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We study the Best Fit algorithm for on-line bin packing under the distribution in which the item sizes are uniformly distributed in the discrete range f1=k 2= k : : : j = k g. Our main result is that, in the case j = k ; 2, the asymptotic expected waste remains bounded. This settles an open problem of Co man et al 3], and involves a detailed analysis of the in nite multi-dimensional Markov c hain underlying the algorithm.

Introduction

In the one-dimensional bin packing problem, one is given a sequence a 1 : : : a n 2 (0 1] of items and asked to pack t h e m i n to bins of unit capacity in such a w ay as to minimize the number of bins used. This problem is well known to be NP-hard, and a vast literature has developed around the design and analysis of e cient approximation algorithms for it. The most widely studied among these is the Best Fit algorithm, in which the items are packed on-line, with each successive item going into a partially lled bin with the smallest residual capacity large enough to accommodate it if no such bin exists, a new bin is started. The performance of this and other approximation algorithms on a given sequence is typically measured by t h e waste, w h i c h is the di erence between the number of bins used by the algorithm and the sum of the sizes of all the items.

Best Fit was rst analyzed in the worst case by Johnson et al 8], who proved that the waste is never more than a factor 0.7 of the sum of the item sizes. When items are drawn from the uniform distribution on (0 1], the expected waste of Best Fit was shown by Shor 11] to be (n 1=2 log 3=4 n). Thus among on-line algorithms Best Fit is currently the best available, in the sense that no algorithm is known which beats it both in the worst case and in the uniform average case. This, together with its intuitive appeal and ease of implementation, make it the algorithm of choice in most applications.

With the goal of achieving a better understanding of the Best Fit algorithm, researchers have recently considered its behavior under various other input distributions, notably the class of discrete distributions Ufj kg for integers j < k . Here the item sizes, instead of being chosen from the continuous real interval (0 1], are selected uniformly from the nite set of equally spaced values i=k, f o r 1 i j. Equivalently, w e m a y think of the bins as having capacity k and the item sizes being uniformly distributed on the integers f1 : : : j g. This family of distributions is of interest for two reasons. Firstly, it is an important step towards exploring the robustness of Best Fit under non-uniform distributions (because the distribution is biased towards smaller items) and secondly it applies to the more realistic case of discrete rather than continuous item sizes. (For more extensive b a c kground, the reader is referred to 3] and the upcoming survey by Johnson.) Very little is known in rigorous terms about the performance of Best Fit under this distribution, with the exception of a few extreme cases: when j = k ; 1, the behavior can be readily related to that for the continuous distribution on (0 1], yielding expected waste (n 1=2 ) 2] and if j is very small compared to k (speci cally, i f j p 2k + 2 :25 ;1:5) then the expected waste is known to be bounded by a constant a s n ! 1 2]. The expected waste is also easily seen to be bounded when j 2 for all k > j + 1 .

Nonetheless, there is much experimental evidence to suggest that the behavior of Best Fit for various pairs (j k) is complex and interesting. For example, it appears that the waste remains bounded when j is su ciently close to k or to 1, but that it grows linearly when the ratio j=kis close to a critical value around 0:80. Moreover, in all cases (except j = k ; 1) where the waste is unbounded it appears to grow linearly with n. Some large scale simulation results, together with some conjectures, are described in 3].

In an attempt to explain this behavior, Co man et al introduced an interesting approach based on a view of the algorithm as a multi-dimensional Markov c hain 3]. The states of the chain are positive i n teger vectors (s 1 : : : s k;1 ), where s i represents the current n umber of open bins of residual capacity i. Note that such a v ector contains all relevant information about the state of the algorithm: in Best Fit, the ordering on the open bins is insigni cant, and since we are measuring waste we need not concern ourselves with bins that have already been lled. It is a simple matter to write down the new vector s 0 that results from the arrival of any item i 2 f 1 : : : j g since each item arrives with probability 1 =j, this immediately gives the transition probabilities of the chain. (See Section 2.1 below for a more formal de nition.) Thus we h a ve a M a r k ov c hain on the in nite (k ;1)-dimensional space Z k;1 + . The expected waste of Best Fit is intimately related to the asymptotic behavior of this chain.

