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Abstract

We study the Best Fit algorithm for on�line bin packing under the
distribution in which the item sizes are uniformly distributed in
the discrete range f��k� ��k� � � � � j�kg� Our main result is that�
in the case j � k � �� the asymptotic expected waste remains
bounded� This settles an open problem of Co	man et al 
���
and involves a detailed analysis of the in
nite multi�dimensional
Markov chain underlying the algorithm�

Keywords� Best Fit� Bin�Packing� On�line Algorithms� Average�Case Anal�
ysis� Markov Chains

R�esum�e

Nous �etudions l�algorithme �Meilleur choix� pour le probl�eme de
la mise en bo��tes en�ligne lorsque les donn�ees sont tir�ees de fa�con
al�eatoire uniforme dans l�ensemble f��k� ��k� � � � � j�kg� Notre r�e�
sultat principal est que� dans le cas j � k � �� l�espace moyen
perdu reste asymptotiquement born�e� Ceci r�esoud un probl�emede
Co	man et al� � et utilise une analyse d�etaill�ee de la cha��ne de
Markov in
nie multi�dimensionnelle sous�jacente �a l�algorithme�

Mots�cl�es� Mise en Bo��tes� Algorithmes En�Ligne� Analyse en Moyenne�
Cha��nes de Markov�



Biased Random Walks� Lyapunov Functions�

and

Stochastic Analysis of Best Fit Bin Packing

Claire Kenyon� Yuval Rabaniy Alistair Sinclairz

� Introduction

In the one�dimensional bin packing problem� one is given a sequence a�� � � � � an �
��� �� of items and asked to pack them into bins of unit capacity in such a way
as to minimize the number of bins used� This problem is well known to be
NP�hard� and a vast literature has developed around the design and analysis
of e�cient approximation algorithms for it� The most widely studied among
these is the Best Fit algorithm� in which the items are packed on�line� with
each successive item going into a partially 
lled bin with the smallest residual
capacity large enough to accommodate it� if no such bin exists� a new bin
is started� The performance of this and other approximation algorithms on
a given sequence is typically measured by the waste� which is the di	erence
between the number of bins used by the algorithm and the sum of the sizes
of all the items�

Best Fit was 
rst analyzed in the worst case by Johnson et al 
��� who
proved that the waste is never more than a factor ��� of the sum of the item
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sizes� When items are drawn from the uniform distribution on ��� ��� the
expected waste of Best Fit was shown by Shor 
��� to be ��n��� log��� n��
Thus among on�line algorithms Best Fit is currently the best available� in
the sense that no algorithm is known which beats it both in the worst case
and in the uniform average case� This� together with its intuitive appeal and
ease of implementation� make it the algorithm of choice in most applications�

With the goal of achieving a better understanding of the Best Fit algo�
rithm� researchers have recently considered its behavior under various other
input distributions� notably the class of discrete distributions Ufj� kg for in�
tegers j � k� Here the item sizes� instead of being chosen from the continuous
real interval ��� ��� are selected uniformly from the 
nite set of equally spaced
values i�k� for � � i � j� Equivalently� we may think of the bins as having
capacity k and the item sizes being uniformly distributed on the integers
f�� � � � � jg� This family of distributions is of interest for two reasons� Firstly�
it is an important step towards exploring the robustness of Best Fit under
non�uniform distributions �because the distribution is biased towards smaller
items�� and secondly it applies to the more realistic case of discrete rather
than continuous item sizes� �For more extensive background� the reader is
referred to 
�� and the upcoming survey by Johnson��

Very little is known in rigorous terms about the performance of Best Fit
under this distribution� with the exception of a few extreme cases� when
j � k � �� the behavior can be readily related to that for the continuous
distribution on ��� ��� yielding expected waste ��n���� 
��� and if j is very
small compared to k �speci
cally� if j � p

�k � ��������� then the expected
waste is known to be bounded by a constant as n � � 
��� The expected
waste is also easily seen to be bounded when j � � for all k � j � ��

Nonetheless� there is much experimental evidence to suggest that the
behavior of Best Fit for various pairs �j� k� is complex and interesting� For
example� it appears that the waste remains bounded when j is su�ciently
close to k or to �� but that it grows linearly when the ratio j�k is close to a
critical value around ����� Moreover� in all cases �except j � k � �� where
the waste is unbounded it appears to grow linearly with n� Some large scale
simulation results� together with some conjectures� are described in 
���

In an attempt to explain this behavior� Co	man et al introduced an in�
teresting approach based on a view of the algorithm as a multi�dimensional
Markov chain 
��� The states of the chain are positive integer vectors
�s�� � � � � sk���� where si represents the current number of open bins of residual
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capacity i� Note that such a vector contains all relevant information about
the state of the algorithm� in Best Fit� the ordering on the open bins is in�
signi
cant� and since we are measuring waste we need not concern ourselves
with bins that have already been 
lled� It is a simple matter to write down
the new vector s� that results from the arrival of any item i � f�� � � � � jg�
since each item arrives with probability ��j� this immediately gives the tran�
sition probabilities of the chain� �See Section ��� below for a more formal
de
nition�� Thus we have a Markov chain on the in
nite �k����dimensional
space Zk��

� � The expected waste of Best Fit is intimately related to the
asymptotic behavior of this chain�

We note in passing that similar Markov chains have been an object of
study in queueing theory for over four decades� in computer science� they
have also received attention in the stochastic analysis of packet routing 
���
Despite this extensive body of research few general analytical tools exist� and
even the simplest questions� such as showing ergodicity� seem hard to answer�
The most notable exception is the method of constructive use of Lyapunov
functions� developed in recent years mainly by Malyshev� Menshikov and Fay�
olle �see 
�� for a comprehensive account�� The range of situations in which
they are able to apply their method appears to be quite limited� however� the
highlights are a complete classi
cation of two� and three�dimensional jump�
bounded Markov chains �i�e�� the transitions are limited to geometrically close
states�� Obviously� the Markov chains that arise in the analysis of Best Fit
are jump�bounded� but of much higher dimension�

This was the starting point for Co	man et al � who proceeded to analyze
the Best Fit Markov chain for small values of j and k� using a novel approach�
In the absence of analytical tools for high dimensional Markov chains� they
used a computer program to search in an appropriate class of functions for
a Lyapunov function �i�e�� a potential function obeying certain properties�
notably a systematic expected drift over some bounded number of steps��
The existence of a suitable Lyapunov function for a given pair �j� k� implies
bounded or linear waste� Co	man et al were able to classify the waste as
bounded or linear for values of k up to �� and most corresponding values
j � k � ��

This approach� while interesting� su	ers from several obvious drawbacks�
as observed by the authors themselves� Evidently� there is no prospect that
this method can lead to proofs for in
nite sequences of �j� k� pairs� in fact� the
time and space resources consumed by the search make it infeasible to extend

�



the study beyond a very small 
nite range of values for j and k� Perhaps
most importantly� the technique seems to yield almost no useful insight into
why the algorithm performs as it does� for example� the Lyapunov function
that proves bounded waste for j � �� k � � is a linear function based on ��
steps of the Markov chain� while that for j � �� k � �� is a ���step quadratic
function� neither of which has any intuitive basis�

In this paper� we aim at analytical results on the behavior of Best Fit
for an in
nite sequence of values �j� k�� Speci
cally� we explore the line
j � k � �� the �smallest� interesting case beyond j � k � �� which is the
discrete analog of the continuous uniform distribution� Co	man et al exhibit
computer proofs that the waste is bounded in this case for k � ��� and also
conjecture on the basis of simulations that the waste is bounded for larger
values of k� Our main result proves this conjecture for all k�

Theorem � The expected waste of the Best Fit algorithm under the discrete
uniform distribution Ufk � �� kg is bounded for all k�

Note the dramatic contrast with the apparently very similar case j � k � ��
in which the waste grows unboundedly with n�

Of at least as much interest as this result itself� in our view� are the tech�
niques we use to prove it� Our starting point is again the multi�dimensional
Markov chain of Co	man et al� However� we develop an alternative view of
the chain that seems rather easier to visualize� in this view� the state s of the
chain at any time is represented by k � � tokens placed on the non�negative
integers� with token i at position si� The tokens move around as a dynamical
system under the in uence of item insertions� With the aid of this view� and
the intuition that comes with it� we are able to design an explicit Lyapunov
function that proves bounded waste for all pairs �j� k� with j � k � ��

The analysis of the Lyapunov function is somewhat subtle� which perhaps
explains why it had not been discovered before� In order to establish the
drift in the Lyapunov function� we have to consider T �j� steps of the Markov
chain� where T �j� is an exponential function of j� the drift is proved by a
detailed comparison of the Lyapunov function with symmetric random walk
on the non�negative integers� More speci
cally� we are able to relate the
projections of the multi�dimensional chain onto the individual coordinates
to one�dimensional symmetric random walks that are biased by a limited
adversary� This adversary model corresponds to a worst case assumption on
the e	ect of other coordinates� and we believe it to be of independent interest�
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It is similar in  avor to� but di	ers essentially from� the biased random walk
model considered by Azar et al 
�� in a di	erent context� The model in 
��
is allowed to bias the transition probabilities slightly on every step� whereas
our adversary may intervene overwhelmingly but only on a limited number
of steps� The techniques required to analyze the two models seem to be very
di	erent�

In addition to settling an open problem posed in 
��� our result� more
signi
cantly� is the 
rst proof that exploits the detailed structure of the multi�
dimensional Markov chain� and thus the 
rst that provides an understanding
of its behavior� We are optimistic that our techniques can be extended to
analyze the Best Fit Markov chain for other pairs of values �j� k�� and perhaps
also to other situations in the analysis of algorithms in which homogeneous
multi�dimensional Markov chains of this kind arise�

The remainder of this paper is structured as follows� In Section � we
introduce the token model as a convenient representation of the Markov chain
underlying the algorithm� and establish various fundamental properties of it�
In Section � we construct our Lyapunov function and analyze its behavior
using comparisons with symmetric random walks�

� The token model

��� De�nitions

As advertised in the Introduction� we describe the behavior of the Best Fit
algorithm over time in terms of the evolution of a dynamical system� In this
system� k � � tokens move among the non�negative integer points under the
in uence of item insertions� as follows� The tokens are labeled �� �� � � � � k���
At any time instant t� the position of token i is the number of open bins
at time t with residual capacity exactly i� We shall denote the state of the
system at time t by s�t� � �s��t�� � � � � sk���t��� a vector random variable
taking values in Zk��

� � Initially� the state of the system is s��� � ��� � � � � ���
re ecting the fact that there are no open bins�

Now suppose the state of the system at time t is s�t� and the next item
to be inserted is �� where � � � � j� Let i be the smallest index such that
i � � and si�t� � �� if such exists� in this case� the algorithm inserts item �
into a bin with capacity i� so we have si�t � �� � si�t� � � and� if i � ��
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si���t � �� � si���t� � �� all other components of s�t� are unchanged� If no
such i exists� then the algorithm inserts item � into an empty bin� so we have
sk���t� �� � sk���t� � � and all other components of s are unchanged� This
completes the description of the dynamical system�

Note that the above system is nothing other than a convenient pictorial
representation of a multi�dimensional Markov chain� with state space Zk��

� �
in which token i executes a random walk in dimension i� The motions of
individual tokens are� of course� not independent� However� the transition
probabilities of any given token at any time depend only on which of the
tokens are at zero at that time� i�e�� on the set fi � si � �g� This is an
important property which makes analysis of the chain feasible�

Our goal will be to investigate the behavior of the waste in the algorithm
after packing t items� which in this model is de
ned as the number of �non�
full� open bins� i�e��

Pk��
i�� si�t�� In particular� we will be concerned with

determining� for particular pairs �j� k�� whether or not the waste remains
bounded for an in
nite stream of items� i�e�� as t���

��� Classi�cation of tokens

It will be convenient for us to partition the tokens into two classes� which
we will call �large� and �small�� This idea is motivated by the fact that
tokens behave in two distinct ways� as we shall see in a moment� The small
tokens are tokens i with � � i � d j

