have been already done. We call this extracting procedure. In this work we present a n e w w ay to understand the extraction problem. This is the marking technique. This new point of view enables us, thanks to a high abstraction level, to unify what was previously done on the subject. It enables also to extend to higher{order languages some pruning techniques developed by Berardi and Boerio, which w ere only used in rst and second order language.

Introduction 1 Miscellaneous approaches of extraction 2

2.1 The Turin school :2 2.1.1 The Pruning :2 2.1.2 The Berardi approach for the rst order :2 2.1. [START_REF] Boerio | Extending Pruning Techniques to Polymorphic Second Order -Calculus[END_REF] Boerio's extension for the second order :5 2.1.4 Using subtyping for pruning 3] :8 2.1.5 Some comments on Turin school : 10 2.2 C. Paulin's approach 9] : 10 2.2.1 The Calculus of Constructions : 10 2.2.2 Extraction in the Calculus of Constructions : 12 2.2.3 Discussion : 12

A new approach of extraction by marking 13

3.1 Motivations and brief description : 13 3.2 Application to a second order system F m 2 : 13 3.2.1 Order introduced on terms by marking : 15 3.2.2 Flexibility o f F m 2 : 16 3.3 Marking in a higher order language : F m ! : 23 3.3.1 Presentation of F ! system : 23 3.3.2 Informal semantics of marking in this system : 25 3.3.3 The F m ! language : 25 3.4 Marking in the Calculus of Constructions : 29

Conclusion and future works 1 Introduction

Methods of development of programs from the proof of their speci cations are based on the Curry{Howard isomorphism. For several years now systems using this approach h a ve b e e n d e v eloped: Nuprl 4], Coq 5] and PX are the most famous examples.

A proof showing that, for every object x of type A, there exists y of type B that satis es a relation R(x y) de nes implicitly a computable function from A to B. A constructive demonstration of a proposition of this kind enables actually to build the function. In other words, we can construct a program from a proof of its speci cations.

This approach of programming is interesting, for it leads to error{free programs from its nature. Nevertheless nothing is free of charge and the cost of the certainty is time. Programs generated in this way a r e ine cient. The codes recovered contain too much useless terms from the algorithmic point of view. Indeed a program just contains what is worthy to realize an algorithm. On the contrary a proof formalizes a great deal of information which is not needed to compute the nal result. For example the description of the task to carry out, veri cations of the method, the control of dependency between objects are contained in the proof but are not needed for the computation of the result.

It seems a good idea to delete those ine cient parts from the code to get a \good" program. We will use the word of extraction to characterize this work. Several extraction techniques have been studied. One can approximately divide those ones into two w ays.

The rst point of view is to realize the searched optimization within the syntax of the terms. C. Paulin in 9] develops this approach for a higher order system: the Calculus of Construction. The basic idea is to duplicate the system. One part is used for the logical annotations without computational meaning and the second is used to express the parts of the program useful for the computation . This technique works while the program developer is making his proof. One can easily nd out what parts are ine cient. these are the ones which a r e t yped in a certain prede ned way. The last step is to erase them in order to get an e cient program.

The second approach consists in looking at the proof tree, and, by an appropriate study, t o l o c a t e subtrees without computational meaning. This point of view has been initiated by G o a d i n 7] , a n d e n r i c hed by T akayama in 11]. The last developments of this approach h a ve b e e n d o n e b y Berardi and Boerio in 1] and 2]. The basic idea is that the proof contains a lot of information regarding the corresponding program. These techniques propose to use these informations in order to simplify the program obtained.When the proof is done, we seek what parts of the tree are useless and prune them (we talk about Pruning techniques). These methods have only been studied in languages of order less than or equal to two. In 3], Berardi and Boerio extend the technique to take in account more simpli cations by a m e c hanism of subtyping. By weakening some typing rules relatively to the application, they manage to avoid the formation of ill typed terms, while the simpli cation is performed.

We propose to develop a new approach of extraction by the means of marks. The idea is simple. We a r e going to annotate the terms to express their computational meaning. So we are going to introduce in the typing rules some constraints regarding the marking of terms. The aim is to formalize within the logic what was already done technically by Berardi{Boerio's pruning.

The rst goal is to unify, thanks to this new formalization, the di erent extracting methods already known. Indeed, we will prove that marking technique is able to simulate all of them. This new level of abstraction permits to extend to higher order language some result already obtained in rst and second order by Berardi and Boerio.

The paper is organized as follows. We rst give a brief presentation of the most widely known extracting techniques : the ones coming from the pruning, rst developed in the rst order by Berardi and then extended by Boerio to the second order. We will see next the techniques proposed by C . P aulin for the Calculus of Constructions. Finally, w e will give a n e w w ay t o a p p r o a c h both techniques by our marking techniques, and we will extend the previous results on pruning to higher order thanks to marking techniques. The pruning is de ned as a relation between two trees. One says that a tree A is a pruning of another tree B, i f w e can obtain A by erasing some subtrees of B.

Of course one can see any terms of a given formal language as a labeled tree. One naturally derives a notion of pruning with respect to terms of a formal language. If this term is produced from a functional system (typed or not), the pruning can be seen as an optimization. Indeed, to prune a term corresponds to delete some code judged useless. As the pruning suppresses some subterms one can expect that a term a, which is a pruned version of a term b, can be evaluated in a easier way.

The Turin school has studied the behavior of terms in some typed systems regarding the pruning. First, Berardi gives results for a typed system to the rst order, results that Boerio then extends to the second order. In both cases, the idea is to suppress the maximum of subterms while staying invariant relatively to some observational equivalence. Schematically their paradigm is \ since I do not modify the input-output function of a term I can suppress a subterm".

The Berardi approach for the rst order

In 1] Berardi studies the e ects of pruning on terms of a variant o f t h e G odel system T . He shows that if two terms have the same type and if one is a pruned version of the other, then they have the same input{output function. Moreover, for all terms, the existence of a minimal term (with respect to the notion of pruning) is proved.

The modi ed G odel system T Informally, this system is a simply typed {calculus having an atomic type N for integers, and the schema of primitive recursion on N. It contains the arrow t ypes, product types, projections, applications, and { abstractions (we will use the notation of the Calculus of Construction for {abstractions. We will write x : N]x instead of x N :x). There are also algebraic constants : 0 and S of respective t ypes N and N ! N and the constant of higher order for the primitive recursion rec A of type N A (N A ! A) ! A, f o r every type A.

As the goal is to prune terms, we i n troduce a type U and a constant denoting the hole which s t a ys after we h a ve r e m o ved the useless subterm. is be the only inhabitant o f t ype U.

In a more formal way, this system is de ned by :

1. If is U or N (so an atomic type) then the types are de ned by :

A ::= j A A j A ! A 2.
The set of constants is represented by an initial context :

T def = : U 0 : N S: N ! N rec A : N A (N A ! A) ! A 3.
If A is a type, x a v ariable of type A, and c a constant o f T . the pseudo-terms are de ned by : t ::= c j x j x : A]t j (t t) j< t t > j (i A1 A2 t) 4. Let t f a 1 a 2 be pseudo-terms, A B A 1 A 2 types

The pruning Lets A B be two t ypes, s a constant o r a v ariable, x a v ariable, t u two terms. We de ne by induction. e e 0 , where e and e 0 are two w ell formed expressions (i.e. that we c a n t ype) of the system, is read \e is a pruning of e 0 . () t for any term t: (U) U A for any type A: (atom) for any atom : (!) A ! B A 0 ! B 0 if A A 0 and B B 0 :

() A B A 0 B 0 if A A 0 and B B 0 : (symb) s A s A 0 if A A 0 : (])
x : A]t x 0 : A 0]t 0 if A A 0 and if t x := z] t 0 x 0 := z] with z a fresh variable: (app) (t u) (t 0 u 0) if t t 0 and u u 0 : (<>) < t u > < t 0 u 0 > if t t 0 and u u 0 : (i) (i t) (i t 0) if t t 0 : We extend naturally this notion to contexts. Let; and be two c o n texts, we s a y that ; i 8x : (x : A 2 ;)) (9B A)(x : B 2).

De nition o f o b s e r v ational equivalence

We de ne the observational equality in the following manner. If : A i s a v a r i a b l e o f t ype A, then a context with a hole : A is a closed term C : A], where : A occurs exactly once. C t] is the expression C : A] where : A has been replaced by t. N o w i f t and u are two t e r m s h a ving the same type A in some common context we de ne :

(t = obs u) () 8 C : A] : N binding every all variables in t u : C t] = R C u]
In fact one has to consider C : A] as an observation, or an experience on the behavior of t and u. I f n o experience allows to nd any di erence, then t and u are said observationally equivalent.

Interactions between pruning and observational equivalence Theorem 1 [START_REF] Berardi | Pruning Simply -terms[END_REF] Let t and u be two terms of same type A with a common context. Then t u) t = obs u.

The proof proceeds in the following way. One begins to check t h e v alidity of this theorem for a normal (i.e. there are no more possible derivation from this term) and closed term. It is a crucial step because the system T has the following property : Property 1 The system T is Church{Rosser and strongly normalizing.

So it is possible to associate, by some reduction path, to each term a term which is closed and normal. It is easy to see, thanks to the simplicity of the system, that the theorem is valid for a closed and normal term. More exactly it has been showed that :

Lemma 1 If t u and if u is closed and normal and has an atomic type, then either t = or t = u.

After Berardi veri es some lemmas about commutativity b e t ween and substitution and reductions. More precisely, Berardi demonstrates : Lemma 2 If t t 0 and t 0 ! n u 0 then one can nd u u 0 such that t ! n u Now the demonstration of the theorem is easy.