We note in passing that similar Markov c hains have been an object of study in queueing theory for over four decades in computer science, they have also received attention in the stochastic analysis of packet routing 9]. Despite this extensive body of research few general analytical tools exist, and even the simplest questions, such a s s h o wing ergodicity, seem hard to answer. The most notable exception is the method of constructive use of Lyapunov functions, developed in recent y ears mainly by Malyshev, Menshikov a n d F ayolle (see 4] for a comprehensive a c c o u n t). The range of situations in which they are able to apply their method appears to be quite limited, however the highlights are a complete classi cation of two-and three-dimensional jumpbounded Markov c hains (i.e., the transitions are limited to geometrically close states). Obviously, the Markov c hains that arise in the analysis of Best Fit are jump-bounded, but of much higher dimension.

This was the starting point for Co man et al, who proceeded to analyze the Best Fit Markov c hain for small values of j and k, using a novel approach. In the absence of analytical tools for high dimensional Markov c hains, they used a computer program to search in an appropriate class of functions for a L y apunov function (i.e., a potential function obeying certain properties, notably a systematic expected drift over some bounded number of steps). The existence of a suitable Lyapunov function for a given pair (j k) implies bounded or linear waste. Co man et al were able to classify the waste as bounded or linear for values of k up to 14 and most corresponding values j < k ; 1. This approach, while interesting, su ers from several obvious drawbacks, as observed by the authors themselves. Evidently, there is no prospect that this method can lead to proofs for in nite sequences of (j k) pairs in fact, the time and space resources consumed by the search m a k e it infeasible to extend the study beyo n d a v ery small nite range of values for j and k. P erhaps most importantly, the technique seems to yield almost no useful insight i n to why the algorithm performs as it does: for example, the Lyapunov function that proves bounded waste for j = 5 , k = 7 is a linear function based on 23 steps of the Markov c hain, while that for j = 7 , k = 10 is a 15-step quadratic function, neither of which has any i n tuitive basis.

In this paper, we aim at analytical results on the behavior of Best Fit for an in nite sequence of values (j k). Speci cally, w e explore the line j = k ; 2, the \smallest" interesting case beyond j = k ; 1, which i s t h e discrete analog of the continuous uniform distribution. Co man et al exhibit computer proofs that the waste is bounded in this case for k 10, and also conjecture on the basis of simulations that the waste is bounded for larger values of k. Our main result proves this conjecture for all k:

Theorem 1 The expected waste of the Best Fit algorithm under the discrete uniform distribution Ufk ; 2 k g is bounded for all k. Note the dramatic contrast with the apparently very similar case j = k ; 1, in which the waste grows unboundedly with n.

Of at least as much i n terest as this result itself, in our view, are the techniques we use to prove it. Our starting point is again the multi-dimensional Markov c hain of Co man et al. H o wever, we d e v elop an alternative view of the chain that seems rather easier to visualize: in this view, the state s of the chain at any time is represented by k ; 1 tokens placed on the non-negative integers, with token i at position s i . The tokens move around as a dynamical system under the in uence of item insertions. With the aid of this view, and the intuition that comes with it, we are able to design an explicit Lyapunov function that proves bounded waste for all pairs (j k) with j = k ; 2.

The analysis of the Lyapunov function is somewhat subtle, which perhaps explains why it had not been discovered before. In order to establish the drift in the Lyapunov function, we h a ve to consider T(j) steps of the Markov chain, where T(j) is an exponential function of j the drift is proved by a detailed comparison of the Lyapunov function with symmetric random walk on the non-negative i n tegers. More speci cally, w e are able to relate the projections of the multi-dimensional chain onto the individual coordinates to one-dimensional symmetric random walks that are biased by a limited adversary. T h i s a d v ersary model corresponds to a worst case assumption on the e ect of other coordinates, and we believe it to be of independent i n terest.

