Lamine Melkemi May 
  
Structures de d eplacement pour les matrices p-Vandermonde con uentes et eliminations de Gauss avec pivotement partiel

Keywords: Con uent V andermonde matrix, con uent polynomial Vandermonde matrix, displacement structure

In this paper, we s h o w that the useful displacement structures constructed for polynomial Vandermonde matrices (see 8] in particular) can be naturally extended to con uent polynomial Vandermonde matrices. This result was made possible by virtue of the fact (recently established by the author in 10]) that con uent V andermonde matrices belong favorably to the class of structured matrices. In the context of the displacement structure theory, i t i s w ell known that once an acceptable displacement structure is established for a matrix, one may naturally expect interesting applications regarding its numerical implementation.

R esum e

Dans cet article, nous construisons des structures de d eplacement utiles pour les matrices p-Vandermonde con uentes, g en eralisant ainsi les r esultats connus dans le cas des matrices p- Vandermonde 8]. L'id ee principale repose sur un r esultat r ecent etabli par l'auteur 10] a r m a n t que les matrices de Vandermonde con uentes font partie, tout comme les matrices de Vandermonde, de la classe des matrices structur ees.

Mots-cl es: m a t r i c e d e V andermonde con uente,matrice p;Vandermonde con uente , structure de d eplacement .

1.Introduction. Soient x 0 x 1 ::: x n;1 2 R n nombres r eels deux a deux distincts, et soit p = fp 0 (x) p 1 (x)::: p m;1 (x)g une base de l'espace R m;1 x] des polynômes de degr e i n f erieur ou egal a m ; 1: Parmi ces bases, on distingue la base canonique qu'on note c = f1 x x 2 : : : x m;1 g Consid erons alors la matrice suivante du type m dn :

(1:1) V p = f(x 0 ) f 0 (x 0 ) : : : f (d;1) (x 0 ) : : : f (x n;1 ) f 0 (x n;1 ) : : : f (d;1) (x n;1 )] o u f(x) est la fonction vectorielle: f(x) = ( p 0 (x) p 1 (x) : : : p m;1 (x)) T et f 0 (x) f (2) (x) : : : f (d;1) (x) s o n t l e s d eriv ees successives de f(x): D e nition 1.1. La matrice V c donn ee par (1:1) en rempla cant p par la base canonique c est appel ee matrice de Vandermonde con uente. En g en eral, V p est appel ee matrice p;Vandermonde con uente. 2 Dans cette note, on consid ere en particulier les bases p de R m;1 x] v eri ant des relations r ecurrentes du type suivant:

(1:2) p 0 (x) = 1 p i (x) = 0 i < 0 p i (x) = xp i;1 (x) + Le r esultat que nous etablissons repose sur des techniques similaires a celles utilis ees dans 7], et exploite un r esultat dû a 1 0 ] qui montre qu'une structure de d eplacement simple caract erisant bien les matrices de Vandermonde con uentes peut être construite: Th eor eme 1.1. [START_REF] Kailath | Displacement structure: theory and applications[END_REF]) Soit V c la matrice de Vandermonde con uente donn ee par (1:1) o u p est remplac ee par c: Alors x i 1 0 : : : 0 0 x i 2 : : : 0 0 0 x i . . . . L'id ee cl e consiste a montrer que la matrice de Vandermonde con uente V c est plong ee dans W c'est a dire qu'il existe une matrice de permutation P telle que P W= V c X : Ceci d ecoule de l'observation que la premi ere ligne de la matrice B k (x) (rappelons que B(x i ) = B i ) est form ee de x k et de ses d eriv ees successives kx k;1 ::: En n le th eor eme s'ensuit en appliquant ce plongement a la structure de d eplacement d e W: 2 2. Structure de d eplacement p o u r V p . Soit p une base de R m;1 x] v eri ant la relation r ecurrente (1:2) et soit A = ( a ij ) 0 i j<m la matrice du type m m d e nie comme suit:

p i (x) = m;1 X j=0 a ij x j
Alors, il n'est pas di cile de montrer que:

(2:1)