Proof:

Let's take t u closed of type A = N such that t u. I f e is the normal form of u, then there is a n such that u ! n e, b y the preceding lemma one can derive the existence of d such that t ! n d with d closed and normal and d e. F rom the rst lemma we can deduce that d = e (otherwise d = which is a trivial case) and so we h a ve t = R u. It concludes the proof in this case because it trivially implies that t = obs u. Now suppose that t u are of some type A such t h a t t u. Let C : A] : N be a suitable context (closing the terms etc.). As is compatible with term formation it is clear that C t] C u]. Then one just have t o apply the preceding reasoning and get C t] = obs C u]. Hence the nal result is reached.

Properties of

Berardi has also showed some properties on the structure generated by . The rst is quite straightforward : Property 2 is an order relation on well formed terms .

He then de nes two important structures :

De nition 1 For any term t such that, ; `t : T :

1. LE(t) = ft 0 jt 0 tg 2. CLE(t) = ft 0 jt 0 t ; 0 `t0 : T and ; 0 ;g He shows the following proposition :

Property 3 Let t be a term :

1. LE(t) is a nite complete lattice with respect to .

CLE(t) is a sublattice o f LE(t).

One can deduce from this property and Theorem 1 that for each term u there exists an optimal version (with respect to) of this term, namely the greatest lower bound of CLE(u).

To see what kind of optimizations are allowed by pruning we are going to develop an example.

Example 1 (C. Paulin) Let us consider a program which takes an integer n in input, having two parameters x y of integer type, and two auxiliary functions f g of respective types N ! N and N N ! N and which returns an integer.

Let a b be the initial values of x y. The program replaces x by (f x) n times and y by (g x y), the output being x.

To encode this program in the system T we proceed that way : we represent the pair < x y > by a single variable w of type N N, then we de ne : u = n : N](1 (rec n < a b >h)) where h = m : N] w : N N] < (f (1 w)) (g (1 w) (2 w)) > Then an optimized version t u which does not contain the function g, having the same type (N ! N) is : t = n : N](1 (rec n < a > h 0)) where h 0 is :

h 0 = m : N] w : N U] < (f (1 w)) >
If we erase every occurrences of which is the term which denotes the empty we nd the simpler expression : t = n : N](rec n a (m : N] w : N](f w)))

Discussion

Berardi has proposed a dynamic,completely automatic, technique, to optimize terms by deleting redundant parts of it. To realize it, he only uses the information carried by t h e t ype of the term. Everything which does not contribute to the type of the term is eliminated, that is to say replaced by .

What is done, from a logical point of view, is nothing but marking ,inside a proof tree, that we h a ve been able to prove something, but that the proof of this thing is useless. We then transform the tree in an another one into an another system where all useless terms have been deleted.

As this system is applied to the rst order, Berardi can mix the two steps : marking the tree and then transformating it regarding this marking without trouble. At e v ery moment o n l y w ell formed terms are manipulated.

Under this shape, this method is hardly extensible. By studying the F 2 system, Boerio had to switch t h e way to see things.

Boerio's extension for the second order

The extension of the preceding results in 2] can be situated in the straight line of Berardi's work. It is based on deleting subtrees judged useless regarding some criterions (here observational equality). But if the starting point of the problem is the same, it is not the case for the approach o f h o w t o s o l v e it. This approach represents a real contribution by i n troducing the notion of marking.

The Pruning in F 2

Boerio considers the F 2 system. If the G odel's system T allows to describe the arithmetic of the rst order, F 2 is a propositional calculus of the second order. More precisely, F 2 is a stable extension of T which m e a n s that every true statement o f t is also a true statement i n F 2 . Moreover these judgments have been added the following elements :

1. Product types. If X is a variable of type and T a t ype, then (X)T is a type (one can note that instead of 8X:T we will write (X)T as in the Calculus of Constructions). The primitive t ypes are the same as those in T : i n tegers denoted by N and U the type denoting the hole.

2. Abstraction on types variables. If X is a type variable and t a t e r m t h a n X]t is also a term. 3. The applications for types. If t is a term than (t T) is also a term.

The new typing rules in this system are the following ones : c : A 2 ;

x : A 2 ; ; `c : A ; `x : A ; x : A `t : B ; `f : A ! B ; `a : A ; ` x : A]t : A ! B ; `(f a) : B ; `a1 : A 1 ; `a2 : A 2 ; `t : A 1 A 2 ; `< a 1 a 2 >: A 1 A 2 ; `(i A1 A2 t) : A i ; `t : T ; `t : (X):T ; ` X]t : (X)T ; `(t A) : T X := A] Where ; is an environment c o n taining all the constants de ned in the system T : The di erences between the two systems can be summed up to the two last rules added : abstraction of types on terms and application of types to terms.

We also add a -reduction relatively to terms which are applied to types :

(X]t T) ! t X := T] Boerio shows in a way close to Berardi that this system also veri es the properties of the T system for the pruning. If an order relation is introduced with respect to the pruning, as in the T system, then there is an analogous of Berardi's theorem : if t u and both t u have the same type then t = obs 0 u, where = obs 0 is an observational equality de ned as above i n t h e T system.

One can also de ne in F 2 the lattices LE(t) C L E (t) a s a b o ve. Now the goal is to nd explicitly the greatest lower bound of CLE(t) for a given u to get the optimal version of u.

The pruning algorithm

In a simply typed system, it is not di cult to delete subterms while keeping a well formed term, as the terms only depend on terms. With the second order that is another story : terms can depend on types (think to {abstraction on types). In particular, a simple algorithm like a data{ ow analysis recursive o n e , w as enough in a system of rst order. Here it is no longer the case.

Instead of giving in extenso Boerio's algorithm, we will give general ideas to understand how i t w orks. We provide an example at the end of this section. More precision can be found in Boerio's paper 2].

The ground idea is to work on the proof tree of the term and to transform it into a new optimized one. Before going any further we i n troduce some important notions for the understanding of the algorithm. In Boerio's interpretation a mark is a label given to an atomic type, a constant o r a v ariable. One distinguishes two marks r and c. The rst means that the labeled item is useless and the second that it may be useful for the computation. After a correct marking of the tree, it will be possible to replace parts marked with r by for terms and U for types.

The simpli ed t r ee is a syntactical tree in which e v ery node marked with r is replaced by or U. Simplify(M t) will denote such a tree for a marking M given on a term t.

To be more precise, we g i v e the following de nitions :

De nition 2 If t is a term such that ; `t : T then :

app :: c b :: r app :: r ! c APP ::

(r ! c) ! (r ! c) r ! c y :: r ! c X :: (X)X c ! X c a :: c x :: X c ! X c x :: X c f< a : c > < b c >g a a a a a a a a a a ! ! ! ! ! ! ! ! ! Q Q Q Q Q Q Q Q Q Q Q Q Figure 1 : F D V(t)
with an example of marking 1. The fully decorated t r ee o f t, F D (t), is the syntax tree o f t in which each node that identi es a subterm is decorated by the type of the subterm itself.

2. The fully decorated version of ; `t : T , F D V(; `t : T) is the ordered p air < ; F D (t) >, formed b y the context ; and F D (t).

3. Let Lab be the set formed by two labels r and c. A marking M of F D V(; `t : T), is a map from the occurrences of atoms of the types which decorates the nodes and those of atoms in the types of the variable of the context to Lab. When we talk of the marking M of t we talk about the restriction of the map to F D (t).

Example 2 (Boerio) Let t be the following term :

t (((X : P r o p] x : X]x (!))(y :]a))b)

.

With an atom, a and b two variables of type .

In the rest of this section we will call the marking, represented on Figure 1 b y M 1 .

De nition 3 We call the simpli ed tree, the syntactic tree in which every node labeled with r is replaced b y or U : w e w i l l n o t e Simplify(M t) such a tree for a marking M given, on a term t. The algorithm builds an optimum marking with regards to some criterions. Not every marking makes sense regarding the pruning. Let us rst give some new de nitions:

De nition 4 1. A marking M is canonical if for each node V of F D T (t) no atom in the types associated to descendent nodes of V is marked w i t h a c, when the type associated t o V has all of its atom labeled with r.

2. A marking M of F D V(; `t : T) is consistent i the simpli ed t r ee generated is the syntactic tree o f a well formed term in some inferior (with respect to pruning relation) context to ;. 3. A marking M is saturated if it is both consistent and canonical.

4. Let M and M 0 be two markings of F D V(; `t : T). One will state that M M 0 if for all c assigned in M it is also assigned i n M 0 . In our example M 1 is saturated. If we apply the simpli cation map we g e t :

Simplify(M 1 t) (((X : P r o p] x : X]x(U !))(y : U]a)))

It is possible to show that each of the orders corresponds to the other. In other words, M M 0 is equivalent t o Simplify(M t) Simplify(M 0 t).

As we are not looking for the minimal marking, which i s o b viously the one that assigns r to every node and, hence, produces as the simpli ed version,, but a marking which respects the observational equality, one has to preserve the nal type of the term. This observation leads to the de nition of an initial marking which expresses what we k n o w a priori. The de nition of the initial marking M 0 is the following one : given a F D V(; `t : T), M 0 is the marking which associates c to every atom of the type associated to the root and the atoms in the type of the variables inside the context, and which sets all the other atoms to r.

The initial marking of a term is canonical but not consistent . The only remaining task to nd the right marking is to transform this initial marking to a consistent one M 0 , superior to it. In order to do that, Boerio develops an algorithm, named saturation algorithm, which is based on the installation of links between the atoms of the fully decorated version of the term.

