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Abstract

In this paper, we present an efficient and simple solution to the parallelization
of discrete integration programs of ordinary differential equations (ODE). The
main technique used is known as loop tiling. To avoid the overhead due to code
complexity and border effects, we introduce redundant tasks and we use non
parallelepiped tiles. Thanks both to cache reuse (x4.3) and coarse granularity
(x24.5) , the speedup using 25 processors over the non-tiled sequential imple-
mentation is larger than 106.

We also present the draft of a fuzzy methodology to optimize the tile size and
we illustrate it using real measurements for the communication cost and the
execution time. In particular, we observe that the model of communication
latencies over a Myrinet network is not as simple as is usually reported.

We apply this solution to study the Lyapunov exponents of the Fermi-Pasta-
Ulam (FPU) chain and in particular the dependence of the maximum Lyapunov
exponents as a function of the length of the chain.

Keywords: Hierarchical tiling, redundant tasks, parallelism, scalability, cache optimization, locality, tiles
shape, communication overhead, heterogeneous ressource, dynamical system theory, Fermi-Pasta-Ulam
chain, Lyapunov instability analysis, phase space properties.

Résumé

Nous présentons dans ce rapport une solution & la fois simple et efficace a la
parallélisation d’'un programme d’intégration d’équations différentielles ordi-
naires (ODE). La technique utilisée est basée sur la méthode de pavage qui
permet de favoriser la localité a la fois temporelle et spatiale des acces aux
données. Cette implémentation, testée sur une pile de 25 processeurs permet
une exécution plus de 106 fois plus rapide que le programme séquentiel initial.
Cette solution est appliquée a 1’étude des exposants de Lyapunov de la chaine
de Fermi-Pasta-Ulam en fonction de la longeur de la chaine.

Mots-clés: Pavage, taches redondantes, parallélisme, optimisation de cache, localité des accés mémoire,
forme de tuiles, théorie des systemes dynamiques, chaine d’oscilateurs de Fermi-Past-Ulam, Analyse
d’instabilité de Lyapunov, propriétés de I’espace des phases.



1 Introduction

The goal of this paper is to present a practical implementation of tiling methods to a real-life problem, namely
the study of Lyapunov exponents of the Fermi-Pasta-Ulam (FPU) chain. This article can be considered from
two angles: a physical and a computational point of view.

Lyapunov calculation for the Fermi-Pasta-Ulam Chain Without underestimating the numerous
experimental and theoretical contributions, it is important to recall the importance of computers in the
development of the dynamical system theory. The pionnerring work [18] by Fermi, Pasta and Ulam in Los
Alamos on the first computer, the Maniac, has led to the new concept of soliton; they correspond to localized
waves with the astonishing property to collide with other solitary waves remaining unchanged. Two decades
later, Lorenz realized [16] the chaotic behavior of his atmospherical model thanks to his computer, again:
this lead to the so-called “butterfly effect”. These are the two first examples of many others.

Following these seminal works, many theoretical and numerical studies have been devoted to the charac-
terization of chaos in high-dimensional dynamical systems. Nevertheless, several fundamental issues are not
understood. In particular, the relation between Lyapunov instability analysis and phase space properties
like diffusion of orbits, relaxation to equilibrium states, spatial development of instabilities remains to be
clarified.

In this paper we present a numerical study to compute the Lyapunov exponents of the Fermi-Pasta-Ulam
(FPU) chain. The FPU model has played for dynamical system theory a similar role to the Ising model in
statistical mechanics. Let us just quote some major studies and discoveries motivated by the FPU numerical
experiment: the introduction of the concept of soliton, the prediction of the transition to large-scale chaos by
the resonance overlap criterion, the use of KAM perturbation theory and Nekhoroshev stability estimates,
the numerical detection of the strong stochasticity threshold (see Ref. [20] for a review).

Besides, there are very few examples of analytical calculations of the Lyapunov exponents in the chaotic
component corresponding to energy equipartition and that’s why it is very important to have reliable and
fast algorithm to measure them numerically. This is the main goal of this paper where we implement the
idea of tiling to this typical problem of dynamical system theory.

Tiling the iteration space The basic idea of tiling, also known as loop blocking, is to group elemental
computation points into tiles that will be viewed as computational units. Hence, the communication time
(which is usually proportional to the surface of the tile) decreases while the computation time (which is
proportional to the volume of the tile) increases. Tiling is also a widely used technique to increase the
granularity of computations and the locality of data references. The program that we aim to parallelize
belongs to a class of algorithms that has been extensively studied, namely Successive Over Relaxation
methods (SOR) or Alternate Direction Implicit (ADI) integration. Many differential equations are expressed
in implicit form and a large part of the literature is focused on achieving parallelism across the method and
on the research of stable integration schemes based on direction splitting to achieve parallelism across the
system. However, the McLachlan-Atela’s integration scheme which we consider here is explicit and the
problem is embarrassingly parallel across the space. Unfortunately, to the best of our knowledge, existing
implementations perform partitioning across the space direction but not across the time direction. This
leads to the solution presented in Figure 4 where space locality is enhanced but time locality is not: cache
reuse is not fully optimized. Nevertheless, existing literature on tiling [1, 15, 7, 4, 6, 29] provides a solution
to this simple problem: a diamond-shaped blocking as illustrated in Figure 5. The main drawback of
this solution is the complexity of its implementation. In the concern of our study, there is an additional
difficulty: the presence of high frequency synchronization barriers (see Section 3.1). Hence classical methods
should be adapted using hierarchical tiling: this solution is illustrated in Figure 6. We present a solution
which is simpler to implement yet still very efficient: we use redundant computational tasks (see Figure 8).
This solution is particularly adapted to explicit integration schemes, but can also be applied to general
multidimensional SOR programs with local dependences (like heat propagation or molecular dynamics), in
addition to many image processing algorithms.