V p = AV c
Par ailleurs, comme la base p satisfait la relation r ecurrente (1:2) il est l egitime d'esp erer que les el ements a ij de A soient l i es entre eux par une relation r ecurrente analogue. En e et, en identi ant les coe cients de x j dans les deux membres de la relation pr esent ee dans (1:2) on montre facilement que:

(2:2) a ij = a i;1 j;1 + P k;1 s=1 s a i;s j Ces relations sont a la base de notre r esultat. En indroduisant la matrice de d eplacement Z et en observant q u ' i n tuitivement, a ij correspond a A a i;1 j;1 correspond a ZAZ T et a i;s j correspond a Z s A (par convention Z 0 = I m ), on peut enoncer le lemme suivant o u une structure de d eplacement d e A est construite:

Lemme 2.1. Supposons 6 = 0 : Il existe un vecteur g 2 R dn pour lequel la matrice A v eri e la structure de d eplacement s u i v ante:

(2:3) 1 (Z T ; P k;1 s=1 s Z s;1 )A ; AZ T = e m g T : D emonstration. En examinant d e p r es les relations (1:2) et (2:2) il n'est pas di cile de montrer que:

A = ZAZ T + k;1 X s=1 s Z s A + e 1 e T
1 : En multipliant alors les deux membres par Z T et en observant q u e Z T e 1 = 0 e t Z T Z = I m ; e m e T m on obtient: Z T A = (I m ; e m e T m )AZ T + k;1 X s=1 s (I m ; e m e T m )Z s;1 A ce qui peut s' ecrire encore de la mani ere suivante:

(Z T ; k;1 X s=1 s Z s;1 )A ; AZ T = e m g 0T
o u g 0T = ; e T m AZ T ; P k;1 s=1 s e T m Z s;1 A: Le lemme s'ensuit en divisant les deux membres par et en posant g = 1 g 0 : 2 Grâce a ce lemme, on est en mesure d' enoncer le r esultat principal: Th eor eme 2.2. Soit p une base de R m;1 x] v eri ant la relation r ecurrente (1:2) avec 6 = 0 : Alors, la matrice V p donn ee par (1:1) v eri e la structure de d eplacement s u i v ante:

(2:4) 1 (Z T ; P k;1 s=1 s Z s;1 )V p ; k;1 X s=1 s Z s;1 )V p = ( AZ T + e m g T )V c ( on a utilis e ici le fait que V p = AV c ). En appliquant m a i n tenant l e t h eor eme 1.1, on obtient:

1 (Z T ; k;1 X s=1 s Z s;1 )V p = A(V c D + e m y T ) + e m g T V c
Le th eor eme d ecoule directement du fait que A est triangulaire inf erieure avec a ii = i et par cons equent Ae m = m;1 e m : 2

Posons u = 1 (0 ::: 0 k;1 ::: 2 ) T 2 R m et remarquons que:

(2:5) C = 1 (Z T ; P k;1 s=1 s Z s;1 ) + 1 e m e T 1 ; P k;2 s=0 e s+1 u T Z s est une matrice circulante si bien qu'on peut montrer facilement qu'il existe k vecteurs w 1 : : : w k 2 R dn pour lesquels la structure de d eplacement ( 2 :4) de- vient:

(2:6) D emonstration. Le th eor eme s'en d eduit directement e n p r e-multipliant l e s deux membres de la structure (2:6) par F et en observant q u e F C V p = Vp : 2 3. Eliminations de Gauss rapides avec pivotement partiel. Dans cette section, l'objet est de pr esenter une m ethode de triangularisation rapide appliqu ee a V c et plus g en eralement a V p qu'on appelle eliminations de Gauss rapides avec pivotement partiel par analogie au proc ed e classique des eliminations de Gauss avec pivotement partiel (EGPP) utilis e p o u r r esoudre les syst emes lin eaires. On renvoit le lecteur a 3 ] , e n tre autres, o u l a m ethode EGPP est soigneusement d ecrite et analys ee. En ce qui nous concerne, on rappelle juste la premi ere etape de EGPP qui repr esente bien les etapes d'apr es. Soit a appliquer cette m ethode a une matrice r eguli ere M du type m m: Alors dans la premi ere etape de EGPP, on proc ede en deux temps: la matrice M est d'abord multipli ee par une matrice de permutation P de sorte que piv = ( P M ) 1 1 = Ma x f(PM ) i 1 1 i mg:

Ensuite on multiplie P Mp a r l a m a t r i c e J = I m ; 1 piv ge T 1 o u g = P M e 1 est la premi ere colonne de P M :ALors, on v eri e facilement q u e :

(3:1) JPM= piv 0 N : En n du point de vue algorithmique, le but est de calculer et de recouvrir la premi ere ligne de P M :La seconde etape consiste a appliquer cette premi ere etape a la matrice N et de cette fa con même, on d eduit les etapes 3 : : : mde la m ethode EGPP. Il est bien connu que cette m ethode utilise O(n 3 ) m ultiplications ce qui est toutefois un inconv enient une fois la m ethode est appliqu ee a des matrices ayant des formes particuli eres. 

  i;j (x) Notre propos consiste alors a m o n trer que la matrice V p pour une base p v eri ant (1:2) satisfait une structure de d eplacement acceptable. C'est a dire qu'il existe deux `simples' matrices (que nous pr eciserons plus loin) L et U telles que: LV p ; V p U = e m y T o u y 2 R dn et fe 1 : : : e m g d esigne la base canonique de R m : On renvoit le lecteur a 6 ], 11], 1] et au r ecent article de synth ese 9] p o u r p l u s d e d etails concernant les structures de d eplacement. Dans ce contexte, on invoque souvent la matrice de d eplacement d u t ype m m :

  c ; V c D = e m y T o u Z est la matrice de d eplacement d'ordre m et D = diag(B 0 : : : B n;1 ) a vec B i = B(x i )

  V p D = e m z T : o u z = m;1 y + V T c g: y et D etant i n troduits dans le th eor eme 1.1. D emonstration. Au vu de la relation (1:2) v eri ee par la base p on peut a rmer que degp i (x) = i 0 i < m : En cons equence, la matrice A est triangulaire inf erieure, et il est ais e d e m o n trer que a ii = i : D'apr es le lemme pr ec edent, on peut ecrire 1 (Z T ;

  CV p ; V p D = e 1 ::: e k;1 e m ] w 1 ::: w k ] T D'autre part, puisque C est circulante, on peut d eterminer directement s e s valeurs et vecteurs propres. Plus pr ecis ement, on a: (2:7) F C F H = = diag( 1 : : : m ) o u F = 1 p n (e 2 i m kj ) 0 k j<m est la transform ee discr ete normalis ee de Fourier (TDFn), et ( 1 : : : m ) T est la TDFn de la premi ere colonne de C: Ces observations donnent lieu au r esultat suivant o u une structure de d eplacement p o u r Vp = F V p est d eduite: Theorem 2.3. Soit la matrice diagonale d e nie dans (2:7) et posons Vp = F V p F etant la TDFn pr esent ee dans (2:7): Alors (2:8) Vp ; Vp D = f 1 ::: f k;1 f m ] w 1 ::: w k ] T o u f j = F e j :