The idea of the saturation procedure is to build edges between the di erent atoms of the tree to enable the c information to ow along those paths from the root to the totality of the tree with respect to some conditions. One can sum up those conditions by the formula \If I have some contribution to the nal type I am marked with c, if not, I will keep my r mark \.

Discussion

Boerio's work is important for our approach because it has showed the existence of a correspondence between the pruning and the marking. But Boerio only uses this correspondence for technical reasons. It is just mentioned in order to realize an algorithm.

Actually the notion of link introduced is very interesting. Indeed it shows how the marking can be gradually built. But here too, one can not nd explanations of this notion : he only uses it in a casual way to build an optimal marking. By a deeper abstraction of those two notions one could understand the semantique of the pruning. It would permit to see why links are de ned this way and why other options do not t the problem.

Using subtyping for pruning 3]

In their precedent w orks, Berardi and Boerio have d e v eloped pruning techniques. One of the weaknesses of these ones leads to the fact that some optimizations are not done, because they could lead to ill typed function applications.

To o vercome those di culties, they have d e v eloped a theory in which t h e y i n troduce the notion of subtype. Now a function application will be well typed if the type of the argument is not only equal but also included in the input type of the corresponding function. This way more optimizations will be done : the extension is conservative.

Brief presentation

This theory have been developed on a rst order language which is an extension of the T language used by Berardi. We will note T the extension of T obtained by adding a special atomic Type .

De nition 5 1. The Types of T are de ned inductively from the atomic types N and using the ! and operator.

2. Let A A 1 A 2 B B 1 B 2 and C be types. The relation of inclusion on types of T is de ned b y t h e following rules : The preterms are the same ones as in the T system. The set of constants is extended by a set of constants d O for each { t ype O. They denote a canonical element for a given {type.

N N N B 1 A 1 B 1 A 1 B 1 A 1 B 1 A 1 A 1 ! A 2 B 1 ! B 2 A 1 A 2 B 1 B 2
The new typing rules are the following : c : A 2 ; x : A 2 ; ; `c : A ; `x : A ; x : A `t : B ; `f : A ! B ; `a : A 0 A 0 A ; ` x : A]:t : A ! B ; `(f a) : B ; `a1 : A 1 ; `a2 : A 2 ; `t : A 1 A 2 ; `< a 1 a 2 >: A 1 A 2 ; `(i A1 A2 t) : A i The de nitions of observational equality and context with hole are the same as in the T system. Moreover, this system also veri es the same properties as the T system, it is Church{Rosser and strongly normalizing.

Semantics of the new system

Let us discuss about the role of and of the inclusion A 0 A. One can consider that N is the set of integers with standard equality, whereas is the type of integers which are equivalent t o e a c h other. It represents the useless integers. Indeed if a term is of type , one knows that it is a number but nothing more. The type carries just this information whereas N brings more informations allowing to positively identify the number. From the last point o f v i e w , t h e m e m bership of is weaker than the one of N, h e n c e the preceding inclusion.

One can now see clearly what means to simplify a term in this system. A set of subtypes and subterms in a given term can be useless for the nal computation and then replaced with (useless type) and the subterm with d O (useless subterm), while keeping the well formation of the term.

Results obtained

The authors develop an order relation on the words of T in a similar way as the one de ned in T . T h e o n l y di erence comes from the following rule :

O U d O u
for u of any t ype U.

As in the precedent systems, they show that if a term is inferior to another with the same type, is observationally equivalent to the previous one. Moreover, the structure generated by this relation is a complete lattice, and the subsets formed by terms of a common type are sublattices.

So we h a ve the same results for this system as for the two previous ones regarding the pruning.

Example 3 (Boerio-Berardi) Now we are going to give an example which shows that this new method i s more p owerful than the previous ones.

Let suppose the following extension of the constant set : it is added t h e c onstant set it A = fN ! A ! (A ! A) ! AjAanytypeg to the original constant set . These constants implement iterations on natural numbers. We also introduce new reduction rules which are (it A 0 a f) ! it a and (it a (succ n) a f) ! it (f (it A n a f)) where a is of type A and f of type A ! A.

Consider the expression :

t n : N] v : N N](1 it N N n v F) with F w : N N] < (f (1 w)) (g (2 w)) >
where f and g are f r ee variables of type N ! N. t is of Type N ! N N ! N. With the previous versions of the pruning one can not simplify t. N o w using the subtyping we get the simpli ed t 0 term :

t 0 n : N] v : N](1 (it N n v F 0)) with F 0 w : N] < (f (1 w)) (g d) >

Some comments on Turin school

The pruning presents without any doubt many advantages. The rst is that it is an optimal technique regarding this kind of optimization where it is only seeked to erase useless parts of a term. The second one is its automatic aspect : the user has nothing to do but to watch the machine solving the problem.

Nevertheless, the fact that those techniques are only valid for rst and second order is not satisfactory. One would like to use these techniques in a more realistic frame. It would be ne if such optimizations were possible in systems like Coq or Nuprl.

Another bad point is clearly lightened by t h e e v olutions of pruning. One has certainly notice that to extend earlier results it has been each time necessary to build new theories. The lack of a uniform approach suggests to search what are the common points of the di erent pruning techniques.

C. Paulin's approach 9]

C. Paulin has developed another approach to the extraction in a the Calculus of Constructions.

The Calculus of Constructions

For a more complete presentation refer to 9].

Actually, w e will consider a slightly di erent v ersion compared to the original model. It is called the Calculus of Constructions with Realizations.

Syntax of the language

We will denote by the smallest language containing the following constructions: Three constants: P r o p , Set, T y p e . An enumerable set of variables V .

Applications: (M N) with M N 2 Products: ((x : M)N) w i t h x 2 V and M N 2 Abstractions: (x : M]N) with x 2 V and M N 2 An environment is a list of bindings, x 1 : A 1 : : : x n : A n where x i is a variable and A i 2 . We n o t e t h e empty list by].

One can emit two sort of statements in this language:

1. ; is valid where ; an environment.

2. ; `M 2 N which is read: M is well formed of type N in the environment ; . I f M and N are terms of .

Inference rules

We will denote by K one of the three constants Prop Set Type.

] is valid ; `M 2 K x 2 does appear in ; ; is valid ; x : M is valid

; is valid x : N appears in ; N 2 ; `x 2 N ; is valid ; is valid ; `Prop2 T y p e ; `Set2 T y p e ; x : P `M 2 K ; `((x : P)M) 2 K ; x : P `M 2 N N 6 = T y p e ; `(x : P]M) 2 ((x : P)N) ; `M 2 ((x : P)N) ; `R 2

Q P = Q ; `(M R) 2 (N x=R]) ; `M 2 N ; `P 2 KN = P ; `M 2 P
In spite of a uniform presentation which could let think that there are no distinction between terms, on can derive some classes of terms. They are identi ed with the distance between them and the constant T y p e . More precisely, w e h a ve : Property 4 Let M be a well formed term of of type N, there a r e t h r ee di erent cases :

1. N = T y p e 2. N is well formed o f t y p e T y p e .

3. N is well formed o f t y p e P r o p , o r Set. This property leads to the de nition of levels in the Calculus of Constructions.

De nition 6

If N = T y p ethen M is of level 2, we talk about propositional types. If N is well formed of type T y p e , M is of level 1, it is a propositional scheme, or, more simply a proposition, if N = P r o p . If N is well formed o f t y p e P r o por Set then M is of level 0 and we say that M is a proof. This hierarchical structure is important t o p r o ve properties and give w ell formed inductive de nitions.

Extraction in the Calculus of Constructions

To determine what parts of proof's terms are useless on a computational point of view, C. Paulin duplicates the original Calculus of Constructions thanks to the two constants P r o pand Set. The constant P r o pwill be used for the building of logical propositions (which will not be used in the nal program), whereas the Set constant will denote terms that have an algorithmical content.The notion of \having an interesting content") is introduced in the following manner.

A term will be said of empty c o n tent i f :

This term is P r o p .

If M is a term with an empty c o n tent t h e n (x : N)M is also of empty c o n tent.

If M is a term with an empty c o n tent t h e n x : N]M is also of empty content.

If M is a term with an empty c o n tent t h e n (M N) is also of empty c o n tent.

A v ariable that has a type of empty c o n tent is also of empty c o n tent. If a term is not of empty content, it will be called positive.

The extraction technique consist in erasing all parts of the term that have a n e m p t y c o n tent.

Discussion

The main drawback o f t h i s t e c hnique is its lack of exibility. Indeed, when a term is declared positive i t c a n ' t in no way c hange its status and becomes a term of empty c o n tent. This is regrettable because the notion of `algorithmic c o n tent of a term appears more as a contextual notion than syntactic. Consider map g which takes an integer and returns this integer multiplied by 2. In absolute terms, this map has an algorithmic content. Now, one can easily design a program that takes a map from integers to integers as argument a n d which gives back the rst projection of the pair formed by n iterations of the g map, and m of the same map. The term representing this program will have t wo subterms coding the g map. Nevertheless, from, the observational point of view, only the code of the map which computes the rst projection will have a n informative content. That way w e h a ve the case of a function which in absolute has an algorithmic content but which can in some particular case have no longer interest because of the context which surrounds it. Consider again the rst example. With some slight modi cations it appears that the Paulin's extraction technique one can not obtain the results of pruning's extraction. Just replace the occurrence of the function f by the function g, the second occurrence of g is erased by the pruning whereas the rst is kept. As it is impossible to type g with both P r o pand Set, P aulin's extraction can't erased it. Another remark about this method comes from the fact that it is the user which determines the extraction procedure. It is him who chooses his variables being of type Setor P r o p . N o w i t w ould be ne if the system was able to extract alone subterms without informative content.