Also, automatic partitioning is complex since it should take into account both the volume and frequency
of communications, in addition to data reuse, code complexity, etc. In this article we give the draft of a



fuzzy methodology decomposed into different successive phases, sorted in decreasing importance order. This
methodology is illustrated using our practical optimization problem. Finally, we are led to testing the valid-
ity of usual assumptions made for tiling optimizations, like the formulae used to express computation and
communication times. In particular, we claim that linear communication models designed for small-scale
message passing with perfectly synchronized communications [27], becomes strongly incorrect when commu-
nications are performed among data based computations.

This report is decomposed into three major parts. The physical problem is presented in Part 2. The

numerical method of tiling and all the details are presented in Part 3. The results obtained on the original
problem are emphasized in Part 4.
Then the computational part is organized in the following way: the code is presented in Section 3.1, then
its modelisation into task graph is given in Section 3.2. Different partitioning solutions are discussed in
Section 3.3, then different steps to find optimal parameters are described in Section 3.4. Finally, Section 3.5
provides performance results, together with a short discussion on heterogeneous platforms.

2 The physical problem

In the framework of one-dimensional lattices, Livi, Politi and Ruffo [22] have shown that the Lyapunov
exponents are only functions of the energy density and not of the length of the chain. This major result
was recently questioned because of some simulations results presented by Searles et al. [30]. It was however
a very difficult task to confirm or infirm the reported logarithmic dependence, without the help of very
fast algorithms. Another important question nowadays is the behavior of the largest maximal Lyapunov
exponent in the very low energy limit. In this completely inaccessible region with usual algorithms, where
the chaotic layers are distincts, the speed of convergence toward energy equipartition was studied, starting
from particular initial conditions. However, this equipartition predicted by equilibrium statistical mechanics
is reached very slowly and one needs again efficient tools to give a final answer to the Fermi-Pasta-Ulam
paradox, discovered in the fifties.

2.1 The Fermi-Pasta-Ulam chain

Denoting by x;(t) (respectively v;(t)) the position (respectively the velocity) of the i-th atom (i € [0, H —1])
at time ¢, the equations of motion of the S-FPU chain read

{zo 1)

b = Tipr o — 22+ B [(@ip1 — ) — (2 — @i21)?]

where 3 = 0.1 for historical reason. We have chosen fixed boundary conditions but periodic ones would have
led to extremely minor changes.

As usual, in numerical simulations one does not study the real Hamiltonian system, but a discrete time
version that approximates the time continuous dynamics. It is therefore essential for long time simulations
to use an appropriate symplectic integration scheme in order to preserve as far as possible the Hamilto-
nian structure of the problem. We adopt the best 4th-order symplectic algorithm, the McLachlan-Atela’s
algorithm [23], with a time step d¢t = 0.01; this choice allows us to obtain an energy conservation with an
excellent accuracy (8 digits).

We follow the approach proposed by Fermi-Pasta-Ulam in Ref. [18], i.e. to consider the stability of one
normal mode of the harmonic part. However, contrary to them, we have performed simulations adopting
as initial condition the highest frequency mode, the so called m-mode, which corresponds to the following
zig-zag pattern for z;

zi=(-1)"a and v; =0 (2)

where a is its amplitude.
Since most of the normal modes of the harmonic part of the Hamiltonian are no longer solutions of
the full Hamiltonian, energy initially fed into one single mode will be shared on later times among other



modes. The transient time, called equipartition time since the system evolves toward energy equipartition,
is strongly dependent on the energy density and diverges in the low regime: this divergence is at the origin
of the FPU paradox. However, the m-mode being an exact solution, we have added a small amount of noise
(of order 10~'*) on the velocities to destabilize this initial state. As already shown in Ref. [11], the 7-mode
is modulationally unstable above a critical energy E., that can be analytically derived [13].

Let us recall briefly now the definition of the Lyapunov exponents and their associated numerical calcu-
lation, before presenting the estimation of the Njy,, few largest Lyapunov exponents A; (1 < j < Nyyqp) as
a function of the energy density and as a function of the number of site H for a given energy density.

2.2 Lyapunov Exponents

Lyapunov exponents play an important role in the theory of both Hamiltonian and dissipative dynamical
systems. They provide a computable, quantitative measure of the degree of stochasticity for a trajectory. In
addition, there is a close link between the Lyapunov exponent and other measurements of randomness such
as Kolmogorov entropy or fractal dimension.

The procedure for computing the Lyapunov exponents was developed by Benettin et al. [17]. The
largest one, A1, is given by the rate of exponential growth in the separation of two infinitesimally displaced

1
trajectories. To evaluate this growth we study the evolution of vector ! < gil ), tangent to ( ZZ >, and

defined as follow:

szl = v}
6o} = [143B(zip1 — x)?] 6zl + [1+3B(xim1 — 23)?] 6z}, (3)
- 2438 [(wit1 — 2:)* + (w1 — )] ] 0z}
. Szt (t) . . . . T
Denoting by |91 (¢)]] = Sut () the Euclidean norm at time ¢ between both trajectories "

x + 0zt

and v+ vt

), the largest Lyapunov is defined as

1l

A1 = lim n .
Pt [[6,0)]]

(4)

One important difficulty is located in the fact that if the norm increases exponentially with time ¢, this
leads to overflow and other computation errors. To circumvent this problem, we choose a small fixed iteration
interval nyp¢n0 and we renormalize §1 () to unity every nop¢po X dt time interval. Thus the computation scheme
is the following:

Program 1 Computation scheme of the largest Lyapunov exponent Ay

lambda[l] = 0
dot=0,T:dt
1
evolution of the orbit < Zj ) and of the perturbation < gil )
if % =0 [norﬂw]
szt
St

lambda[l] = lambda[l] + 1n

ot

dx! _ St
")

dvt

L§zd (respectively §v7,x,v) represents the column vector made of scalars 51:{ (respectively 51]{,%,1}1-).



and we finally use the remarkable mathematical property that, if n,.tp0dt is not too large:

lambdal[1]

A\ = lim T (5)

T—o0

Unfortunately, there is no a priori condition for determining neither the number of iterations 7" that must

be performed, nor a good estimate for the renormalizing time n,,tp,dt. The latter should be chosen as small

as possible, whereas the Gram-Schmidt orthonormalization procedure is extremely time consuming, and T'
should be chosen of course as big as possible.

Usually, we are interested in more than one Lyapunov exponent (Np,., > 1), and a further difficulty

appears. As the tangent vectors evolve, the angle between any two vectors ( , 1 < j < Niyap)

x
ov’
generally becomes too small for numerical computations. Thus in addition to renormalizing after each time
J

v’ >1< <N,
which must be chosen to span the same subspace as the evolvéilisety. pThis procedure can be systematized
using a Gram-Schmidt algorithm, which gives directly the different Lyapunov exponents [17].

In summary, we need to implement the numerical integration of the evolution of the orbit represented
by Eq. (1) and the evolution of the tangent space to compute the Lyapunov exponents. For a chain with H
sites, the computation time for obtaining the first Nyq, Lyapunov is

interval n,.¢hodt, we must replace the evolved vectors ( by a new set of orthonormal vectors,

O ((Niyap +1)*2H %4 T) (6)

since the symplectic integrator is of order four. Finally, every time n,.¢podt, we need to renormalize and
orthonormalize the perturbation using the Gram-Schmidt algorithm. Let us present in the following section
why the tiling procedure is particularly adapted to this tasks.

3 Computational strategy

In this part, we present our strategy for implementing the code onto a distributed memory parallel machine.
For clarity, we will first present the initial program. Then, we will expose different possible strategies for
parallelizing the code. Finally, after describing the parallel support we used, we will give performance results.

3.1 The sequential program

Let us present the sequential program, its main loop with its dependencies. It is made up of three consecutive
phases: after the initialization,

e During the first phase (0 <t < 1), the system evolves.

e During the second phase (t; < t < t2), the system still evolves, in addition to the tangent space that
is orthonormalized every n,tpodt iterations time.

e The third phase (t2 < t < t3 = T) is identical to the second one but the calculation of the Lyapunov
exponents is additionally performed.



Program 2 The sequential code

Initialization
dot=0,T:dt
if t > t; {phase 2 or 3}
do k = 0,3 {McLachlan-Atela’s algorithm uses 4 iterations for each time step }
doall j € {1,..., Niyap}
dovect i € {0,...,H — 1}
61}{_ = 61}{1 + ¢ X gk(¢i,1,mi,mi+1, 6:1:?_1,6333, &rgﬂ)
dz] = oz + dj, x dv]
if % =0 [northo]

Evolution  of
tangent space

1 N
Gram_Schmidt< gil gCSN )
if t > t» {phase 3} then updates the N;,,, Lyapunov's exponents
dok=0,3
dovect i € {0,...,H — 1}
v, =V + ek X fr(Tio1, Ti, Tig1) Evolution of the system

T; = x; +dp X v;

Where,

e H represents the number of particles.

® Niyap, represents the number of Lyapunov’s exponents.

e ¢ and dy are coefficients of McLachlan-Atela’s algorithm [23].

e f and g are functions obtained from the equations of motion (1) and their derivated forms.

Note that in practical, t3 > (t; & t2), i.e. the main time is spent on phase 3. In addition, as the time for
updating Lyapunov’s exponents is negligible, phase 2 and phase 3 can be considered identical. Consequently,
we will focus our attention on phase 2 only.

3.2 The task graph

A task graph is an oriented graph, where vertices represent tasks, and edges represent dependences. There
is a dependence between two tasks, say T'ask; and T'asks, whenever the computation of T'asks requires the
results of the computation T'ask;. That means, that T'asks must begin necessarily after the total completion
of Task,. For the sake of simplicity, only transitive reductions of graphs are represented: two tasks are in
dependence if and only if there exists a path between there corresponding vertices.

As the task graph is rather complex, its representation is split into two parts.

e The sketch of Figure 1 represents only dependences related to the system evolution ( 55 > The

calculation of one particle is represented by an unfilled circle.

e The graph of Figure 2 represents only dependences related to the tangent space evolution 6ij
The calculation of one perturbation is represented by a cross. The four phases of McLachlan-Atela’s
algorithm for the system’s evolution are not represented.

e The superposition of those two graphs gives the task graph of our program, approximatively represented
in Figure 3.
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Figure 1: Tasks graph related to the system evolution. An unfilled circle represents the calculation of x; and
v;. Reduced dependences are (1,1)%, (1,0)! and (1,—1)%.
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algorithm for tangent space evolution.

Figure 2: Tasks graph related to the tangent space evolution. An unfilled circle represents the calculation
of z; and v;. A cross represents the calculation of dx; and dv;. Reduced dependences are (1,1)%, (1,0)¢ and
(1,—1)%. Orthonormalization phase behaves like a synchronization barrier.
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Figure 3: Reduced tasks graph of our program: both sub-graphs (system and tangent space) have been
superposed. Reduced dependences are then (1,1) (1,0)! et (1,—1)!. To avoid the use of an additional
temporary array, the four phases of the perturbations evaluation for time ¢ + dt that depends on the value
of the system at time ¢ are considered as atomic.