It is similar in avor to, but di ers essentially from, the biased random walk model considered by Azar et al 1] in a di erent c o n text. The model in 1] is allowed to bias the transition probabilities slightly on every step, whereas our adversary may i n tervene overwhelmingly but only on a limited number of steps. The techniques required to analyze the two m o d e l s s e e m t o b e v ery di erent.

In addition to settling an open problem posed in 3], our result, more signi cantly, is the rst proof that exploits the detailed structure of the multidimensional Markov c hain, and thus the rst that provides an understanding of its behavior. We are optimistic that our techniques can be extended to analyze the Best Fit Markov c hain for other pairs of values (j k), and perhaps also to other situations in the analysis of algorithms in which homogeneous multi-dimensional Markov c hains of this kind arise.

The remainder of this paper is structured as follows. In Section 2 we introduce the token model as a convenient representation of the Markov c hain underlying the algorithm, and establish various fundamental properties of it. In Section 3 we construct our Lyapunov function and analyze its behavior using comparisons with symmetric random walks.

The token model 2.1 De nitions

As advertised in the Introduction, we describe the behavior of the Best Fit algorithm over time in terms of the evolution of a dynamical system. In this system, k ; 1 tokens move among the non-negative i n teger points under the in uence of item insertions, as follows. The tokens are labeled 1 2 : : : k ;1. At a n y time instant t, the position of token i is the number of open bins at time t with residual capacity exactly i. W e shall denote the state of the system at time t by s(t) = ( s 1 (t) : : : s k;1 (t)), a vector random variable taking values in Z k;1 + . Initially, the state of the system is s(0) = (0 : : : 0), re ecting the fact that there are no open bins. Now suppose the state of the system at time t is s(t) and the next item to be inserted is `, where 1 ` j. Let i be the smallest index such t h a t i `and s i (t) > 0, if such exists: in this case, the algorithm inserts item ìnto a bin with capacity i, s o w e h a ve s i (t + 1 ) = s i (t) ; 1 and, if i > , s i;`( t + 1 ) = s i;`( t) + 1 all other components of s(t) are unchanged. If no such i exists, then the algorithm inserts item `into an empty b i n , s o w e h a ve s k;`( t + 1 ) = s k;`( t) + 1 and all other components of s are unchanged. This completes the description of the dynamical system. Note that the above system is nothing other than a convenient pictorial representation of a multi-dimensional Markov c hain, with state space Z k;1 + , in which token i executes a random walk in dimension i. The motions of individual tokens are, of course, not independent. However, the transition probabilities of any g i v en token at any time depend only on which o f t h e tokens are at zero at that time, i.e., on the set fi : s i = 0 g. This is an important property w h i c h makes analysis of the chain feasible.

Our goal will be to investigate the behavior of the waste in the algorithm after packing t items, which in this model is de ned as the number of (nonfull) open bins, i.e., P k;1 i=1 s i (t). In particular, we will be concerned with determining, for particular pairs (j k), whether or not the waste remains bounded for an in nite stream of items, i.e., as t ! 1 .

Classi cation of tokens

It will be convenient for us to partition the tokens into two classes, which we will call \large" and \small." This idea is motivated by the fact that tokens behave i n t wo distinct ways, as we shall see in a moment. The small tokens are tokens i with 1 i d j 2 e. The large tokens are tokens k ; i with 1 i d j 2 e. Note that the numbers of small and large tokens are equal. In the case that j is even there is an additional token, namely d j 2 e + 1 ,w h i c h i s neither small nor large: we c a l l t h i s t h e middle token. We rst establish a fundamental constraint on the states that are reachable from the initial state s(0). This fact is implicit in 3] the proof is a straightforward induction on time which w e omit from this abstract. The reader may enjoy guring it out. Proposition 2 State s is reachable from the initial state s(0) only if 1. i + i 0 k =) s i = 0 or s i 0 = 0 . (I.e., no two tokens whose index sum is k or greater can simultaneously be a t n o n -z e r o p ositions.)