The advantage of this approach is that it is valid for languages of higher order with dependent t ypes as the Calculus of Constructions.

3 A new approach of extraction by marking

Motivations and brief description

As the former approaches have been shown to be not satisfactory, w e h a ve to nd another approach to extend the results obtained. The idea of marking comes naturally : we will indicate by a new attribute whether the term is useful for the computation or not. This idea was already present in Boerio's algorithm (see 2]).

As one can already deduce from earlier studies, the marking should verify some requirements. It has to be orthogonal to the typing mechanism, as Paulin's method reveals that typing and informative content a r e two di erent things. It has also to allow to rely on the contextual feature of the informativity o f a t e r m . Indeed, we h a ve seen that the typing is too static to express the extraction's optimization features. This last remark suggests the creation of weakening rules, which transform a term with positive c o n tent i n to a new one with negative content.

Moreover, one has to has clarify the part of the constraints introduced to mark the term by expressing them inside the typing rules.

Application to a second order system F m 2

In the rest of the paper, we will denote by m the smallest language formed by the following rules.

We de ne the sets : Label = fr c g const = fProp Typeg Let V be a set of variables. In the rest of the paper, the indexes i j k l : : :stand indistinctly for r or c and we write N i for (N i). Moreover, we de ne the order relation r c on the set Label. The language m contains : Const = const Label V = V Label Applications:

(M i N j) k with M i N j 2 m
Abstractions:

(x i : M j]N k) l with x i 2 V and M j N k 2 m Products:

((x i : M j)N k) l with x i 2 V and M j N k 2 m

We will write x : i for x i : A i . An environment is a nite list of bindings x 1 : i1 A 1 x 2 : i2 A 2 : : : x n : in A n , where x j is a variable.

A j 2 m and i j is an element o f Label.

We next de ne the well formation rules of term in m . These rules allow us to de ne a second order language, so polymorphic, that is a language in which one can abstract over types and . We will call this language F m 2 .

Judgments are of two di erent kinds. If ; is an environment, we h a ve: ; is valid and ; `M 2 N , where ; i s a n e n vironment, M and N are two terms of m and this is to be read \ the term M is well formed of type N in the environment ;". Inference Rules :

We will take the convention that for every marking variable :i j k : : : we will have the order relation: i i 0 i 00 i 000 : : :

Moreover, to have a more readable paper we will use the following syntactic sugars.

8 X i shall be read as (X : i P r o p).

X i shall be read as X : i P r o p]. mark(occ(x A)) will design the set of mark of the occurrences of the variable x in A. sup(mark(occ(x A))) will be the \usual" operator, except when the set mark(occ(x A)) is empty. I n this case the value is not de ned. Of course r is the good choice but, for greater generality, w e will let the choice to the user(see theorem 5). Here are the inference rules of this second order language: Environments:

(1)] is valid

(2) ; `Bi 2 P r o p i x doesn 0 t appear in ;

; x : i 0 B i s v a l i d

(3) ; is valid X does not appear in ; ; X: i Prop is valid Hypotheses:

(4) ; is valid x : i B appears in ;

; `xi 0 2 B i 0 (5) ; is valid X : i P rop appears in ; ; `Xi 0 2 P r o p i 0 Type formation: (6) ; `Ai 2 P r o p i ; `Bj 2 P r o p j ; `(A i ! B j) j 2 P r o p j (7) ; X: i P r o p`A j 2 P r o p j i 0 = sup(mark(occ(X A)))

; `(8X i 0 : A j) j 2 P r o p j Abstractions:

(8) ; x : i A `Mj 2 N j ; `Nj 2 P r o p j i 0 = sup(mark(occ(x M))) ; `(x : i 0 A]M j) j 2 (A i 0 ! N j) j (9) ; X: i P r o p`t j 2 T j ; `Tj 2 P r o p j i 0 = sup(mark(occ(X t)))

; `(X i 0 t j) j 2 (8X i 0 : T j) j

Applications.

(10) ; `tj 1 2 (A i ! B j) j ; `ti 2 2 A i ; `(t j 1 t i 2) j 2 B j (11) ; `tj 2 (8X i : B j) j ; `Ti 2 P r o p i ; `(t j T i) j 2 (B j X i := T i]) j

One can already makes some remarks.

Marking and typing are not directly linked. For a given term, one can give several di erent markings. Meanwhile the marking respects some rules described in typing rules.

There are two di erent kinds of marks. The ones used to label variables only depend on the context, whereas the ones used to label a term are inherited from the subterms it contains. One can only weaken a mark at the introduction of variable level (rules (4) and (5)). This is clearly needed if we consider the previous remark. The links built in Boerio's algorithm have been translated within the typing rules.

To exploit this system we h a ve to de ne a new {reduction :

De nition 7 ({reduction in a marked language) there a r e t w o c ases :

1. If the argument is marked w i t h r, w e h a v e a r edex which looks like ((x : r A]M i) i N r) i , and the inference rules on well formation for terms impose that every occurrence o f x in M is marked r. We de ne :

((x : r A]M i) i N r) i ! M i c r := N r] 2.
If the argument is marked with c, w e o n l y k n o w t h a t t h e r e i s a t l e ast one occurrence of the binded variable marked with c while the others can be marked with r. W e h a v e a p r oblem to instantiate both kind of variables. But we know that the weakening rules enable us to consider every term marked w i t h c as the same term but marked r (one just have to mark with r every introduction of a variable during the building of the term). It leads to the following de nition :

((x : c A]M i) i N c) i ! (M i x c := N c] x r := N r]) i
where N r represent the term N in which every atom has been marked w i t h r. This de nition looks reasonable because the following property holds: Property 5 (Invariance of marking under {reduction) Let M i be a well formed term of F m 2 , w e have the following property.

M i ! M 0i

Proof: Let consider a term M i . W e s h o w, by structural induction that substituting any subterm of M i it by another one with the same mark does not change the mark of M. This is trivially veri ed for variables. Indeed the only subterm is the variable itself and so it will keep the same mark.

Suppose that M (t i 1 t j 2) j . Then, if we substitute the subterm t i 1 by q i the term will keep the same mark. It is also the case if we substitute q j to t j 2 . The other cases are treated in the same way.

Order introduced on terms by m a r k i n g

We n o w de ne an order on well formed terms of m . This order is generated by the order relation previously de ned on the set Label set. We s a y t h a t i f t wo terms have the same syntactical tree (without looking at the marks), the one which has the longest number of 'c' is the bigger.

This leads to the following de nition (by structural induction): Ground cases.

A t ype application formation node. In our system we h a ve: [START_REF] Paulin | Informative contents as annotations in the Calculus of Inductive Constructions[END_REF] ; `tj 2 (8X i : B j) j ; `Ti 2 P r o p i ; `(t j T i) j 2 (B j X i := T i]) j if we don't use those constraints, one can show a s a b o ve that the extracted term will not be well formed.

An abstraction over terms node. In our system we h a ve: (8) ; x : i A `Mj 2 N j ; `Nj 2 P r o p j i 0 = sup(mark(occ(x M))) ; `(x : i 0 A]M j) j 2 (A i 0 ! N j) j

Now, to nd a marking impossible to build in our system the node must looks like :

; x : i A `Mj 2 N j ; `Nj 2 P r o p j ; `(x : i 0 A]M j) j 2 (A i 0 ! N j) j such that i 0 sup(mark(occ(X N))). As we h a ve a t wo element domain this leads to the unique solution i 0 = r. Indeed, if i 0 = c while there is no occurrence of x in M. S o mark(occ(x M)) = in F m 2 and we c a n choose i 0 = c = sup(), obtaining the same marking. So, let us consider the case where i 0 = r whereas there exists an occurrence of x in M j which is marked c. By extraction, we will erase the binder x : i A] but not the occurrence of x in M, hence M will not be well formed after extraction as it will contain a variable x which has no binder and no de nition in the context. Abstraction over types. The proof is the same as above.

Hence by absurdity w e h a ve proved the result. This theorem is crucial for understanding of what marking is. It expresses thatin order to have a coherent marking i.e. saturated, the marks have t o v erify certain constraints, precisely those constraints that are encoded in the typing rules of F m 2 . Actually, the last theorem proves than in our system, we c a n at worse obtain the same results than in the F 2 with pruning. Indeed, if we restrict F m 2 to the terms having a saturated marking we will exactly nd the F 2 system studied by Boerio. In particular we c a n p r o ve for this restriction of F m 2 all what was proved in F 2 by Boerio.

To optimize a term t of type T , it su ces to nd the greatest lower bound of CLE m (t) = ft 0 jt 0 tand; 0 t0 2 T and ; 0 ;g in the restriction of F m 2 to saturated terms. For doing that, we follow the method proposed by Boerio in 3]. The initial marking consists to set all marks to a fresh variable of mark, except the ones of the global term and of the environments (terms of the environments are uniformly marked by the same mark everywhere) which are marked with c. After that one just has to follow t h e t yping rules and generate constraints between the mark variables in the tree.

Let us consider a small example. Suppose we h a ve:

; `ti 1 2 (A j ! B k) l ; `tm 2 2 A n ; `(t o 1 t p 2) q 2 B h
Then if we f o l l o w the associated typing rules, we can nd that i = l = o = q = h and that j = m = n = p. This way one can make the nal c mark ows from the root to the rest of the term.

Let us next develop a larger example to see how one can simulate Boerio's algorithm.