3.3 The parallelization: the strategies
3.3.1 On the importance of tiling the iteration space

For programs that deal with a large volume of data, tiling optimization technique (even on sequential) should
be applied to speed-up the execution time.

Tiling is a widely used compiler technique to increase the granularity of computations and the locality of
data references. This technique was originally restricted to perfect loop nests with uniform dependencies, as
defined by Banerjee [2], but has been extended to sets of fully permutable loops [12, 21, 31]. The basic idea
of tiling, also known as loop blocking, is to group elemental computation points into tiles that will be viewed
as computational units. The larger the tiles, the more efficient the computations performed using state-of-
the-art processors with pipelined arithmetic units and a multilevel memory hierarchy. Another advantage of
tiling is the decrease in communication time (which is proportional to the surface of the tile) relative to the
computation time (which is proportional to the volume of the tile). Hence, the naive approach represented
in Fig. 4, that corresponds to schedule the tasks in the initial order and simply use the existent parallelism
in the i-direction, would lead to catastrophic performances (see part 3.4).

Tiling has been studied by several groups and in different contexts. Rather than providing a detailed
motivation for tiling, we refer the reader to the papers by Calland, Dongarra, and Robert [7] and by Hogsted,
Carter and Ferrante [19], which provide a review of the existing literature. Most of the work amounts to
partitioning the iteration space of a uniform loop nest into tiles whose shape and size are optimized according
to some criteria (such as the communication-to-computation ratio). Once the tile shape and size are defined,
it remains to distribute the tiles to physical processors and to compute the final scheduling.

In our case, since the Gram-Schmidt ortho-normalization can be seen as a synchronization barrier, the
domain to be tiled is a wide strip (usually noren < 25) of width 4 X ngpep. Considering that h = H/P might
be large compared to ng,¢h0, the domain should be partitioned into parallelogram-shaped tiles. Themselves
should be sub-tiled into 2 triangles and parallelograms (see Fig. 6). As we will see (see part 3.3.2), this
method is quite complex and might involve an overhead in the main calculation kernel. Hence we propose
an alternative solution (the one we choose to implement), using dummy-tasks technique, which is still
asymptotically optimal. The next parts are devoted to the description of those two solutions.

3.3.2 The parallelogram solution

For large iteration domains, classical tiling results [4, 6, 15, 29] set that tile’s borders should be along the
dependence cone. In our example, reduced dependences are (1,1)! and (1,—1)%, so tiles should be diamond-



spacd

.
e
rocessor i+1

-

time

Figure 4: The naive approach would consist on partitioning the iteration space onto P horizontal strips. After
each step (k or ¢ incremented), the neighboring processors communicate the data useful for the next step.
In other words, it corresponds to distributing the doall(j)-dovect (i) nested loops over the processors.

Py

I 2 Ps

Figure 5: When the iteration-space is large, optimal tiling is made of diamond-shaped tiles. The presence of
orthonormalization phase every 4n,,.tn, steps (represented by dash-line) explains the parallelogram shapes
of tiles represented in Figure 6.



—cf Figure 7

processor 1

region C

hsub_tile

toward processor 3

Figure 6: The parallelogram solution: The iteration space is partitioned into strips along the diagonal direc-
tion. Then strips are distributed cyclically over the processors. Hence, between each ortho-normalization,
each processor takes care of parallelogram-shaped tile. Because of dependences, the computation of region C
requires results from the computation of region A of the above processor. Hence, consecutively (but for
the processors on the border), region A is performed, then data useful for region C are communicated
between each neighboring processors, and finally regions B & C are computed from the bottom to the top.
Eventually, if the domain is large, region B is tiled itself to ensure locality of data references.



shaped as represented in Figure 5. But the presence of the orthonormalization phase every 4n,.¢no steps,
shows non-atomic parallelogram-shaped tiles. That corresponds to the solution presented in Figure 6: each
processor takes care of a diagonal strip and deal with an array of size h = H/P. The main problem with
this solution is, as illustrated in Figure 7, the complexity of communicated data set. Indeed, the presence of
conditional branches inside the loop, partially due to borders effect, would imply a non-negligible overhead.

processor 1 processor 1
e N ORR - e e e e e e
PIION A S &/ N
“ . @ . .

O]
| regionA/g@®®
. RR XX

gELY 3
22000 -

® ®
® ®
region C— -+ « o s o

.\, . processon

fegion 8 ° region B—T-

Figure 7: Part of the task graph of figure 6 before and after skewing of the iteration space. The data,
necessary for the computation of region C by processor 4, are represented with a circle for the main system
(z; & v;) and with a cross for the perturbations (dz! & dv!).

Hence, even with loop optimizations like loop peeling, complexity of the generated code involves a con-
sequent overhead in the execution time of the main kernel. Consequently, we looked for an other solution,
extremely simple, and asymptotically optimal.

3.3.3 Second approach : rectangular tiling

As explained in Fig. 8, this solution consists on simply distributing the iteration space on horizontal strips
over the processors. Hence, the computational unit of given processor between two communication steps is
initially a rectangle of height h = H/P and of width say w (w is a multiple of 4 and a divisor of 4n,,tn0)-

However, because of dependences, each processor should do some redundant work. More precisely, it
should perform (but for the processors on the border) w(w — 1) more tasks for each tile. Hence, while w
increases, the communication cost overhead will decrease, and the main kernel of computation will be faster
(because of locality of data references). On the other hand, while w increases, the amount of work also
increases. A trade-off should be found to define the optimal parameters of the algorithm. That will be the
goal of section 3.4.

