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A general scheme for deciding the branchwidth
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Abstract
We adapt some decision theorems about treewidth to the branchwidth and
use this theorems to prove that the branchwidth of circular-arc graphs can be
computed in polynomial time.

Keywords: graphs, branchwidth, circular-arc graphs

Résumé
Nous adaptons des résultats de décision sur les décompositions arborescentes
aux décompositions en branches. Nous utilisons ensuite ces résultats pour mon-
trer que le calcul de la largeur de branches des graphes d’intervalles circulaires
peut se faire en temps polynomial.
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1 Introduction

The notion of treewidth was introduced by Robertson and Seymour in [14, 15] as a tool for their
graph minor theory. This tool has proven to be very fruitful from an algorithmic point of view
[2, 3, 4, 9]. A lot of work has been done to compute the treewidth and a corresponding tree
decomposition for graphs.

Although the treewidth problem is NP-complete [1], Bouchitté and Todinca proved that it is
polynomial when restricted to graphs with a polynomial number of minimal separators. To do
so they first introduced the notion of potential maximal clique which is a clique of a minimal
triangulation of a graph and proved [5] that the treewidth problem is polynomial when restricted
to graphs with a polynomial number of potential maximal cliques. Then they proved [7] that
a graph with a polynomial number of minimal separators has a polynomial number of potential
maximal cliques and that it is possible to list the potential maximal cliques in polynomial time.

In [16], in an attempt to build an obstruction for the treewidth, Robertson and Seymour
defined the branchwidth. They proved that for graphs, bw(G) ≤ tw(G) + 1 ≤ 3/2 bw(G). Using
deep topological results of [17], Seymour and Thomas proved [18] that the branchwidth problem
is polynomial for planar graphs which gives the best approximation for the treewidth of planar
graphs. In [12], Kloks and al. proved that the branchwidth problem is NP-complete even when
restricted to splitgraphs and bipartite graphs. They also gave a polynomial time algorithm to
compute the branchwidth of interval graphs.

In this paper we investigate further the links between branchwidth and treewidth by adapting
theorems about treewidth to branchwidth. In section 2, we give an overview of the results on
treewidth we will extend. We will give slightly modified definitions for some object that do
not change for treewidth but will be more convenient later. We will extend the theorems to
branchwidth in section 3 and prove that the branchwidth of circular-arc graph is polynomial as
an application in 4.

2 Preliminaries

In this paper, we consider simple finite graphs and multigraphs. Let G = (V,E) be a graph or a
multigraph. We denote by n the number of vertices of G and m its number of edges. For V ′ ⊆ V ,
we denote by NG(V ′) or N(V ′) when no confusion is possible the neighbourhood of V ′ in G\V ′.

2.1 Treewidth and minimal triangulations

A graph is chordal (or triangulated) if every cycle of length at least four has a cord, that is an
edge between two non-consecutive vertices of the cycle. A triangulation of a graph G = (V,E) is
a chordal graph H = (V,EH) such that E ⊆ EH . The triangulation is minimal if for every set
E ⊆ E′ ⊂ EH , (V,E′) is not chordal. A clique is a complete subgraph of G.

Property 1 A chordal graph is the intersection graph of the subtrees of a tree.

The set of the connected components of G\S is denoted by C(S). An a, b-separator of a graph
G = (V,E) is a set S ⊆ V such that a and b are not in the same connected component of G\S. We
say that S separates a and b. An a, b-minimal separator of a graph G = (V,E) is an a, b-separator
such that no proper subset of S separates a and b. A minimal separator is a set S which is an
a, b-minimal separator for some a and b ∈ V . We denote by ∆G the set of the minimal separators
of G. A connected component C of G\S is a full component associated to S if N(C) = S. We
refer to [11] for the following lemma:

Lemma 1 A set S of vertices of G is an a, b-minimal separator if and only if a and b are in
different full components associated to S. S is a minimal separator if and only if S has at least
two full components.
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Let S be a minimal separator of G and C ∈ C(S). The set of vertices (S, C) = S ∪ C is called
a block. If S and T are two minimal separators of a graph G, we say that S crosses T noted S]T
if S separates two vertices x, y ∈ T . If S does not cross T , we say that S and T are parallel. The
crossing and parallel relation for minimal separators are symmetric and S is parallel to T if S is a
subset of a block (T,C). The proof of this statement can be found in [8]. In fact, if we look just
a little closer, S crosses T if and only if S intersects C ∈ C(T ) but S is not included in C ∪N(C).
We can thus use “S crosses T if S intersects C ∈ C(T ) but S is not included in C ∪ N(C) as a
definition for crossing sets. Note that for general sets, this relation is not symmetric.