; y : X `yi 2 X i ; y : X `yc 2 X c ; `(y : X]y) c 2 (X i ! X c) c ; x : X `xj 2 X j ; `(x : X] y : X]y) c 2 (X j ! (X i ! X c) c) c

; `uj 2 X j ; `(x : X] y : X]y u) c 2 (X i ! X c) c ; `vi 2 X i ; `((x : X] y : X]y u) v) c 2 X c One can notice that variables x and y have no marks in their declaration in the context : we recall that by convention everything in the context is marked with c.

From the rule (8) it follows that i = c and one has to replace every occurrences of i by c in our tree. As the j variable does not have any constraints and that we seek for the minimal marking we just have to choose it equal to r. We obtain the following marked term ((x : r X] y : c X]y c u c) c v r) c , which , after extraction gives (y : X]y u). Which was the result expected. This very simple example shows how inference rules with marks can simulate the link of Boerio.

Simulation of extraction with subtyping

The problem which has given birth to the subtyping was the fact that some optimizations were not allowed because they would lead to ill typed terms. In our system, this is not the case. Indeed, as the marking is independent from the typing mechanism, such problems are avoided.

Thus, we are able to simulate the subtyping mechanism simply by c hoosing the Ex P extraction. It represents an extension to the second order of the work done by Berardi and Boerio in 3]. Theorem 6 One can simulate the pruning technique with subtyping in F m 2 .

Proof:

One only has to check that there is, for each { t ype of Berardi{Boerio's system, a corresponding type in F m 2 .

The rst thing to do is to nd an equivalent for . Clearly N r , w h e r e N is the prede ned constant representing integers, is the good choice. Now it is clear that for each { t ype one can give a term representing it in F m 2 . Indeed, an {type is of kind A ! O or O O. By induction, it is clear that we can build such t ypes in F m 2 . One just has to add for each { t ype T a declaration of the form d T : r T one which corresponds to the d O constants in Berardi{Boerio's system. Now one has to nd the correspondence for application rule. Let us recall that this rule is, for more precision refer to section 2.1.4, of the form : ; `f : A ! B ; `a : A 0 A 0 A ; `(f a) : B while in our system one has the following application rule : [START_REF] Paulin | Extraction de programmes dans le calcul des constructions[END_REF] ; `tj 1 2 (A i ! B j) j ; `ti 2 2 A i ; `(t j 1 t i 2) j 2 B j Now, let us look at the de nition of :

N N N B 1 A 1 B 1 A 1 B 1 A 1 B 1 A 1 A 1 ! A 2 B 1 ! B 2 A 1 A 2 B 1 B 2
If we f o l l o w our simulation, we h a ve the following de nition of in our system:

N N r N N c N r N r B 1 A 1 B 1 A 1 B 1 A 1 B 1 A 1 A 1 ! A 2 B 1 ! B 2 A 1 A 2 B 1 B 2
One has to check t h a t t h e t yping rule [START_REF] Paulin | Extraction de programmes dans le calcul des constructions[END_REF] is equivalent to the one given for Boerio{Berardi system. Clearly, a s w e h a ve the same type, only marks are changing. In both parts of an expression of the form B we can build a derivation in F m 2 such that ; `fi 2 (A j ! C i) j if there exists a derivation of ; `fi 2 (B j ! C i) j

We h a ve shown that our approach of extraction is relevant since it allows to represent e v ery known technique. On this basis we are going to extend Berardi{Boerio's approach to higher level. The natural language to consider is F ! , because it is a higher order language simpler than the calculus of Construction as there are no dependences from low level to high level.

3.3 Marking in a higher order language : F m !

Presentation o f F ! system

The F ! system has been introduced by J.{Y. Girard in 6]. It is more powerful than F 2 . It presents some features which m a k e i t t h e natural system to generalize Boerio and Berardi's technic.

The rst point is the expressivity of the system. F ! allows to express all programs and it has the same computational power as the Calculus of Constructions. The second point concerns its hierarchical structure. The language is structured in such a w ay t h a t objects of an higher level cannot have an in uence on objects situated below them. This makes the task easier. The third important feature comes from how are structured the levels of objects in F ! . Their structure is such that, apart few remarks, they strongly remind languages of the rst and second order. The idea is to re-apply to di erent levels what we already know.

We will note F the language of F ! . In this language we can distinguish three kinds of objects. Orders, operators, terms. These three kinds of objects are de ned in three successive l e v els beginning with orders followed by operators, which can depend on orders and nally terms which can depend on both orders and operators. We will talk about level to designate orders, operators or terms.

More precisely, w e h a ve :

Orders (level 2): The constant Data is an order and if A and B are orders, then A) B is also an order.

Operators (level 1): If are operators, X an operator variable and A an order then ! (functions), () (applications), (X : A) (products) and X : A] (abstraction) are operators. Terms(level 0) : If s t are terms and x a t e r m v ariable (and by taking again the previous conventions) then (s t), (s), x :]s, X : A]s are also terms.

An order context is a nite sequence of pairs (X A), where X is an operator variable and A an order.

Typing rules

As the notion of order is purely syntactical, we begin to de ne the relation ` 2 A, w h i c h means \the operator is well formed of type A in the order context . The typing rules for operators are : if

X : A appears in `X 2 A ` 2 Data ` 2 Data ` ! 2 Data X : A ` 2 Data `(X : A) 2 Data X : A ` 2 B ` X : A] 2 A) B ` 2 A) B ` 2 A `() 2 B
For terms we h a ve also to de ne the notion of environment. We w ant that the declaration of variables precedes the declaration of operators. So, we i n troduce the following de nition for environments:

The empty sequence] is a valid environment and the associated order context] o is the empty sequence. I f ; i s a v alid environment, X an operator variable which is not in ; and A an order then ; X: A is a v alid environment and (; X: A) o = ; o X: A If ; is a valid environment, x a term variable that does not appear in ; and if there is a derivation ; o ` 2 Data where(; x:) o = ; o then ; x : is a valid environment and. One now de nes a typing relation for terms which w i l l b e n o t e d ; `t 2 with ; a valid environment, t a term and an operator.

The typing rules for terms : x : appears in ;

; `x 2 ; `t 2 ! ; `u 2 0 = 0 ; `(t u) 2 ; x : `t 2 ; ` x :]t 2 ! ; `t 2 (X : A) ; O ` 2 A ; `(t) 2 X :=] ; X: A `t 2 ; ` X : A]t 2 (X : A)

Informal semantics of marking in this system

Our aim is to extend the techniques of the Turin school to F m ! while keeping our approach of marking. We have to think about what meaning have the marking and optimization on higher orders.

The rst observation which comes to thought i s t h a t F m ! is divided in three partsm, which are hierarchically comparable. The Level 2 (orders) does not raise big problems : to be an order is a too much syntactic feature to search a n y optimization. Level one (operators) is already more interesting. At a rst glance, one could think that the language generated by it is a simply typed language (akin of G odel T system), like the one studied by Berardi. Nevertheless, one rule shows us it is not exactly the case : ` 2 Data ` 2 Data ` ! 2 Data Indeed, the Data type is absorbent with respect to operators of kind !. This means that, if we w anted to apply directly Berardi's technique we w ould have a bad surprise. To detect the informative parts of a term, Berardi uses the fact that one has just to conserve the nal type of the term. \ I serve for the building of the nal type" is the only information needed to nd where we can prune or not. Now, it is clear that this criterion is no longer enough in this system. Indeed, if are of type Data, then ! and will have the same type if we f o l l o w t h e t yping rule. So, the question is the contribution to the nal type of ! ? If this rule didn't exist, one would have almost exactly Berardi's system. Actually, a s w e will see later, one just have to de ne a suitable equivalence relation to solve the problem.

Level 0, the one of terms, is alike, apart few details as a second order system. The only notable di erences are coming from the creation of the context. One can introduce a term variable only if the type of this variable is a well formed operator. So, when we are in a leaf of the tree and this leaf corresponds to the introduction of a variable, one has to build another proof tree for the well formation of the operator designing the type of the variable. The second bridge between those two l e v els comes from the following rule : ; `t 2 ! ; `u 2 0 = 0 ; `(t u) 2

For this last rule, one has to go to the operator's language to prove the equivalence between the two operators. This means that, modulo the last remarks, we are in a second order system, in which one can apply the already known methods to optimize terms. Now, to optimize a term in F ! , while keeping our point of view of marking, one has to solve the problems raised by the operators of kind ! , and the equivalence between two marked operators. We p r o p o s e , i n the next section, a language F m ! which enables to solve these problems.

3.3.3

The F m ! language Syntax of F m ! For the creation of F m ! language we follow the general ideas already developed for F 2 . F or uniformisation reasons, we decided to mark orders, despite the remarks raised in the last section which h a ve clearly shown that we cannot expect optimization for those terms.

As usual, in the rest of the text, the indices i j k : : :will indistinctly represent r or c. One nd again the main lines of F ! language. Orders: The constants Data i are orders and if A i and B j are orders, then (A i) B j) j is also an order. Operators: If i j are operators, X k an operator variable and A l an order then (i ! j) m (functions), (i j) m (applications), (X k : A l) m (products) and X k : A l] i (abstraction) are operators. Terms : if s n t o are terms and x p a term variable (and by taking again the previous conventions) then (s n t o) m , (s n i) m , (x p : i]s n) m , (X k : A l]s n) m are also terms. The syntax is the same than in F ! , apart the fact that all subterms are marked with a r or a c. One still has to de ne typing rules for this language. One naturally extend those marking notions to the formation of order context, and of environment for terms. The formation rules are the same as preceding ones, and one simply adds marks.