P

i not small s i 1. (I.e., the large and middle tokens cannot move beyond position 1 moreover, at most one of them can be a w a y f r om zero a t any time.) It is not hard to see that all states satisfying the conditions of Proposition 2 are in fact reachable from the initial state. From now o n , w e shall therefore assume that the state space of our Markov c hain is precisely this set S of reachable states.

The above proposition expresses general constraints on the motions of the tokens. In the following three subsections, we establish further properties of the behavior of tokens under certain assumptions about the distribution of other tokens. These properties will be used in our analysis in the next section.

Behavior of large and middle tokens

We h a ve already seen that the large and middle tokens behave in an extremely restricted fashion. Their behavior becomes even more restricted under the condition that s dj=2e > 0. This condition will arise naturally in our analysis in the next section.

Proposition 3 Suppose that s dj=2e remains strictly positive throughout some time interval. Then during this interval: all large tokens remain at zero the middle token (if it exists) oscillates between 0 and 1 independently of the positions of all other tokens.

Proof. The rst claim is immediate from condition 1 of Proposition 2. To see the second claim, note that, because all larger tokens are at zero, insertions of item d j 2 e + 1 are placed alternately in an empty bin (thus creating a bin with capacity d j 2 e+1) and in this newly opened bin. No other insertions can a ect token d j 2 e + 1 , w h i c h therefore oscillates between 0 and 1 as claimed.

In view of the second claim of Proposition 3, we will assume from now on that j is odd, so that there is no middle token to worry about. This assumption is justi ed because our analysis will hinge on the behavior of the system when s dj=2e > 0 but Proposition 3 then tells us that the behavior of the middle token under this condition is degenerate. With this observation, the argument w e will give f o r j odd trivially extends to the case when j is even.

Behavior of small tokens

Most of this paper is concerned with the detailed behavior of the small tokens: since the other tokens remain very severely bounded, it is really only the small tokens that are interesting from the point of view of the asymptotic behavior of the algorithm. In the next proposition, we isolate an essential feature of the motion of the small tokens under a certain condition that will again arise naturally from our analysis in the next section.

Proposition 4 Let i be a small token. If s i;1 is strictly positive throughout some time interval, then during this interval the motion of token i has the following properties: Property A When s i is not at zero, it executes random walk on the positive integers with non-negative drift and holding probability at most 1 ; 2 j .

Property B The time spent by s i on each visit to zero i s s t o chastically dominated b y a r andom variable D with constant expectation (that depends only on j).

Proof. Consider rst the case when s i > 0. Since s i;1 > 0 , t h e o n l y w ay in which s i can decrease is through the insertion of item i. On the other hand, s i will certainly increase on insertion of item k ; i to see this, note from condition 1 of Proposition 2 that s i 0 = 0 for all i 0 k ; i, s o t h e algorithm must insert item k ; i into an empty b i n . Hence s i decreases with probability 1 j and increases with probability a t l e a s t 1 j , which is exactly equivalent to Property A . Now consider what happens when s i = 0 . If s i 0 = 0 f o r a l l i 0 k ; i, then as above w e can conclude that s i moves to 1 with probability at least 1 j . However, now w e cannot exclude the possibility t h a t s k;i = 1 , i n w h i c h c a s e item k ; i will be inserted into the bin with capacity k ; i so s i cannot leave 0 . On the other hand, in this situation we see that two consecutive insertions of item k ; i will certainly have the e ect of moving s i to 1. This crude argument indicates that the time spent b y token i at 0 is stochastically dominated by the random variable D de ned as follows over the sequence of item insertions immediately following the arrival of i at 0: D = 1 if rst insertion is k ; i N otherwise, where N is the numbers of insertions until the rst pair of consecutive i nsertions of k ; i has occurred. Notice that the events that item k ; i is inserted at time t are mutually independent for all t, and all have probability 1 j . Hence it is easy to see that the tail of D has the form Pr D > n ] n for some constant > 1 that depends only on j. This in turn implies that the expectation of D is bounded above b y a constant that depends only on j.