3.4 Optimal parameters

In the existing literature, most of the work amounts to partitioning the iteration space of a uniform loop
nest into tiles whose shape and size are optimized according to some criteria (such as the communication-
to-computation ratio). Shape is usually constrained by the set of dependences, and size is determined to
minimize the latency implied by a coarse grain computation. Classical approaches aim to solve analytically
this optimization problem entirely all at once. Instead, we propose to consider the different criteria separately
and treat them in decreasing importance order:

1. Sequential execution time: even on a sequential program, data reuse or absence of conditional
branches can have a huge impact on the performances. Hence our first goal is to optimize the critical
computational kernel performed by each processor. In this context:

10
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\ rocessor OU

time
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Figure 8: Rectangular tiling solution: the iteration space is partitioned into P horizontal strips that are
Hence, between each ortho-normalization, each processor takes care
of a rectangle. Because of dependences the computation of each rectangle requires the results from the
computation of two triangles on the top and on the bottom. The choice here consists on computing those
triangles by the processor (say i) itself. That corresponds to do redundant work because those two triangles
are also computed by the neighbored processors on top (processor i + 1) and on bottom (processor i — 1).
Hence, before each step of computation, each processor should get from its neighboring processors the data
(a vector on the top and on the bottom) useful for its computation. Then, parallelepiped-shaped tile can be
tiled itself into a triangle and parallelogram-shaped sub-tiles of height hgoys_tuite tO ensure locality. Sub-tiles

distributed over the P processors.

are executed from the bottom to the top.

Figure 9: Part of the task graph of Figure 8. The data necessary for the computation are represented with

processor

processor 0

1 hsub_tite

— {0 processor 0

a circle for the main system (z; & v;), and with a cross for the perturbations (6] & dv?).
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e For data based computation, tiling should be performed at least across one direction.
e If possible, rectangular tiling should be preferred to trapezoidal ones: borders effects are mini-
mized, loop bounds are simple.

As an example, in our implementation, we fixed tiles width to be greater than 20, and sub-tiles height
to be lower than 100. This lead to a speedup over than 4.

2. Express parallelism: too large tiles can involve subsequent latencies, and tiling could kill the paral-
lelism.

e Many applications contain recurrences of length 1 over each direction. In this context, tiles
should not be too large and then distributed cyclically or in a more sophisticated way [10] over
the processors.

e Rescheduling tasks inside tiles in addition to pipelined communications can sometimes restore the
parallelism [28].

e Finally, introducing redundant tasks as it is done here can also restore the parallelism and is
sometimes better than skewing the iteration space.

3. Communication overhead: even for perfectly synchronized applications, communication overhead
can be critical. It is not the case of our application here where, in practical cases, H is large enough
so that communication time becomes negligible compared to computation time. However,

e In many applications, communication volume per computation volume decreases with the size of
the tiles [29].

e It is usually reported that for small-scale message passing, the communication latency is a linear
function of the size of the messages. This is not true on the parallel support we used, but we can
suppose that on some well configured distributed platforms, it might be better to send one time
2l bytes instead of two times ! bytes (because of the startup). Then, coarse granularity should
lead to better performances.

We call our approach a “fuzzy methodology” because the goal of each phase is not to minimize an
analytical formula and to provide an exact result (“tiles size should be 3.567 x 0.45”). Instead, we need a
result that is less constraint-full as possible. This idea is well illustrated by Figure 16.

3.4.1 The parallel support

The platform is made of 2 Piles of PC interconnected with a Myrinet network.
The first one, called PoPC have the following characteristics:

e 12 identical nodes (popc0-11):

— Processors: Pentium Pro 200Mhz (cache L2: 256Ko),
Memory: 64Mo per node,

chipset SCSI adaptec AIC-7880 (Ultra narrow 20Mo/s),
Ethernet DEC21140,

— Myrinet LANAI4.1 256Kbytes,

— Hard drive SCSI 2Go per node, but for popc0O (4.3Go),

e 2 x Switch Myrinet double M2M-DUAL-SW8/SAN (ie 4 crossbars 8x8),
e Hub Ethernet 10Mb/s 16 ports.
The second one, called Pom have the following characteristics:

e 16 identical nodes:
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Processors: PowerPC 604e 200Mhz (cache L1:32Ko+32Ko, cache L2: 256Ko),
Memory: 64Mo per node,

— chipset SCSI ncr53c825a (fast narrow 10Mo/s),

— Ethernet DEC21140,

— Myrinet PMC LANAI4.1 512Kbytes,

— Diskless but for pom0 and pom8 (4Go SCSI),

e Switch Myrinet octuple: M2M-OCT-SW8
e Switch Myrinet octuple: M2M-OCT-SW8
e Hub Ethernet 10Mb/s 24 ports.

Those parallel resources are part of several other platforms from the Laboratory for High Performance
Computing (see http://www.ens-lyon.fr/LHPC/ANGLAIS/choix.html for more details). The optimized
communication interfaces are developed by the ”High Speed Networks and Parallel Applications” team from
the LHPC: BIP, IP-BIP and MPI-BIP are available [26].

The measurements presented in this section have been performed on Pom.

3.4.2 The cache effect

The goal of this section is to show the importance of tiling on mono-processor, and to evaluate the opti-
mal height for sub-tiles (hsup_tite)- For this purpose, we have performed performance measurements on a
rectangular iteration space of size 100 x H, executed on a mono-processor without any orthonormalization
phase.