  Dans ce qui suit, on proc ede a adapter les EGPP dans le cas o u M = V c : D e nition 3.1. La matrice N d e nie dans (3:1) est appel ee le compl ement de Schur de la matrice P M :On note par S(R) l e c o m p l ement d e S c hur (s'il existe) de la matrice R: Ainsi N = S(PM ): 2 Dans notre contexte, l'introduction de cette d e nition a un double int erêt. D'un cot e, le compl ement d e S c hur est, comme on vient d e l e v oir, la pierre de fondation dans le proc ed e des EGPP. De l'autre, on peut dire vaguement q u e l'op erateur S du compl ement d e S c hur est en g en eral invariant par les structures de d eplacement \acceptables". Avant d'exploiter ces observations, nous tenons a faire remarquer d'abord que les EGPP rapides seront appliqu ees plutôt a l a TDFn Vc = F V c de V c qui, elle aussi, est dot ee d'une structure de d eplacement que nous pr esentons dans le r esultat suivant: Th eor eme 3.1. La TDFn Vc = F V c de V c satisfait la structure de d eplacement suivante: (3:2) Vc ; Vc D = fw T o u f = F e m w = y + V T c e 1 et = diag(1 e ; 2 i m : : : e ; 2 i m (n;1) ): D emonstration. En ajoutant e m e T 1 V c dans les deux membres de la structure (1:3) on obtient directement: (Z T + e m e T 1 )V c ; V c D = e m (y T + e m e T 1 V c ) on observe par ailleurs que (Z T + e m e T 1 ) est une matrice circulante et que F (Z T + e m e T 1 )F H = de sorte que si l'on multiplie cette structure par F la relation (3:2) s'ensuit directement. 2 Il importe de remarquer dans ce r esultat et dans le th eor me 2.3, que l'op erateur de Sylvester est du même genre. Appliqu e a une matrice, disons R (dans notre cas R = V c ou V p ), un tel op erateur est de la forme (3:3) Sylv B (R) = R ; RB o u est une matrice diagonale et B une matrice bidiagonale. Pour appliquer les EGPP rapides a Vc notons par CV l'ensemble des matrices R du type s s (s 2 N ) pour lesquelles il exite deux matrices diagonale et bidiagonale B 2 R s s respectivement e t d e u x v ecteurs u v 2 R s tels que: Sylv B (R) = uv T o u Sylv B est d e nie dans (3:3): On voit imm ediatement q u e Vc 2 C V : L'approche rapide des EGPP appliqu ee a Vc est rendue possible grâce aux deux r esultats suivants dûs a 1 ]. Observation 3.2. Soit R une matrice du type s s et appartenant a CV: Alors pour toute matrice de permutation P 2 R s s on a P R2 C V : D emonstration. Elle d ecoule directement du fait que si est une matrice diagonale, alors P P T l'est aussi. 2 Th eor eme 3.3.( 1], 2]) Soit R une matrice du type s s (s 2) appartenant a CV c'est a dire que: R ; RB = uv T Ecrivons par blocs: r 11 6 = 0 de sorte que le compl ement d e S c hur de R existe. Alors le compl ement d e S c hur S(R) d e R appartient a CV: De plus, on a: 0 S(R) ; S (R)B 0 = u 0 1 et v 1 sont respectivement les premi eres composantes de u et de v: 2 Consid erons de nouveau la premi ere etape des EGPP o u l'on avait principalement obtenu la relation (3:1): Dans le cas o u M = V c (ou plus g en eralement M 2 C V ) alors on observe d'abord que P M2 C V d'apr es l'observation 3.2 ensuite compte tenu d u t h eor eme 3.3, N 2 C V puisque N = S(P M ): D'autant plus, le th eor eme 3.3 fournit les formules permettant de construire la structure de N:Pour que la description de la premi ere etape des EGPP rapides soit aussi compl ete que possible, nous n'avons qu' a calculer la premi ere ligne de S(P M ) en vu de recouvrir la matrice triangulaire sup erieure ce qui peut se faire facilement en utisant O ( n) o p erations seulement.

4 .

 4 Conclusion. Dans cet article, nous avons montr e que les matrices p-Vandermonde con uentes satisfont des structures de d eplacement acceptables comparablement a celles construites pour les matrices de Toeplitz ou de Cauchy 6], 4]. Dans ce contexte, on sait qu'une fois une telle structure est etablie, di erentes applications num eriques int eressantes en d ecoulent directement. Par exemple, comme on vient d e l e p r eciser a la troisi eme section, grâce aux structures de d eplacement ( 2 :8) et (3:2) (o u il importe de voir que et sont diagonales), on peut appliquer, avec succ es, aux matrices Vc et Vp par cons equent V c et V p la m ethode rapide de Gauss avec pivotement partiel d evelopp ee par Gohberg et al 1]. Contrairement a l a m ethode classique de Gauss avec pivotement qui exige O(n 3 ) o p erations, la complexit e d e l a m ethode rapide dans 1] e s t d e O((dn) 2 ) pour V c et O(k(dn) 2 ) p o u r V p . De fait, de telles structures ont et e d ej a d evelopp ees dans la lit erature dans le cas non con uent ( v oir 5], 7], 8]). Grâce au th eor eme 1.1 o u une structure de d eplacement pour les matrices de Vandermonde con uentes est con cue 10], nous avons montr e, dans cette note, que les structures d ej a construites pour les matrices p-Vandermonde 8] peuvent être naturellement etendues au cas con uent.