Behavior of the waste

In this subsection, we i n vestigate what happens to the waste in the system, again under the assumption that s dj=2e > 0. De ne f(t) = P dj=2e i=1 is i (t), which is essentially just the waste due to the small toke n s a t t i m e t (weighted by coe cients in a bounded range). By Proposition 2, the total waste is bounded above b y f(t) + 1. The following proposition shows that f(t) has negative drift under our assumption about s dj=2e .

Proposition 5 Suppose that s dj=2e (t) > 0. Then E f(t + 1 ) ; f(t) j f(t)] = ;1=j.

Proof. For all i = 1 2 : : : d j 2 e, de ne f i (t) = is i (t)+(i;1)s i;1 (t)+ +s 1 (t). Thus, f(t) = f dj=2e (t). For all i = 1 2 : : : d j 2 e, de ne the set of i-requests to be f1 2 : : : i g f k ; i k ; i + 1 : : : k; 2g. This is the set of all items that can potentially be absorbed by a bin with capacity i 0 , 1 i 0 i, o r c a n create a new bin with such a capacity from an empty b i n . W e will prove: Claim Let i 2 f 1 2 : : : d j 2 eg. I f s i (t) > 0 then the expected change in f i due to i-requests is ;1=j. The Proposition follows from this Claim with i = d j 2 e, since the set of d j 2 erequests is the entire set of items. To p r o ve the Claim, we proceed by i n d u ction on i:

Basis: i = 1 . f 1 (t) = s 1 (t). The only 1-request is 1. Its contribution to the expected change in f 1 is ;1=j, since it arrives with probability 1 =j and causes s 1 to decrease by 1 . Inductive step: Assume the Claim holds for i. We s h o w that it holds for i + 1 .L e t i 0 < i + 1 be the largest index such t h a t s i 0 (t) > 0 set i 0 = 0 if all these tokens are at 0. We consider two c a s e s : Case 1: i 0 > 0. By the inductive h ypothesis, the i 0 -requests cause an expected change of ;1=j in f i 0 . Consider the remaining items in the set of (i + 1)requests in pairs i 00 , k ; i 00 , i 0 < i 00 i + 1 . For i 00 = i + 1, both items a ect only s i+1 and they cancel each other's contribution. For i 00 < i + 1 , item i 00 reduces s i+1 by 1 and increases s i;i 00 +1 by 1, so its contribution is (;(i + 1 ) + ( i ; i 00 + 1 ) ) =j = ;i 00 =j. On the other hand, item k ; i 00 causes a new bin of capacity i 00 to be created (since s i+1 (t) > 0, there are no open bins of capacity k ; i ; 1), so its contribution is + i 00 =j, and the total contribution of the pair is again 0. Case 2: i 0 = 0 . P air the requests as before for 1 < i 00 i + 1: again, each pair's contribution is 0. The remaining item, of size 1, causes a decrease of 1 in s i+1 and an increase of 1 in s i . Its contribution to f i+1 is therefore

(;(i + 1 ) + i)=j = ;1=j.
This completes the proof of the Claim, and hence of the Proposition.

Analysis of the Markov c hain

This section is devoted to proving our main result, Theorem 1 stated in the Introduction. Our proof makes use of the following result of 4], which establishes a general condition, in terms of the existence of a suitable Lyapunov function, for a multi-dimensional Markov c hain to be ergodic. For more specialized variations on this theme, see 6, 10, 1. There a r e C 1 >0 such that (s) > C 1 ksk for all s 2 S.

2. There i s C 2 > 0 such that p b ss 0 = 0 whenever j (s) ; (s 0 )j > C 2 , for all s s 0 2 S.

3. There is a nite B S and > 0 such that P s 0 2S p b ss 0 ( (s 0 ) ; (s)) < ; for all s 2 S n B. Then M is ergodic with stationary distribution satisfying (s) < C e ; (s) for all s 2 S, where C and are p ositive constants.

To i n terpret this lemma , v i e w a s a p o t e n tial function that maps the state space to the non-negative reals, so that the image of the Markov c hain under becomes a dynamical system on the real line. Condition 2 requires this process to be well-behaved, in the sense that it has bounded variation. The key is condition 3, which s a ys that, except for a nite set of states, has negative drift over an interval of some constant length b. This implies that M is ergodic with a stationary distribution that decays exponentially with .