�
e� The large tokens are tokens k � i with

� � i � d j
�
e� Note that the numbers of small and large tokens are equal� In

the case that j is even there is an additional token� namely d j�e��� which is
neither small nor large� we call this the middle token�

We 
rst establish a fundamental constraint on the states that are reach�
able from the initial state s���� This fact is implicit in 
��� the proof is a
straightforward induction on time which we omit from this abstract� The
reader may enjoy 
guring it out�

Proposition � State s is reachable from the initial state s��� only if

�� i� i� � k �� si � � or si� � �� �I�e�� no two tokens whose index sum
is k or greater can simultaneously be at non�zero positions��

��
P

i not small

si � �� �I�e�� the large and middle tokens cannot move beyond

!



position �� moreover� at most one of them can be away from zero at
any time��

It is not hard to see that all states satisfying the conditions of Proposition �
are in fact reachable from the initial state� From now on� we shall therefore
assume that the state space of our Markov chain is precisely this set S of
reachable states�

The above proposition expresses general constraints on the motions of the
tokens� In the following three subsections� we establish further properties of
the behavior of tokens under certain assumptions about the distribution of
other tokens� These properties will be used in our analysis in the next section�

��� Behavior of large and middle tokens

We have already seen that the large and middle tokens behave in an extremely
restricted fashion� Their behavior becomes even more restricted under the
condition that sdj��e � �� This condition will arise naturally in our analysis
in the next section�

Proposition � Suppose that sdj��e remains strictly positive throughout some
time interval� Then during this interval�

� all large tokens remain at zero�

� the middle token �if it exists� oscillates between 	 and � independently
of the positions of all other tokens�

Proof� The 
rst claim is immediate from condition � of Proposition �� To see
the second claim� note that� because all larger tokens are at zero� insertions
of item d j

�
e � � are placed alternately in an empty bin �thus creating a bin

with capacity d j�e��� and in this newly opened bin� No other insertions can

a	ect token d j
�
e � �� which therefore oscillates between � and � as claimed�

In view of the second claim of Proposition �� we will assume from now
on that j is odd� so that there is no middle token to worry about� This
assumption is justi
ed because our analysis will hinge on the behavior of the
system when sdj��e � �� but Proposition � then tells us that the behavior of
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the middle token under this condition is degenerate� With this observation�
the argument we will give for j odd trivially extends to the case when j is
even�

��� Behavior of small tokens

Most of this paper is concerned with the detailed behavior of the small tokens�
since the other tokens remain very severely bounded� it is really only the small
tokens that are interesting from the point of view of the asymptotic behavior
of the algorithm� In the next proposition� we isolate an essential feature of
the motion of the small tokens under a certain condition that will again arise
naturally from our analysis in the next section�

Proposition � Let i be a small token� If si�� is strictly positive throughout
some time interval� then during this interval the motion of token i has the
following properties�

Property A When si is not at zero� it executes random walk on the positive
integers with non�negative drift and holding probability at most �� �

j
�

Property B The time spent by si on each visit to zero is stochastically dom�
inated by a random variable D with constant expectation �that depends
only on j��

Proof� Consider 
rst the case when si � �� Since si�� � �� the only way
in which si can decrease is through the insertion of item i� On the other
hand� si will certainly increase on insertion of item k � i� to see this� note
from condition � of Proposition � that si� � � for all i� � k � i� so the
algorithm must insert item k � i into an empty bin� Hence si decreases
with probability �

j
and increases with probability at least �

j
� which is exactly

equivalent to Property A�
Now consider what happens when si � �� If si� � � for all i� � k � i�

then as above we can conclude that si moves to � with probability at least �
j
�

However� now we cannot exclude the possibility that sk�i � �� in which case
item k � i will be inserted into the bin with capacity k � i so si cannot
leave �� On the other hand� in this situation we see that two consecutive
insertions of item k � i will certainly have the e	ect of moving si to �� This
crude argument indicates that the time spent by token i at � is stochastically
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dominated by the random variable D de
ned as follows over the sequence of
item insertions immediately following the arrival of i at ��

D �
�
� if 
rst insertion is k � i�
N otherwise�

where N is the numbers of insertions until the 
rst pair of consecutive in�
sertions of k � i has occurred� Notice that the events that item k � i is
inserted at time t are mutually independent for all t� and all have probabil�
ity �

j
� Hence it is easy to see that the tail of D has the form Pr
D � n� � �n

for some constant � � � that depends only on j� This in turn implies that
the expectation of D is bounded above by a constant that depends only on j�

��� Behavior of the waste

In this subsection� we investigate what happens to the waste in the system�
again under the assumption that sdj��e � �� De
ne f�t� �

Pdj��e
i�� isi�t�� which

is essentially just the waste due to the small tokens at time t �weighted by
coe�cients in a bounded range�� By Proposition �� the total waste is bounded
above by f�t� � �� The following proposition shows that f�t� has negative
drift under our assumption about sdj��e�

Proposition � Suppose that sdj��e�t� � �� Then E
f�t� �� � f�t� j f�t�� �
���j�

Proof� For all i � �� �� � � � � d j
�e� de
ne fi�t� � isi�t���i���si���t��� � ��s��t��

Thus� f�t� � fdj��e�t�� For all i � �� �� � � � � d j�e� de
ne the set of i�requests
to be f�� �� � � � � ig 	 fk � i� k � i� �� � � � � k � �g� This is the set of all items
that can potentially be absorbed by a bin with capacity i�� � � i� � i� or can
create a new bin with such a capacity from an empty bin� We will prove�

Claim Let i � f�� �� � � � � d j
�
eg� If si�t� � � then the expected change in fi

due to i�requests is ���j�
The Proposition follows from this Claim with i � d j�e� since the set of d j�e�
requests is the entire set of items� To prove the Claim� we proceed by induc�
tion on i�
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Basis� i � �� f��t� � s��t�� The only ��request is �� Its contribution to
the expected change in f� is ���j� since it arrives with probability ��j and
causes s� to decrease by ��

Inductive step� Assume the Claim holds for i� We show that it holds for
i� �� Let i� � i� � be the largest index such that si��t� � �� set i� � � if all
these tokens are at �� We consider two cases�

Case �� i� � �� By the inductive hypothesis� the i��requests cause an expected
change of ���j in fi� � Consider the remaining items in the set of �i � ���
requests in pairs i��� k � i��� i� � i�� � i � �� For i�� � i � �� both items
a	ect only si�� and they cancel each other�s contribution� For i�� � i � ��
item i�� reduces si�� by � and increases si�i���� by �� so its contribution is
���i� �� � �i � i�� � ����j � �i���j� On the other hand� item k � i�� causes
a new bin of capacity i�� to be created �since si���t� � �� there are no open
bins of capacity � k � i � ��� so its contribution is � i���j� and the total
contribution of the pair is again ��

Case �� i� � �� Pair the requests as before for � � i�� � i � �� again� each
pair�s contribution is �� The remaining item� of size �� causes a decrease
of � in si�� and an increase of � in si� Its contribution to fi�� is therefore
���i� �� � i��j � ���j�

This completes the proof of the Claim� and hence of the Proposition�

� Analysis of the Markov chain

This section is devoted to proving our main result� Theorem � stated in the
Introduction� Our proof makes use of the following result of 
��� which estab�
lishes a general condition� in terms of the existence of a suitable Lyapunov
function� for a multi�dimensional Markov chain to be ergodic� For more
specialized variations on this theme� see 
!� ��� �� ���

Lemma 	 
�� Corollary ����
� Let M be a Markov chain with state space
S 
 Zk� and b a positive integer� Denote by pbss� the transition probability
from s to s� in Mb� the b�step version of M� Let " � S � R� be a non�
negative real�valued function on S� which satis�es the following conditions�

�� There are C�� � � � such that "�s� � C�ksk� for all s � S�
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�� There is C� � � such that pbss� � � whenever j"�s� � "�s��j � C�� for
all s� s� � S�


� There is a �nite B � S and � � � such that
P

s��S p
b
ss��"�s���"�s�� �

�� for all s � S nB�

Then M is ergodic with stationary distribution 	 satisfying 	�s� � Ce����s�

for all s � S� where C and 
 are positive constants�

To interpret this lemma� view " as a potential function that maps the
state space to the non�negative reals� so that the image of the Markov chain
under " becomes a dynamical system on the real line� Condition � requires
this process to be well�behaved� in the sense that it has bounded variation�
The key is condition �� which says that� except for a 
nite set of states�
" has negative drift over an interval of some constant length b� This implies
that M is ergodic with a stationary distribution that decays exponentially
with "�

In our application� M will be the Markov chain that governs the move�
ments of the tokens� whose state space is the subset S of Zk��

� de
ned by

Proposition �� and " will be the function "�s� � � �
Pdj��e

i�� isi� �Note that
" is essentially just the function f of Proposition ��� It is clear that condi�
tions � and � hold for this "� with any choice of constant b� All our work
will be devoted to proving the negative drift condition �� for suitably chosen
b� B and �� Note that Theorem � will then follow immediately� since the
asymptotic waste is bounded above by

P
s�S 	�s�"�s�� which by Lemma ! is

bounded�
The following is an informal sketch of our strategy for proving condition ��

�i� We consider an interval of length b� and show that " has negative drift
over this interval provided it is large enough at the start of the interval�
i�e�� we will take B to be the 
nite set of points on which " is �small��
Thus for s � S n B� we can be sure that� for some small token i� si is
large at the start of the interval� and hence positive throughout the
interval�

�ii� Since si � � throughout the interval� by Proposition � the motion
of si�� is a symmetric random walk� hence the time that si�� spends
at � during the interval is small �about const�pb��
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�iii� Iterating this argument� appealing to Proposition � each time� we can
conclude that each of the tokens si��� � � � � sdj��e spends little time at ��

�iv� Finally� since we have established that sdj��e � � during most of the in�
terval� Proposition � tells us that f �and hence "� has negative drift on
most steps� and hence an overall negative drift over the entire interval�

The tricky part of the above argument is step �iii�� at each stage we need
to use the fact that si� � � to deduce from Proposition � that si��� behaves
like a symmetric random walk� However� occasionally si� will be at �� and
at these times we have no control over the motion of si���� We therefore
assume that si��� behaves like a symmetric random walk most of the time�
but that an adversary is able to control its motion on a small number of
steps� Accordingly� we need to prove a lemma that quanti
es the e	ect that
such an adversary can have on the amount of time si��� spends at �� This
we now do�

Consider a symmetric random walk on 
���� of a given length� started
at some speci
ed position� and an adversary whose goal is to maximize the
number of times the walk hits ��� The adversary is allowed to intervene at
some speci
ed number of steps� selected according to any strategy� on these
steps� the adversary may specify any desired probability distribution on the
legal moves of the process from the current state� on all other steps� the pro�
cess behaves as a symmetric random walk with a perfectly re ecting barrier
at �� It is perhaps not surprising that the optimal strategy for the adversary
is always to intervene by driving the process deterministically towards the
origin� and to use up all these interventions as early as possible� However�
this claim requires some justi
cation� which we now provide�

Lemma 
 Let p�i� n� y�m� be the probability that a symmetric random walk
of n steps� starting at i and with y adversary steps� hits the origin at least
m times� Let q�i� n� y�m� be the same quantity for the particular adver�
sary strategy in which downward steps are used as early as possible� Then
p�i� n� y�m� � q�i� n� y�m� for all i� n� y�m�

To prove Lemma �� we need a simple technical observation about sym�
metric random walk�

�Throughout� for convenience� we shall take �hits 	� to mean �makes the transition

	� ���

��



Proposition � Let p	�i� n�m� � p�i� n� ��m� denote the probability that an
unbiased random walk of length n started at i hits 	 at least m times� Then
p	��� n�m� �� � p	��� n� ��m��

Proof� Let W� be the random walk started from � and W� the random walk
started from �� Consider the 
rst time T when W� reaches �� and the 
rst
time T � when W� reaches � by a � � � transition� Then it is easy to see
that T � is equal to T � � in distribution� The remainder of W� after T is a
random walk started at � which must have at leastm�� hits� The remainder
of W� after T

� is also a random walk started at � which must have at least
m � � hits� Thus if m � �� the probabilities are the same for both walks
�conditioning on the event T � T � � � � n�� and if m � �� we trivially have
p	��� n� �� � � � p	��� n � �� ���

We now prove Lemma �� We will consider only deterministic strategies�
the randomized case will follow by averaging�

Proof of Lemma 
� We use induction on n� Let DyR denote the strategy
which uses the y forced down steps as soon as possible� and then follows the
unbiased random walk� Let RDy denote the strategy which starts with a
truly random step as soon as possible� and then uses the y forced down steps
as soon as possible� Notice that a transition from � to � is neither a forced
down step �obviously� nor a truly random step� since it has probability ��
Let q�i� n� y�m� denote the probability that the walk of length n de
ned by
the strategy DyR� started at i and with y forced down steps has at least
m hits� let r�i� n� y�m� be de
ned similarly for the strategy RDy � We claim
that

q�i� n� y�m� � r�i� n� y�m� ���

Note that the lemma will then follow by induction on n� consider the 
rst
time the adversary may intervene� Either way� after this step we are left
to deal with fewer than n steps� If the adversary does force a down step�
by induction the best strategy to continue is Dy��R� so the strategy for the
entire walk is DyR� If the adversary does not intervene� using induction
again� the best strategy to continue is DyR� so the strategy for the entire
walk is RDyR � RDy � Inequality ��� shows that the strategy DyR is better
than RDy �

To prove ���� we also use induction on n� If i � �� both strategies start
the same way and we are done by induction� If i � y � �� both strategies

��



give the same distribution of positions after y � � steps� and neither has hit
� yet� so the two quantities are equal� The interesting case is for � � i � y�
Then� let n� � n � ��y � i� �� and m� � m� �y � i � ��� It is easy to see
that

q�i� n� y�m� � �
�
p	��� n

��m�� � �
�
p	��� n

��m��� and

r�i� n� y�m� � �
�
p	��� n

��m�� � �
�
p	��� n

��m� � �� � �
�
p	��� n

��m� � ���

Since p	��� n����m���� � �
��p	��� n

��m�����p	��� n��m������ the di	erence
is

q � r � �
�

�
p	��� n

��m��� p	��� n
� � ��m� � ��

�
�

which is non�negative by Proposition ��

In order to relate the above adversary result to our process� we need an
elementary technical fact� Consider an arbitrary stochastic process over the
non�negative integers� Assume it has arbitrary holding probabilities except
at �� where the holding probability is �� and non�negative drift everywhere�
Let Z denote the number of hits on � during the 
rst T steps of this process�
Let U be the similar quantity for the symmetric random walk with perfectly
re ecting barrier at �� starting at the same point� The following fact can be
proved by a simple coupling argument� which we omit from this abstract�

Proposition � Z is stochastically dominated by U �

We are now in a position to proceed with the proof of our main result�
following the sketch given after Lemma !� As observed there� the main
di�culty lies in step �iii�� assuming that si � � throughout some interval�
we want to conclude that sdj��e � � during most of that interval� This is the
subject of our next lemma� which makes essential use of the above adversary
lemma�

Lemma �
 Let T and a be positive constants� and suppose that si��� � T �
With probability at least � � C�a� where C is a constant that depends only
on j� sdj��e�t� is strictly positive at all but a

p
T time instants t within the

interval 
�� T ��

Proof� We will prove the claim for i � �� The proof for general i is exactly
the same� So� assume that s���� � T � For each i� let the random variable Ti

��



denote the time spent at zero by token i during the interval 
�� T �� Clearly
T� � � with probability ��

Next let us consider the behavior of the sequence s�� Consider a modi
ed
process s�� which is de
ned as follows� First� run s� for T steps� Then� have
the token s�� follow an unbiased random walk with a holding time at zero
distributed according to D� Finally� delete from s�� all stationary steps at ��
Let T �

� be the number of hits on � of s�� during the time interval 
�� T �� Then
we have

T� �
T �

�
��X

r��

Dr� ���

where theDr are i�i�d� with the same distribution asD� and T �
� is independent

of all of the Dr�
To analyze T �

�� we compare it with U � the number of hits on � of symmetric
random walk with perfectly re ecting barrier at �� By Proposition �� T �

� is
stochastically dominated by U � Taking expectations in ��� and using this
observation� we get

ET� � E

�
�T

�

�
��X

r��

Dr

�
�

�
�X
t�	

t��X
r��

E
Dr j T �
� � t� Pr
T �

� � t� � �EU � ��ED

� d�EU � ���

where the constant d is the expectation of D from Proposition ��
Now consider token s�� where � � � � d j

�e� De
ne a modi
ed process s��
and a random variable T �

� similar to the fashion that s�� and T �
� were de
ned�

By analogy with ��� we may write

T� �
T �

�
��X

r��

Dr� ���

Now our adversary argument� Lemma �� implies that T �
� is stochastically

dominated by U � T���� To see this� note that

Pr
T �
� � m j T��� � y� � p�s����� T� y�m� � q�s����� T� y�m� � Pr
U � m�y��
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Taking expectations in equation ���� and using this fact� we get

ET� � �EU � ET��� � ��ED � d�EU � ET��� � ���

Iterating this bound� and using the base case ���� gives

ET� �
����X
r��

dr
�
�EU � �� � d���ET� � �d��EU � ���

But EU � c
p
T for some universal constant c� Hence by Markov�s in�

equality

Pr
Tdj��e � a
p
T � �

dj��edd j
�
e���c� ��

p
T �

a
�

which is bounded above by C�a for some constant C as required�

Remarks� �a� The above proof actually demonstrates the stronger conclu�
sion that si��t� � � for all i� in the range i � i� � d j

�
e� for a similar majority

of the interval�

�b� It is interesting to note that the only properties of the sequence s�t�
we have used in the above proof are properties A and B of Proposition ��
Thus Lemma �� actually applies to any sequence of vector random variables
satisfying these rather natural properties� We believe that this fact may be
of independent interest�

We are 
nally in a position to complete the proof of Theorem �� following
our earlier sketch�

Proof of Theorem �� Recall from the discussion immediately following
the statement of the theorem that it su�ces to show that condition � of
Lemma ! holds for the function "�s� � � �

Pdj��e
i�� isi� with suitable choices

of b� B and �� The set B 
 S will be de
ned as

B � fs � S � f�s� � T � �g�

where T is some constant to be speci
ed shortly�
Assume that s � s��� � SnB� i�e�� that "�s���� � T��� De
ne b � T�j��

and consider the time interval 
�� b�� We will show that the expected drift of "
over this interval is less than �� for some � � �� thus establishing condition ��

�!



Actually we will work with the function f of Proposition �� which is just one
less than "�

The assumption that "�s���� � T � � implies that there is a token si�
with i � d j�e� such that si��� � T�j�� Then by Lemma ��� with probability

at least �� C�a we have sdj��e � � at all but at most a
q
T�j� time instants

in the time interval 
�� T�j���
Now consider the change #f in f after one step� By Proposition �� if

sdj��e � � then E#f � ���j� In all other situations� there is the trivial
bound E#f � j� Putting these facts together� and conditioning on the

event A that sdj��e � � at all but at most a
q
T�j� time instants in the

interval� we see that the drift of f over the entire interval 
�� T�j�� is

E
f�b�� f��� j f���� �
� E
f�b�� f��� j f��� 
 A� � �� � Pr
A�� E
f�b�� f��� j f��� 
 �A�

�
�
��

j

�
T

j�
� a

s
T

j�

	
� a

p
T



�
C

a

T

j
�

By taking a large enough� and then T large enough� we can make this ex�
pression less than some negative constant ��

This completes the veri
cation of condition �� and hence the proof of the
theorem�
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