As one can see on Figure 10, execution on a non-tiled program shows two levels of cache: there are three
steps H < Hr; = 300, 500 < H < 3000 and H > 5000 corresponding respectively to the cache L1, the cache
L2 and the memory.

Because of the parallelogram-shape of the sub-tiles, the width w has to be taken into account in the
choice of a good height hgyp tie. Hence, we aim that w + hgsyp_sire < Hr1 = 300. Since w < 4nopino < 100,
we have chosen hgyp ¢i7e = 100.

We then performed tiling of our sequential program with parallelogram tiles of size w X hgyp_tie: We can
remark a slight overhead (for H > 3000) corresponding to the initial load of data in the memory at the
beginning of each tile. This overhead might be slightly (not exactly because tiles are not rectangular-shaped
but parallelogram-shaped...) inversely proportional to the width of the tile (see Figure 11). We can remark
on Figure 11, that even for the tiled version of our program the memory access has an impact for values of
H > 3000. In fact, hierarchical tiling would be necessary using “super-tiles” of size 1000 x 1000, which is
not possible due to orthonormalizations every 4n,,.tp, < 100 iterations.

~

For the rest of the experiments, in the case % > 200, the iteration space will be automatically tiled with
tiles of size Wsyup_tite X Rsup_tite = w X 100.

3.4.3 Optimal tile size on a mono-processor

We have seen the impact of tiling on the computation time. Because of the size of cache L1, a good value
for the tiles height is hsyp_tire = 100. Experiments presented in this section show that a simple model
(computation time=calculation time + memory access) provides a good approximation. However, we will
see in the next section that the impact of communications per column is smaller than 200 times the average
execution of one task. More formally,

communication time for one column 200 200P

average computation time of one column h H

13
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Figure 10: Time in seconds to perform one computational unit. The number of iterations is fixed to 100.
The number of particles varies from 102 to 10®. For domains of size 500 < H < 3000 the tiling speeds-up
the computation of a ratio more than 2. For domains of size H > 5000, the speed-up is more than 4.3.

Consequently, for domain size H > 4000P, communications will be negligible (5 %).

Hence, for locality purpose, tiles should be as large as possible (see figure 11). However, as we increase
w, the amount of dummy tasks (w X (w — 1)) are increased and one should find the best trade-off between
providing locality and computing less dummy tasks. Let us formalize this idea.

Let us denote by 772 (respectively Taren,) the average time necessary to fetch a data from cache L2 to
cache L1 (respectively from the memory to cache L2); let us also denote by 7.4 the average calculation time
of one task. Then, the computation time of a rectangle of size h X w is given by the formula (where ;3000
is 1 if A > 3000 and 0 otherwise).

1
Tcalc(haw) ~ hw X <(TL2 + 6h>30007—Mem) X E + Tcalc) -

That can be experimentally observed on Figure 11. Consequently the execution time of parallelepiped
tile (rectangle of size h x w plus two triangles of height w) is

1 2 1
Tcalc(haw) ~ hw x <(TL2 + 6h>3000TMem) X (E + E) + (1 + E(w - 1)) Tcalc)

That can be experimentally observed on Figure 12 for values w 2 15. For w < 15, a more precise model
of memory access than the simple formula (72 + dn>30007Mmem ) Would be necessary. But, as we will see on
the next section, for h values for which w should be chosen as small, the communication overhead has a
non-negligible impact. In this context, it becomes hazardous to formulate analytically the average execution
time.

3.4.4 The communication overhead

In this section, we study the impact of communications on the computation time. Because our study
deals with small-scale message passing, we might use a simple model [27] for communication made of two
components: the start-up £, and the communication itself 7 proportional to its size [. Usually, 8 > 7, which
motivates tiling because it increases the granularity of computation. Here, for a domain of size W = 4T/dt,
tiled with tiles of size w x h = w x H/P, there are W/w groups of communications of size proportional to
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Figure 11: Influence of the width w on the locality of data references for the tiled sequential program: the
iteration space is of size w x h, and tiles of size Weup_site X Psup_tite = w x 100. For h = 103, all data remain
in cache L1 or L2. For h = 10°, the impact of tiling is more important because the data are initially in the
memory, and should be fetched from memory to cache L2.
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domain size H for parallel program executed on three processors.
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w. If we normalize by W, we obtain a communication cost per column of % + 7. However, Fig. 13 do not
confirm this approach:

e We can observe two different phases: in practical, for communications larger than 960 bytes (w > 20),
messages are divided into sub-messages (by the communication interface) which involves an overhead.
This can be observed on the curves by a step between w = 16 and w = 20.

e The communication overhead is very sensitive to the amount of data used by the program (see figure 14):

1. Indeed, the communication interface context might be removed from the cache by the computa-
tions between each communication phase. That would explains why the communication overhead
(computation time with communications minus computation time without communications) is
larger than the ” pure commaunication time” (the program executed without any calculation).

2. When the amount of data per processor is just below a transitional period (h = % ~ 2000), the
communication might slow down the computation part, by increasing the amount of data.

)
with calculation. H/'P=1000

with calculation. H/P=100

without any calculation

Communication time (in seconds) / W
a
T

1 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100
tiles width w

Figure 13: Evaluation of the communication overhead. Two tests are performed: one (“without calculations”)
corresponds simply to execute the program in which calculations have been commented (only communications
are performed). The second (“with calculations”) corresponds to the difference between the program with
communication and without communications (for this last case, even if the program result is wrong, we
have checked that no exception occurs..). It evaluates the actual communication overhead. Since, the
communication overhead depends on the value of % (see figure 14), we have performed this last test with
different domain sizes: h = & € {10%,10%,10*}.