In our application, M will be the Markov c hain that governs the movements of the tokens, whose state space is the subset S of Z k;1 + de ned by Proposition 2, and will be the function (s) = 1 + P dj=2e i=1 is i . (Note that is essentially just the function f of Proposition 5.) It is clear that conditions 1 and 2 hold for this , with any c hoice of constant b. All our work will be devoted to proving the negative drift condition 3, for suitably chosen b, B and . Note that Theorem 1 will then follow immediately, since the asymptotic waste is bounded above b y P s2S (s) (s), which b y Lemma 6 is bounded.

The following is an informal sketch of our strategy for proving condition 3: (i) We consider an interval of length b, and show that has negative drift over this interval provided it is large enough at the start of the interval: i.e., we will take B to be the nite set of points on which is \small."

Thus for s 2 S n B, w e can be sure that, for some small token i, s i is large at the start of the interval, and hence positive throughout the interval. (ii) Since s i > 0 throughout the interval, by Proposition 4 the motion of s i+1 is a symmetric r a n d o m w alk: hence the time that s i+1 spends at 0 during the interval is small (about const p b).

(iii) Iterating this argument, appealing to Proposition 4 each time, we c a n conclude that each of the tokens s i+2 : : : s dj=2e spends little time at 0. (iv) Finally, since we h a ve established that s dj=2e > 0 during most of the interval, Proposition 5 tells us that f (and hence ) has negative drift on most steps, and hence an overall negative drift over the entire interval. The tricky part of the above argument is step (iii): at each stage we n e e d to use the fact that s i 0 > 0 to deduce from Proposition 4 that s i 0 +1 behaves like a symmetric r a n d o m w alk. However, occasionally s i 0 will be at 0, and at these times we h a ve n o c o n trol over the motion of s i 0 +1 . We t h e r e f o r e assume that s i 0 +1 behaves like a symmetric random walk most of the time, but that an adversary is able to control its motion on a small number of steps. Accordingly, w e need to prove a lemma that quanti es the e ect that such a n a d v ersary can have on the amount o f t i m e s i 0 +1 spends at 0. This we n o w d o .

Consider a symmetric random walk on 0 1) of a given length, started at some speci ed position, and an adversary whose goal is to maximize the number of times the walk hits 0.1 The adversary is allowed to intervene at some speci ed number of steps, selected according to any strategy: on these steps, the adversary may specify any desired probability distribution on the legal moves of the process from the current state on all other steps, the process behaves as a symmetric random walk with a perfectly re ecting barrier at 0. It is perhaps not surprising that the optimal strategy for the adversary is always to intervene by driving the process deterministically t o wards the origin, and to use up all these interventions as early as possible. However, this claim requires some justi cation, which w e n o w p r o vide. Lemma 7 Let p(i n y m) be the probability that a symmetric random walk of n steps, starting at i and with y adversary steps, hits the origin at least m times. Let q(i n y m) be the same quantity for the particular adversary strategy in which downward steps are u s e d a s e arly as possible. Then p(i n y m) q(i n y m) for all i n y m.

To p r o ve Lemma 7, we need a simple technical observation about symmetric random walk. Proposition 8 Let p 0 (i n m) = p(i n 0 m ) denote the probability that an unbiased r andom walk of length n started a t i hits 0 at least m times. Then p 0 (2 n m ; 1) p 0 (1 n + 1 m ). Proof. Let W 2 be the random walk started from 2 and W 1 the random walk started from 1. Consider the rst time T when W 2 reaches 1, and the rst time T 0 when W 1 reaches 1 by a 0 ! 1 transition. Then it is easy to see that T 0 is equal to T + 1 in distribution. The remainder of W 2 after T is a random walk started at 1 which m ust have at least m;1 hits. The remainder of W 1 after T 0 is also a random walk started at 1 which m ust have at least m ; 1 hits. Thus if m > 1, the probabilities are the same for both walks (conditioning on the event T = T 0 ; 1 n), and if m = 1 , w e trivially have p 0 (2 n 0) = 1 p 0 (1 n+ 1 1).