Optimization in F m

!

We h a ve pointed out two points in the discussion on optimization in the last section. Let us see how w e c a n handle them. First we will denote Op the language de ned by t h e t yping rules on operators in F ! .

For the rst point, we will simplify the language Op in such a w ay that we will obtain a simply marked language.

De nition 1 0 The T rfunction is inductively de ned b y : T r (!) = T r () T r (X : A]) = X : A]T r () T r ((X : A):) = (X : A):T r() T r (()) = (T r () T r ()) We will denote by the equivalence relation generated by T rfunction, which i s t o s a y: () T r () = T r () One can already observe that ! = , where represents the equivalence class of . This way a particular representant of the class of an object formed by m a n y !, is the rightmost situated subterm. Theorem 7 The system generated b y Op= is a simply typed {calculus.

So, one can apply the results precedently obtained for the rst order in Op= .

To obtain an equivalent t o F m 2 marked system, one has just to manage with equivalence classes in a way t o a void to forget some informative subterms. In clear one has to force the terms of kind ! to be marked in the same way on the right and on the left of the arrow unless the user speci es the contrary. Thus this remark does not play its role at the logical level (i.e. in typing rules) but during the development of the marking algorithm ! It has to be understood as a marking strategy.

One obtains the following rules : if X : i A appears in `Xi 0 2 A i 0 ` j 2 Data j ` i 2 Data i `(j ! i) i 2 Data i X : i A ` j 2 Data j i 0 = sup(mark(occ(X))) `((X : i 0 A): j) j 2 Data j X : i A ` j 2 Data j i 0 = sup(mark(occ(X)))

`(X : i

0 A] j) j 2 (A i 0) B j) j ` i 2 (A j) B i) i ` j 2 A j `(i j) i 2 B i
For the second point, one has to de ne an equivalence between marked operators. Remember that types represent set of terms. Now the question is not \when a marked term is equivalent to another marked term" but \ when two sets of terms are equivalent". From this point of view, the answer comes more easily. When you realize that a type marked with r means that it has no informative c o n tent y ou are getting very close to the solution.

Knowing the semantics of the marking (Keep what is marked with c and erase what is marked with r) the researched equivalence is easy to nd. What we seek is the following:

If the mark is r, w e can forget about marks and only care about standard equivalence.

In the case when the mark is c, w e h a ve t o c heck both standard equivalence and also the compatibility of marks inside the terms.

{ EX F! ((t j u r) j) = EX F! (t j) { EX F! ((t j u c) j) = (EX F! (t j) EX F! (u c)) { EX F! ((x : r]t j) j) = EX F! (t j) { EX F! ((x : c]t j) j) = x : EX F! (c)]EX F! (t j) { EX F! ((t j r) j) = EX F! (t j) { EX F! ((t j c) j) = (EX F! (t j) EX F! (c)) { EX F! ((X : r]t j) j) = EX F! (t j) { EX F! ((X : c]t j) j) = X : EX F! (c)]EX F! (t j)

On operators:

{ EX F! (X c) = X { EX F! ((r ! i) i) = EX F! (i) { EX F! ((c ! i) i) = EX F! (c) ! EX F! (i) { EX F! ((X : r A] j) j) = EX F! (j) { EX F! ((X : c A] j) j) = X : EX F! (A c)]EX F! (j) { EX F! (((X : r A) j) j) = EX F! (j) { EX F! (((X : c A) j) j) = (X : EX F! (A c))EX F! (j) { EX F! ((j r) j) = EX F! (j) { EX F! ((j c) j) = (EX F! (j) EX F! (c))
On orders:

{ EX F! (Data c) = Data { EX F! ((O r) P j) j) = EX F! (P j) { EX F! ((O c) P j) j) = EX F! (O c)) EX F! (P j) Theorem 8 If ; `tc 2 c is derivable in F m ! then EX F! (;) `EX F! (t c) 2 EX F! (c) is derivable in F ! .
Proof:

We prove this theorem by a structural induction on orders, operators and terms. On orders it is clear that extraction gives a well formed term. Indeed if an order is marked with c, then at least one Data, namely the rightest one, will be conserved by extraction.

For the level of operators, one can re-use what was previously done for F m 2 . F or the ground case it works, since extraction on orders works. Now, we can reason by induction. It is clear that for the cases of application and abstraction the result will be veri ed (the proof is similar to what was done in F m 2). There are only two cases left.

1. The operator is of the form (i ! c) c , this means that the rule ` i 2 Data i ` c 2 Data c `(i ! c) c 2 Data c has been applied. By de nition, Ex F m

! (i ! c) = Ex F m ! (c) i f i = r and Ex F m ! (i) ! Ex F m ! (c) if i = c.
In both cases, one can use the induction hypothesis to prove that both terms are of type Ex F m ! (Data c) = Data. 2. The operator is of the form ((X : i 0 A) c) c . Here too, the extracted order will be Data and it is clear, from the de nition of extraction that whether i = c or r that the extracted term will be of type Data in F ! Now one has to prove the nal result, i.e. the extracting function on terms gives well formed terms in F ! .

The ground cases, as the cases of abstraction of operators and terms on terms as well as the application of operators on terms, are veri ed in the same way than what was done for F m 2 . It remains the case of application of terms on terms. The novelty comes from the utilization of equivalence on types.

Let us consider the term s (t c u j) c . This means that the rule ; `tc 2 (j ! c) c ; `uj 2 0j j = m 0j ; `(t c u j) c 2 c has been applied. Two subcases are to be considered :

1. j = r. Ex F m ! (s) = Ex F m ! (t c) . But,Ex F m ! ((r ! c) c) = Ex F m ! (c) c .
F m ! ((t c u c) c) = (Ex F m ! (t c) Ex F m ! (u c)): Ex F m ! (c ! c) = Ex F m ! (c) ! Ex F m ! (c) Hence, we h a ve to prove t h a t Ex F m ! (;) `(Ex F m ! (t c) Ex F m ! (u c)) 2 Ex F m ! (c) w h i c h is clear if we l o o k at the induction hypothesis which are the following : Ex F m ! (;) `Ex F m ! (t c) 2 Ex F m ! (c ! c) Ex F m ! (;) `Ex F m ! (u c) 2 Ex F m ! (0c) c = m 0c
If we can prove t h a t c = m 0c implies that Ex F m ! (c) = Ex F m ! (0c) then the case will be proved. This is easy to show. Indeed we h a ve s h o wn in Property 5 that the marking is stable under {reduction.

Thus if c ! 0c , then all subterms marked with r in c will also be marked with an r in 0c hence the extraction, which erase terms marked with c, will leave t wo terms such that Ex F m ! (c) ! Ex F m ! (0c).

Marking in the Calculus of Constructions

Now, using what was previously done in F ! we propose a marking system for the calculus of constructions. The di erence between F ! and the calculus of construction comes from the dependent t ypes. So our rst aim will be to handle the problems raised by this feature. Until now, we h a ve always performed extraction within the same system. For example in F m 2 , when extraction was done it was giving a new term typable in F 2 . The same remark was also valid for F ! : an extracted term of F m ! was an F ! term. For the Calculus of Construction this is no longer the case. We will extract from the Calculus of Constructions to F ! . T h us one has to erase these kind of dependences.

The language of our system, the Calculus of Constructions with marks, w i l l b e m already de ned for F m 2 . Here too, two kinds of judgments will be done. ; is a valid environment a n d ; `M 2 N, which has to be read \ M is well formed of type N under the valid environment ; " .

Environment formation:

] is valid ; `Mi 2 K i x 2 does appear in ; ; is valid ; x : i 0 M is valid { Proofs:

; `Mj 2 ((x : i P)N j) ; `Ri 2 Q i ; `Qi 2 P r o p i P i = m Q i ; `(M R) 2 (N x=R]) Equality:

; `Mi 2 N i ; `Pi 2 K i N i = m P i ; `Mi 2 P i = m is inductively de ned as in F m ! by induction :

De nition 1 3 we inductively de ne = m by :

M i ! N i M i = m N i M i = m N i M i = m N i N i = m P i M i = m M i N i = m M i M i = m P i M c = m N c
M r = m N r (X : i A]M c) c = m (X : i A]N c) c (X : i A]M r) r = m (X : j A]N r) r M c = m N c M r = m N r ((X : i A):M c) c = m ((X : i A)N c) c ((X : i A):M r) r = m ((X : j A)N r) r M c = m N c P i = m Q i (M c P i) c = m (N c Q i) c M r = m N r P i = m Q i (M r P j) c = m (N r Q k) r

One can notice that the case of dependent t ypes has been dealt by t h e t yping rules. If there is a dependence from a lower level to a higher level, than the term realizing this dependence is marked with an r. So it will be erased by extraction, hence we will obtain a term typable in F ! by extraction. We Proof:

The proof is essentially the same as done in section 3.3.3. For the application, abstraction, product, introduction of variables it is exactly similar.

Only the case of type equality is di erent. But, since it has been shown that if M c = m N c implies that EX CC m (M c) = EX CC m(N c), which is shown in the proof of the validity o f EX F m ! , then the rst part of the demonstration is ended. Now, we h a ve still to show that the extracted term is well typed in F ! . Since we h a ve erased the dependences of inferior types to superior types, we can apply the result shown in 9] to prove that the term is well typed in F ! .

Theorem 10 One can simulate Paulin's extraction in the calculus of constructions in CC m .

Proof:

The simulation will be conducted in the same manner as for the calculus of constructions restricted to the second order. If a term is typed by P r o pin Paulin's system, we will type it by P r o p r in CC m , and if it is typed by Set we will type it by P r o p c in CC m .