3.4.5 The optimal parameters

From the previous remarks, we can summarize the general behavior of the program to the following points:

e For a small domain size %, the ”"redundant-work” overhead is very significant. Hence, w should be
smaller than 20. In that context, larger the tiles, smaller the communication overhead, faster the
calculation time (because of locality), and larger the redundant work overhead. Here, communication
time and calculation time are predominant. The best tiles width is then w = 16 (see figure 15).

e For very large domains, either the "redundant-work” overhead and the communication overhead are
negligible. Hence, the best tiles width is w = 4n,.n, = 100 (see figure 15).

e Between these two extreme cases, it is difficult to define a formal solution because of the irregularity
of the communication overhead; the best solution might consist on testing all the possibilities (only 25
possibilities for w) with fixed W = 4Z =500 (see figure 16).
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Figure 16: Optimal values of w versus H on P = 6 processors. Let us denote by #.q;c.(H,w) the normalized
computation time. For a given value of domain height H, we denote by w,,: the optimal tile’s width:
teate(H, Wopt) = Mminy, teqre(H,w). Then, by allowing an error of 2%, the minimum bound corresponds to
min{w, teqe(H,w) < teare(H, wept) X 1.02} and the maximum bound to max{w, teac(H,w) < teare(H, Wopt) X
1.02}.

3.5 Performance results

In this section, we present performance results obtained on the clusters described in Paragraph 3.4.1. Un-
fortunately, because no reservation system is available on this machine, it is extremely difficult to get all
the processors together in a dedicated mode. Hence, we had to dynamically balance the loads on processors
during the execution: the height h; of the tile computed by processor P; was chosen to verify the constraint
Vi, Tearc(hj, w, Pj) ~ Constant. The imperfection of the system (miss of reactivity) explains the irregularity
observed on the curves. Moreover, because we were interested mainly in large domain size, we have restricted
the experiments to a tiles’ width of w = 100. Instead, smaller values would have provided better results on
small iteration domains (cf Figure 16). However, results are still very good. Two experiments have been
performed:

e one on 11 homogeneous processors of the Pom,

e the other one on 25 heterogeneous processors: 14 processors from Pom with an average cycle time
tseq(pom) = 3.99 x 10~ 7; 11 processors from PoPC with an average cycle time ¢, (popc) = 7.09x 10~ 7.

For each of this experiments, H varies from 4000 to 10®. The iteration space have a size of W x H =
4% x H = 500 x H. We have reported,

Texe-para

1. the average execution time of one task tcqic = —55751

2. the speedup of the parallel execution.

3.5.1 Experiences on 11 homogeneous processors
Results are reported on figures 17 and 18. Two curves are represented on Figure 17:

e the average execution time per task, corresponds to the total computation time divided by the size of
the iteration domain W x H.

e the optimal execution time (horizontal line) is defined as follow: for a large set of domain size, sequential
execution time per task is measured. Among all those values, we took the minimum one and divided
it by 11.

18



Figure 18 represents the speedup for our parallel execution: for a given number of particles H, the
program is executed both in sequential and in parallel. The speedup is the ratio of those two values. For
this example, a good speedup should be around 11.

x 10
3.95

391 4

3.85F i

375} ! B

Average execution time per task

3.7+ : PR . B

36 | |
10 10 10 10

Figure 17: Average execution time per task on 11 processors from the Pom, for a problem size varying
between H = 4000 and H = 10°. The horizontal line represents the optimal execution time as defined in
the text.

Execution time curve (Figure 17) presents a step (around H = 4000) that corresponds to the cache
limit. Because sequential execution time curve is roughly identical but scaled by a factor of P = 11, the
ratio between sequential execution time and parallel one represented in Figure 18 contains two bumps (that
exceed the “optimal” value 11).

3.5.2 [Experiences on 25 heterogeneous processors

Let us suppose that we use all the available resources simultaneously, i.e. processors from PoPC in addition
to processors from Pom. In that case, nor the processors, neither the network are homogeneous. Hence, the
work should be load balanced, and the heterogeneity of the network should be taken into account. If not, the
execution time of the program will depend only on the slowest parts of the system (see [5, 3] for a reflection
on load balancing problems).

For clarity, let us consider a toy example : suppose we have two parallel machines ¢y and ¢; made
respectively of 11 processors from PoPC and 14 processors from Pom. Suppose the network between those
two clusters is 10 times slower then the network inside each cluster.

A solution consists on considering each cluster has a processor of cycle time tseq(co) = tpare(Popc) =~

% and tseq(c1) = tpara(pom) =~ w. Then, tile the iteration space consequently as done for

an homogeneous network. Finally, each tile is distributed over the processors of each cluster. Figure 19
represents this strategy on this example.

Of course, this method is recursive, and p; could represent itself a cluster of processors etc...

The results for the homogeneous problem clarifies therefore that this solution is useful only if the commu-
nication overhead is not negligible compared to the computation time. It might be the case, when running
the application on the computational grid (see [24] for a discussion on meta-computing issues). In such case,
Northo should be large enough to compensate the communication overhead...