We n o w p r o ve Lemma 7. We will consider only deterministic strategies: the randomized case will follow b y a veraging.

Proof of Lemma 7 . We use induction on n. Let D y R denote the strategy which uses the y forced down steps as soon as possible, and then follows the unbiased random walk. Let RD y denote the strategy which starts with a truly random step as soon as possible, and then uses the y forced down steps as soon as possible. Notice that a transition from 0 to 1 is neither a forced down step (obviously) nor a truly random step, since it has probability 1 . Let q(i n y m) denote the probability t h a t t h e w alk of length n de ned by the strategy D y R, started at i and with y forced down steps has at least m hits let r(i n y m) be de ned similarly for the strategy RD y . W e claim that q(i n y m) r(i n y m) (1) Note that the lemma will then follow b y induction on n: consider the rst time the adversary may i n tervene. Either way, after this step we are left to deal with fewer than n steps. If the adversary does force a down step, by induction the best strategy to continue is D y;1 R, so the strategy for the entire walk is D y R. If the adversary does not intervene, using induction again, the best strategy to continue is D y R, so the strategy for the entire walk is RD y R = RD y . Inequality (1) shows that the strategy D y R is better than RD y .

To prove ( 1 ) , w e also use induction on n. I f i = 0, both strategies start the same way and we are done by induction. If i y + 1, both strategies denote the time spent a t z e r o b y token i during the interval 0 T ]. Clearly T 1 = 0 with probability 1 .

Next let us consider the behavior of the sequence s 2 . Consider a modi ed process s 0 2 which is de ned as follows. First, run s 2 for T steps. Then, have the token s 0 2 follow a n u n biased random walk with a holding time at zero distributed according to D. F i n a l l y , delete from s 0 2 all stationary steps at 0. Let T 0 2 be the number of hits on 0 of s 0 2 during the time interval 0 T ]. Then we h a ve T 2

T 0 2 +1 X r=1 D r (2) 
where the D r are i.i.d. with the same distribution as D, a n d T 0 2 is independent of all of the D r .

To analyze T 0 2 , w e compare it with U, the number of hits on 0 of symmetric random walk with perfectly re ecting barrier at 0. By Proposition 9, T 0 2 is stochastically dominated by U. Taking expectations in (2) and using this observation, we get (3)

Now our adversary argument, Lemma 7, implies that T 0 `is stochastically dominated by U + T `;1 . T o see this, note that Pr T 0 ` m j T `;1 = y] p(s `(0) T y m ) q(s `(0) T y m ) Pr U m;y]: Actually we w i l l w ork with the function f of Proposition 5, which i s j u s t o n e less than .

The assumption that (s(0)) > T + 1 implies that there is a token s i , with i d j 2 e, such that s i (0) > T = j 2 . T h e n b y Lemma 10, with probability at least 1 ; C=a we h a ve s dj=2e > 0 at all but at most a q T=j 2 time instants in the time interval 0 T = j 2 ]. Now consider the change f in f after one step. By Proposition 5, if s dj=2e > 0 then E f ; 1=j. In all other situations, there is the trivial bound E f j. Putting these facts together, and conditioning on the event A that s dj=2e > 0 at all but at most a q T=j 2 time instants in the interval, we see that the drift of f over the entire interval 0 T = j 2 ] i s E f(b) ; f(0) j f( 0 + C a T j : By taking a large enough, and then T large enough, we can make this expression less than some negative constant .

This completes the veri cation of condition 3, and hence the proof of the theorem.