We h a ve already shown that, under these assumptions, the terms marked with an r in our system and terms having an empty content i n P aulin's system correspond. Moreover, we k n o w that the dependences are handled correctly. Hence, the result announced.

Conclusion and future works

We h a ve proposed a new frame to report on problems linked to extraction : the marking.This new approach allows us to unify various approaches known in this domain. By modifying some aspects of a marking system, i.e. the extraction function and the initial conditions, one can simulate all of the extraction techniques. So, it seems that marking is a sound point of view. Moreover, marking systems are exible. The user can, if he wants to, mark certain parts of the proof tree. The system will then just check that the marking rules can be applied to nd a term with such a marking. By using this exibility and soundness approach w e h a ve been able to extend immediately Berardi and Boerio's approach regarding sub{typing to second order.

To higher orders, one could easily nd a semantics of extraction. The observational equality w a s a g o o d device to conduct extraction. An interesting work is suggested by the research o f s u c h a device for higher orders. Indeed, if we h a ve shown that extraction is valid for higher orders it still remains to nd how to build a marking satisfying some condition on the extracted term. In 10], Paulin has developed a notion of realizability to encounter this problem. It is may b e a g o o d w ay to go further in the understanding of marking, but one can also try to develop a semantics based on c.p.o. or another interpretation domain.

One can also remark that we h a ve d e v eloped a speci c approach for the Calculus of Construction. We have c hosen to perform extraction with F ! as target language. This has led to introduce the rules which explicitly destroy the dependences of low l e v el to high level. One could now study what would happen if we choosed to extract within the Calculus of Constructions : how the mark are going to react ? Are they going to behave like in our proposed system and \destroy b y themselves" dependences?

In the future, we will work on the Calculus of Construction with marks to provide a theoretical study which is still to be done. Also we will try to develop a l o gical point of view for various software techniques, as we h a ve done here for marking.

 All the techniques developed by t h i s s c hool are based on a similar way to optimize terms : the pruning.

3 .

 3 The notion of {type i s a l s o d e n e d. A type T will be said an {type i f i t c an be p r oduced by the following grammar :O ::= jA ! OjO O where A i s a n y t y p e.

 de ne the extraction function as follows : De nition 1 4 The function EX CCm is inductively de ned b y : EX CC m (P r o p c) = P r o p EX CC m (((x : rM)N c) c) = EX CC m (N i) EX CC m (((x : c M)N c) c) = (x : M)EX CC m (N i) EX CC m ((x : r M]N c) c) = EX CC m(N i) EX CC m ((x : c M]N c) c) = x : M]EX CC m(N i) EX CC m ((M c N r) c) = EX CC m (M c) EX CC m ((M c N c) c) = (EX CC m(M c) EX CC m (N c)) Theorem 9 (Validity o f EX CCm) If ; `Mc 2 N c in CC m then EX CC m(;) `EX CC m (M c) 2 EX CC m(N c)is valid both in the Calculus of Constructions and F ! .

Acknowledgments

This part is dedicated to the shadow w orkers, who by their numerous and clever remarks or questions have contributed, very broadly to this work. Among them, I would like to cite P. Audebaud and C. Paulin.

Every discussion brings its part of creation. Many people have helped me more than they can imagine, and I am afraid to not really value well their importance.

{ For constants: P r o p r P r o p c { For variables: x r x c Induction cases on types.

{ If M, M 0 , N 0 and N are types : M 0 ! N 0 M ! Nif M 0 M and N 0 N. { If X, X 0 are type variables and M M 0 are types then 8X 0 M 0 8 XM if X 0 X and if M 0 M. Induction cases on terms. { If t 1 , t 0 1 , t 2 et t 0 2 are terms then (t 0 1 t 0 2) (t 1 t 2) i f t 0 1 t 1 and t 0 2 t 2 . { If t, t 0 are terms, T and T 0 types then (t 0 T 0]) (t T]) if t 0 t and T 0 T. { If M, M 0 are terms, A, A 0 types, then x : A 0]M 0 y : A]M if A 0 A and if M 0 x := z] M y := z] where z is a fresh term variable (this is to avoid problems linked to {conversion).

{ If M and M 0 are terms then XM 0 Y Mif M 0 X := Z] M Y := Z] w h e r e Z is a fresh terms variable (it is to avoid problems linked to {conversion)

Flexibility o f F m 2

We n o w show that our system is exible by simulating the other extraction procedures. These di erent simulations are naturally obtained by p l a ying on two parameters. The rst parameter concerns the initial conditions, it corresponds to the initial marking of Boerio's algorithm. The second parameter deals with the way the extraction is de ned. In Boerio, for example, one can remove a subtree only if all atoms of this subtree are marked with r while it is not the case, for Paulin.

Simulation of Paulin's Extraction

De nition 8 The extracting function Ex P is inductively de ned b y : Ex P (x c) = x Ex P (X c) = X Ex P ((A r ! B j) j) = Ex P (B j) Ex P ((A c ! B j) j) = Ex P (A c) ! Ex P (B j) Ex P ((8 X r :A j) j) = 8 X:Ex P (A j) Ex P ((8 X c :A j) j) = Ex P (A j) Ex P (x : r A]M j) j) = Ex P (M j) Ex P (x : c A]M j) j) = x : Ex P (A)]Ex P (M j) Ex P ((t j T r) j) = Ex P (t j) Ex P ((t j T c) j) = (Ex P (t j) Ex P (T c) Ex P ((t j u r) j) = Ex P (t j) Ex P ((t j u c) j) = (Ex P (t j) Ex P (u c))

Where x and X are fresh term and type variables. One can easily extend this de nition to environments. Proof:

To prove this theorem we l o o k w h a t i s g o i n g o n b y induction on the term structure. The ground case, the case of variables, is clearly veri ed. Consider the case of a variable marked by c. This the only case to be considered as extraction only works on c marked terms. We h a ve Ex P (v c) = v which i s a w ell formed term in F 2 . Indeed, as the variable is marked c, its declaration in the context is of the kind v : c V , and so in the extracted context appears v : V , hence the announced result.

For induction cases we h a ve the following options :

Suppose: ; `(x : i A]M j) j 2 (A i ! B j) j . T w o cases are to be considered: 1. i = r. I n t h i s c a s e w e h a ve Ex P ((x : i A]M j) j) = Ex P (M j) and Ex P ((A i ! B j) j) = Ex P (B j). So it is su cient t o s h o w t h a t Ex P (;) `Ex P (M j) 2 Ex P (B j), which is exactly the induction hypothesis. 2. i = c. Then we h a ve Ex P ((x : i A]M j) j) = x : Ex P (A i)]Ex P (M j) and Ex P ((A i ! B j) j) = Ex P (A i) ! Ex P (B j). One has to show t h a t : Ex P (;) ` x : Ex P (A i)]Ex P (M j) 2 Ex P (A i) ! Ex P (B j). One uses the induction hypothesis which s a ys that : Ex P (; x: c A) `Ex P (M j) 2 Ex P (B j). In another terms Ex P (;) x: Ex P (A c) `Ex P (M j) 2 Ex P (B j). This last remark shows that one can apply the abstraction rule in F 2 , hence the result. Now i f w e h a ve : ; `(t i u j) i 2 T i , with ; `ti 2 (U j ! T i) i and ; `uj 2 U j . W e h a ve the two following subcases to treat:

1. j = r. W e h a ve Ex P ((t i u j) i) = Ex P (t i) and one has to show that Ex P (;) `Ex P (t i) 2 Ex P (T i). But by induction hypothesis, one has : Ex P (;) `Ex P (t i) 2 Ex P (U j ! T i) a n d a s Ex P (U j ! T i) = Ex P (T i) one has the researched result.

2. j = c. N o w, one has Ex P ((t i u j) i) = (Ex P (t i)Ex P (u j)) and one wants to show t h a t Ex P (;) `(Ex P (t i) Ex P (u j)) 2 Ex P ((U j ! T i) i). we k n o w b y induction hypothesis that Ex P (;) `Ex P (t i) 2 Ex P (U j ! T i) and also that : Ex P (;) `Ex P (u j) 2 Ex P (U j). Now one has Ex p (U j ! T i) i) = Ex p (U j) ! Ex P (T i). Hence by applying the application rule of F 2 , it comes Ex P (;) `(Ex P (t i) Ex P (u j)) 2 Ex p (U j) ! Ex P (T i) in other words Ex P (;) `(Ex P (t i) Ex P (u j)) 2 Ex P ((U j ! T i) i) , w h i c h demonstrates the result.

All other cases, abstraction of types, and application of types to terms are treated in the same way.

Proof:

To the type P r o pof the Calculus of Constructions one associates P r o p r and to Setone associates P r o p c . Now, one only has to show t h a t e v ery term with empty c o n tent i n P aulin's system is marked with an r in our system. It is simply done by induction on formation of empty content t e r m s .

Ground case. If M = P r o pin Paulin's system then by de nition it will be translated in P r o p r in our system. If M is a term of empty c o n tent i n P aulin's system and translated to a term with a mark c in our system then: { ((x : N)M) has an empty c o n tent, and is translated by ((x : i N)M r) r and so marked with r. { (x : N]M) has an empty content, and is translated by (x : i N]M r) r and so marked with r.

{ (M N) has an empty c o n tent and is translated by (M r N i) r .

Hence, every term with an empty c o n tent can be translated in our system. It shows that one can simulate Paulin's extraction in F m 2 .

Simulation of Berardi{Boerio's Extraction

The rst thing to do is to de ne a new extraction function. Indeed, for Boerio, a term can only be replaced by if it has all of its atoms marked with an r. This leads to the following de nition.