Here, we aim at executing the program on very large domains, and the communication overhead between
two clusters is not large enough to justify the use of a hierarchical tiling method (see [8] for a discussion
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on hierarchical tiling). Hence, we chose to implement our program just as if the network was homogeneous.
Results are reported in figures 20 and 21.
Two curves are represented in Figure 20:

e The average execution time per task corresponds to the total execution time divided by the iteration
domain size W x H = 500 x H.

e the extrapolated optimal execution time (horizontal line) is evaluated as follow: the minimum (over
all possible domain size) average sequential execution time per tile is measured on one node from the
Pom (denoted by tseq(pom)), and on one node from the PoPC (denoted by tseq(popc)). The average
sequential time is then extrapolated by the formula

1
4 11
tseq(pom) ' tscq(pope)

~197x 108

Figure 21 represents the speedup for our parallel execution versus the extrapolated sequential execution.
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Figure 20: Execution time on 25 processors, 11 from the PoPC and 14 from the Pom. Domain size varies
from H = 5000 to H = 10°. The horizontal line represents the extrapolated optimal execution time as
defined in the text.

As in the case of Figure 17, the execution time curve (Figure 20) contains a step (around H = 3000) that
corresponds to the the cache limit. For small domain size, the speedup is worst than on 11 processors due
to the communication time more costly between PoPC and Pom than between two nodes of the Pom.

4 Results

In this article, taking advantage of the code developed and presented in Section 3, we would like to briefly
test the following issue: Is there a dependence of the maximum Lyapunov exponent on the length of the chain
N. In an old but well-known article [22], Livi, Pettini and Ruffo have established the fact that the Lyapunov
are dependent only on the density of energy and not on the size of the chain N. This fact was very recently
disputed by Searles, Evans and Isbister [30]. More precisely they argued that the largest Lyapunov exponent
diverges logarithmically with the number of particles in the system. They considered the Fermi-Pasta-Ulam
chain but also other systems in two and three dimensions. This is of course a crucial question since most
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Figure 21: Speedup for our parallel execution on 25 processors versus the extrapolated sequential execution.

works on the FPU chain are considering, of course, a finite number of sites but the aim is to draw conclusions
in the thermodynamic limit (N — o0).

Their main conclusion is that Livi et al. were using too small chains to note this weak divergence and
thanks to the powerful computers of today, they claimed to be able to check the disagreement. However the
logarithmic divergence was very weak and their results were disputed, that’s why we have decided to check
it with our code, which allows us to attain longer chains and longer simulations time.

As shown by Fig. 22, we have computed the Lyapunov exponents over very long time of order ¢ ~ 108,
which means more than 10® timesteps. We made simulations for different sizes of the chains from 102 to 106.

The first important but usual remark is that the Lyapunov should be computed only after a “sufficiently
long time”. If the largest Lyapunov exponent is a measure of the greatest dynamical instability, it takes
time for the eigenvector to seek out the direction of instability. Also, too early measures of the values of §;
would disappear only as 1/t in the the computation of A, defined by Eq. (5).

The second point is that Searles et al. used the Gear predictor-corrector (4th order) algorithm which is
not symplectic, but we see here that the best 4th order symplectic algorithm confirms their finding: there is
presumably a very small but existing dependence on the length of the chain IV, at least in the energy and
length domains considered.

This is an unexpected result that should be confirmed by considering higher values of the energy density,
clearly above the so-called stochasticity threshold, which could explain this very weak divergence with
N. Higher values of the energy density will lead to higher Lyapunov exponent and therefore to a faster
convergence toward equilibrium. As the maximal time would be smaller, this would allow, of course, to test
longer chains. Work along this line is in progress thanks to this implementation.

5 Conclusion

In this paper, we have applied tiling techniques to a practical problem of dynamical system theory, namely
the numerical Lyapunov calculation. This work gave the opportunity to check the veracity of models often
used for tiling optimizations. In particular communication cost models that are a simple function of the
communicated data volume [ (like 5 4 I7) have been shown inaccurate. The major objective of this article
was to present a simple-to-implement yet very efficient solution for tiling the iteration space (cyclic and non-
cyclic) of explicit integration schemes of differential equations. This solution can be applied on all algorithms
that present a recurrence on all but one directions, which is the case, in particular, of some SOR and DSP
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Figure 22: Evolution of the Lyapunov exponents in the case of an energy per particle of e = 19.53 for
different lengths N of the chains. The curves corresponds from top to bottom to N = 10°¢, 10°, 10%, 10* and
102. The inset shows more precisely the three largest cases.

algorithms. The optimization of the tile size has been decomposed into different successive phases, sorted
in decreasing importance order, and which have been studied in this article. Our approach differs from
classical ones that usually aim to solve tiling optimization problem in a single step. We strongly believe that
our “fuzzy” approach should be used by future automatic partitioning algorithms. Finally, except maybe
for the orthonormalization which is quite specific to our physical study, our implementation is scalable and
well-suited for massively parallel platforms.

However, taking a physical point of view, this implementation confirmed the logarithmic divergence of
the largest Lyapunov exponent with the number of particles in the system. Also this implementation is the
suitable tool to study the low density energy regime of the Fermi-Pasta-Ulam chain. Indeed, in the last
decade, the behavior of the largest Lyapunov exponent as a function of the energy density was recognized as
a key element to understand the Fermi-Pasta-Ulam paradox and the transition to the statistical mechanical
behavior. In particular, different authors have reported the existence of the so-called stochasticity threshold.
Above this critical energy density [25], the transition toward energy equipartition is fast whereas below (this
was indeed the case for the original article by FPU [18]), the dynamics seems to be in contradiction with
this statistical mechanics theorem.

The question whether there is no transition or an extremely slow transition was debated extensively in
the literature and the need of a clear demonstration is still present. Recently, using a nice Riemannian
geometrical approach [9], Casetti, Livi and Pettini have obtained an analytical expression in clear agreement
with available numerical data; another more phenomenological approach gave also excellent results [13].
However, as these methods are not completely rigorous, extensive and precise measures at very low energy
densities are still importantly requested. Work along these lines is in progress.
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