. Lemma 6 4 ,

 4 Corollary 7.1.3] Let M be a Markov chain with state space S Z k , and b a p ositive integer. Denote by p b ss 0 the transition probability from s to s 0 in M b , the b-step version of M. L et : S ! R + be a nonnegative real-valued function on S, which satis es the following conditions:

  ] (EU + 1 ) E D = d(EU + 1 )where the constant d is the expectation of D from Proposition 4. Now consider token s `, where 3 ` d j 2 e. De ne a modi ed process s 0 ànd a random variable T 0 `similar to the fashion that s 0 2 and T 0 2 were de ned. By analogy with (2) we m a y write

  )] E f(b) ; f(0) j f(0) Â ] + ( 1 ; Pr A]) E f(b) ; f(0) j f(0) : A ]

Throughout, for convenience, we shall take \hits 0" to mean \makes the transition 0 ! 1."
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give the same distribution of positions after y + 1 steps, and neither has hit 0 y et, so the two q u a n tities are equal. The interesting case is for 1 i y.

Then, let n 0 = n ; (2y ; i + 2 ) a n d m 0 = m ; (y ; i + 1). It is easy to see that q(i n y m) = 1 2 p 0 (0 n 0 m 0 ) + 1 2 p 0 (2 n 0 m 0 ) and r(i n y m) = 1 2 p 0 (0 n 0 m 0 ) + 1 4 p 0 (0 n 0 m 0 + 1 ) + 1 4 p 0 (2 n 0 m 0 + 1 ) : Since p 0 (1 n 0 +1 m 0 +1)= 1 2 (p 0 (0 n 0 m 0 +1)+p 0 (2 n 0 m 0 +1)), the di erence is q ; r = 1 2 p 0 (2 n 0 m 0 ) ; p 0 (1 n 0 + 1 m 0 + 1 ) which is non-negative b y Proposition 8.

In order to relate the above a d v ersary result to our process, we need an elementary technical fact. Consider an arbitrary stochastic process over the non-negative i n tegers. Assume it has arbitrary holding probabilities except at 0, where the holding probability is 0, and non-negative drift everywhere. Let Z denote the number of hits on 0 during the rst T steps of this process. Let U be the similar quantity for the symmetric r a n d o m w alk with perfectly re ecting barrier at 0, starting at the same point. The following fact can be proved by a simple coupling argument, which w e omit from this abstract. Proposition 9 Z is stochastically dominated b y U.

We are now in a position to proceed with the proof of our main result, following the sketch given after Lemma 6. As observed there, the main di culty lies in step (iii): assuming that s i > 0 throughout some interval, we w ant to conclude that s dj=2e > 0 during most of that interval. This is the subject of our next lemma, which makes essential use of the above a d v ersary lemma.

Lemma 10 Let T and a be p ositive constants, and suppose that s i (0) > T . With probability at least 1 ; C=a, where C is a constant that depends only on j, s dj=2e (t) is strictly positive at all but a p T time instants t within the interval 0 T ].

Proof. We will prove the claim for i = 1. The proof for general i is exactly the same. So, assume that s 1 (0) > T . F or each i, let the random variable T i Taking expectations in equation (3), and using this fact, we get ET ` (EU + E T `;1 + 1)ED = d(EU + E T `;1 + 1 ) :

Iterating this bound, and using the base case ( 3 Remarks: (a) The above proof actually demonstrates the stronger conclusion that s i 0 (t) > 0 for all i 0 in the range i i 0 d j 2 e, for a similar majority of the interval. (b) It is interesting to note that the only properties of the sequence s(t) we h a ve used in the above proof are properties A and B of Proposition 4. Thus Lemma 10 actually applies to any s e q u e n c e o f v ector random variables satisfying these rather natural properties. We believe that this fact may b e of independent i n terest. We are nally in a position to complete the proof of Theorem 1, following our earlier sketch.

Proof of Theorem 1. Recall from the discussion immediately following the statement of the theorem that it su ces to show that condition 3 of Lemma 6 holds for the function (s) = 1 + P dj=2e i=1 is i , with suitable choices of b, B and . The set B S will be de ned as B = fs 2 S : f(s) T + 1 g where T is some constant to be speci ed shortly.

Assume that s = s(0) 2 SnB, i.e., that (s(0)) > T +1. De ne b = T=j 2 , and consider the time interval 0 b ]. We will show that the expected drift of over this interval is less than ; for some > 0, thus establishing condition 3.