De nition 9 The extracting function Ex B is inductively de ned b y :

{ If every atom of T r is marked r then Ex B (t j) { Else (Ex B (t j) Ex B (T r) Ex B ((t j T c) j) = (Ex B (t j) Ex B (T c) Ex B ((t j u r) j) = { If every atom of u r is marked r then Ex B (t j) { Else (Ex B (t j) Ex B (u r) Ex B ((t j u c) j) = (Ex B (t j) Ex B (u c))

Here too, one extends easily this notion for environments. Proof:

The proof is almost the same as the one used to prove the theorem 2. One just has to check that terms are uniformly marked with r or not. This condition does not in uences the well formation of terms. Moreover, every term extracted with Boerio's extraction is also extracted in the same way b y P aulin's extraction, hence the result.

Actually erasing subterms labeled by a n r is like i d e n tifying terms of the form (t) t o t, U ! B to B, B ! U to U in Boerio's system. This shows well that to the function Simplify we g i v e a corresponding function which i s Ex B . We are now going to exploit this correspondence to prove the following theorem.

Theorem 5 Let M be a saturated marking, in Boerio's sense, of a term t. One can derive ; `tj 2 T j in F m 2 in such a way that t j has the same marks on its atoms than the one associated b y M to t in F 2 .

Proof:

First let us recall the de nition of a saturated marking. This is a marking which is both canonical (a subterm marked by a n r has all of its atoms marked by r) and consistent (the extraction of subterms marked by r is done and the extracted term is well formed).

The theorem 4 already proves us that a marking in F m 2 is always consistent. It is easy to see that one can always build a canonical marking in F m 2 from a given marking. Indeed, since a subtree is marked with an r one just has to instantiate the following rule of F m 2 (5) ; is valid X : i Prop appears in ; ; `Xi 0 2 P r o p i 0 to build the subtree. This rule can be read as :

(5) ; is valid X : i Prop appears in ;

; `Xr 2 P r o p r hence every of the subtree will be marked with an r. So we can forget about the problem of canonicity. Next one has to show t h a t a n y consistent marking in F 2 can be realized in our marking system. Let us prove i t b y absurdity. Suppose that we h a ve a term t c , m a r k ed in such a w ay t h a t w e cannot build its marking in our system although Ex B (t c) i s w ell formed with respect to F 2 , o r t h a t w e c a n n d a l o wer marking.

So, there exists at least a node in the proof tree which does not satisfy the constraints generated by F m 2 . Let us consider the di erent possibilities. The node can be:

A term application formation node. In our system we h a ve: [START_REF] Paulin | Extraction de programmes dans le calcul des constructions[END_REF] ; `tj 1 2 (A i ! B j) j ; `ti 2 2 A i ; `(t j 1 t i 2) j 2 B j

As the marking has to be impossible to build in our system, the node must have the following shape:

; `tj 1 2 (A i ! B j) j ; `tk 2 2 A k ; `(t j 1 t k 2) j 2 B j with k 6 = i. N o w, let us extract this subterm. By our de nition of extraction we h a ve: { Ex B ((t j 1 t k 2) j)) = Ex B (t j 1) i f k = r, and (Ex B (t j 1) Ex B (t j 1)) otherwise.

{ Ex B ((A i ! B j) j) = Ex B (A i) ! Ex B (B j) i f i = r, and Ex B j otherwise. Now one can easily check that, whether k = r or c, the extracted term will not be well formed.

Example 4 Consider the following term t ((x : X] y : X]y u) v). We will show how to simplify it using the F m 2 system. Suppose ; X : c P r o p u: c X v : c X. W e b egin by giving its derivation tree i n F 2 :

; y : X `y 2 X ; y : X `y 2 X ; ` y : X]y 2 X ! X ; x : X `x 2 X ; ` x : X] y : X]y 2 (X ! (X ! X))

; `u 2 X ; `(x : X] y : X]y u) 2 X ! X ; `v 2 X ; `((x : X] y : X]y u) v) 2 X Where ; represents the following environment:X : P r o p u: X v : X. Now, we have to assign initial marks to start the algorithm. For that we begin to d decorate our proof tree to its root. We only know that the nal type and term and the variables in the nal environment have to be conserved, and hence, marked w i t h a c. It gives the following derivation tree :

; y : X `y 2 X ; y : X `y 2 X ; ` y : X]y 2 X ! X ; x : X `x 2 X ; ` x : X] y : X]y 2 (X ! (X ! X))

; `u 2 X ; `(x : X] y : X]y u) 2 X ! X ; `v 2 X ; `((x : X] y : X]y u) v) c 2 X c Now using the rule : [START_REF] Paulin | Extraction de programmes dans le calcul des constructions[END_REF] ; `tj 1 2 (A i ! B j) j ; `ti 2 2 A i ; `(t j 1 t i 2) j 2 B j we can deduce the following decoration:

; y : X `y 2 X ; y : X `y 2 X ; ` y : X]y 2 X ! X ; x : X `x 2 X ; ` x : X] y : X]y 2 (X ! (X ! X))

; `u 2 X ; `

where i is a mark variable. One can already notice that this is the same as the one used to mark the rst occurrence o f X in (X i ! X c) c . I t i s h e r e that the realization of the links used i n B o erio's algorithm is done in our system with marking. Still using the same rule one can lift the mark on the left premise to nally get:

; y : X `y 2 X ; y : X `y 2 X ; ` y : X]y 2 X ! X ; x : X `x 2 X ; `(x : X] y : X]y) c 2 (X j ! (X i ! X c) c) ; `uj 2 X j ; `(x : X] y : X]y u) c 2 (X i ! X c) c ; `vi 2 X i ; `((x : X] y : X]y u) v) c 2 X c Where j is a new mark variable. Now to progress in the tree on has to apply the following rule: [START_REF] Goad | Proofs as description of computation[END_REF] ; x : i A `Mj 2 N j ; `Nj 2 P r o p j i 0 = sup(mark(occ(x M)))

; `(x : i 0 A]M j) j 2 (A i 0 ! N j) j

We then get:

; y : X `y 2 X ; y : X `y 2 X ; `(y : X]y) c 2 (X i ! X c) c ; x : X `xj 2 X j ; `(x : X] y : X]y) c 2 (X j ! (X i ! X c) c) c ; `uj 2 X j ; `(x : X] y : X]y u) c 2 (X i ! X c) c ; `vi 2 X i ; `((x : X] y : X]y u) v) c 2 X c Finally we obtain:

All these remarks lead to the following de nition of equivalence between operators. We will note the F ! term corresponding to the marked term i . is simply obtained by erasing all marks in i .

De nition 1 1 We inductively de ne = m by :

One easily checks the following properties.

Property 6 Let i j be marked terms. The following facts are veri ed :

From this equivalence relation, one obtains the typing rules for terms:

x : i appears in ;

; `xi 0 2 i 0 ; `ti 2 (j ! i) i ; `uj 2 0j j = m 0j ; `(t i u j) i 2 i ; x : i `tj 2 j i 0 = sup(mark(occ(x)))

; `(x : i 0]t j) j 2 (i 0 ! j) j ; `ti 2 ((X : j A) i) i ; O ` j 2 A j ; `(t i j) j 2 i (X j := j]) i ; X: i A `tj 2 j i 0 = sup(mark(occ(X t)))

; ` X : i 0 A]t j 2 ((X : i 0 A): j) j

These rules are almost the same as ones developed in F m 2 . Only the de nition of the {equivalence and the context formation di er from a second order language. Now, we prove the validity of our marking system by de ning a new extracting function : EX F! .

De nition 1 2 The function EX F! is inductively de ned as follows.:

On terms:

{ EX F! (x c) = x Propositional type formation:

; is valid x : i N appears in ; N i 2 m ; `xi 0 2 N i 0 Hypotheses:

; is valid ; `Prop i 2 T y p e i Product :

{ Propositional types:

; `Pi 2 P r o p i ; x : i 0 P `Nj 2 T y p e j ; `((x : r P)N j) j 2 T y p e j ; `Oi 2 P r o p i ; `Pi 0 2 O i 0 ; x : i 00 P `Nj 2 T y p e j ; `((x : r P)N j) j 2 T y p e j ; `Pi 2 T y p e i ; x : i 0 P `Nj 2 T y p e j i 00 = sup(mark(occ(x N))

; `((x : i 00 P)N j) j 2 T y p e j { Propositional schemes :

; `Pi 2 T y p e i ; x : i 0 P `Nj 2 P r o p j i 00 = sup(mark(occ(x N)) ; `((x i 0 P)N j) j 2 P r o p j Abstraction :

{ Propositional schemes:

; `Nj 2 T y p e j ; x : i P `Mj 2 N j i 0 = sup(mark(occ(x N)) ; `(x : i 0 P]M j) j 2 ((x : i 0 P)N j) j ; `Nj 2 P r o p j ; x : i P `Mj 2 N j ; `(x : r P]M j) j 2 ((x : r P)N j) j { Proofs:

; `Nj 2 P r o p j ; x : i P `Mj 2 N j i 0 = sup(mark(occ(x N)) ; `(x : i 0 P]M j) j 2 ((x : i 0 P)N j) j Application:

{ Propositional schemes :

; `Mj 2 ((x : i P)N j) ; `Ri 2 P r o p i P i = m P r o p i ; `(M j R i) 2 (N j x i =R i]) ; `Mj 2 ((x : i P)N j) ; `Ri 2 Q i ; `Qi 2 P r o p i P i = m Q i ; `(M j R r) 2 (N j x r =R r])