Let X ⊆ V we denote by GX the graph obtained from G by completing X, i.e. by adding an
edge between every two non adjacent vertices of X. For X a set of subsets of V , GX denotes the
graph obtained from G by completing the elements of X . The results of [13] establish a strong
relation between the minimal triangulation of a graph and its minimal separators.

Theorem 1 Let Γ ⊆ ∆G be a maximal set of pairwise parallel minimal separators of G. The
graph H = GΓ is a minimal triangulation of G and ∆H = Γ.

Let H be a minimal triangulation of G. The set ∆H is a maximal set of pairwise parallel
minimal separators of G and H = G∆H .

A set S ⊆ ∆G is set of neighbour separators if for every S ∈ S, there is B(S) = (S, C(S)) such
that every S′ ∈ S is a subset of B(S) and no element of S contains all the other elements of S.
We define the piece between S by P (S) = ∩S∈SB(S). If X is a piece between minimal separators,
then ∆G(X) is the biggest subset of ∆G such that X = P (∆G(X)). We say that the separators
in ∆G(X) border X.

A minimal separator S splits a set of neighbour separators S if S ⊆ P (S), every S′ ∈ S is a
subset of a block (S, C) but no block (S, C) contains all the elements of S. This definition implies
that there exists a partition (S1, . . . ,Sp) of S such that the sets Si ∪ {S} are sets of neighbour
separators called the resulting sets. A set S of neighbour separators is a maximal set of neighbour
separators if no minimal separator can split S.

Remark 1 If S contains only one element or contains an element which contains all the others,
there is more than one piece between S and no minimal separator can split S.

A maximal potential clique of a graph G is a maximal clique of a minimal triangulation of G.
The following theorem from [5] gives a characterisation of the maximal potential cliques.

Theorem 2 A set Ω ⊆ V is a maximal potential clique if and only if Ω is a piece between a set
of maximal neighbour separators and G∆G(Ω)[Ω] is a clique.

Theorem 1 and 2 shows that minimal triangulations are obtained by completing pieces between
maximal sets of neighbour separators. If S is a set of pairwise parallel minimal separators we define
GS by completing in G the pieces between elements of S that are minimal for inclusion. If the set
S is maximal, then GS = GS .

If we have a collection F of maximal potential clique of a graph G, it is natural to ask whether
there is a minimal triangulation of G whose maximal cliques all belong to F . In [6], Bouchitté
and Todinca defined the notion of complete family of maximal potential cliques. That is a family
of maximal potential cliques F such that for any minimal separator included in a clique of F and
any block (S, C), there exists a clique Ω ∈ F such that S ⊂ Ω ⊆ (S, C). They proved that given
a complete family of maximal potential clique F , one can derive with an extraction algorithm, a
minimal triangulation H of a graph G whose cliques all belong to F . They also gave an elimination
algorithm that computes the biggest complete family of maximal potential clique included in a set
F . This elimination algorithm 1 has a polynomial running time in n and in |F|.

It turns out that since the family F only contains maximal potential cliques,

• the set ΓF is the set of minimal separators that border the elements of F ;

• a complete family of maximal potential clique is a family of maximal potential clique F such
that for any minimal separator that border a clique of F and any block (S, C), there exists
a clique Ω ∈ F such that S ⊂ Ω ⊆ (S, C).
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Algorithm 1 Elimination algorithm
Input: A set of maximal potential clique F

The set ΓF of minimal separators of G included if an element of F
Output: The biggest complete family of maximal potential clique included in F
Begin

while there exists S ∈ ΓF and a block (S, C) such that
no clique Ω ∈ F satisfy S ⊂ Ω ⊆ (S, C) do

F = F\{Ω ∈ F | S ⊂ Ω}
update ΓF = {S ∈ ΓF | ∃Ω ∈ F such that S ⊂ Ω}

return F
End

This relaxed definition of complete family can thus be extended to a family of pieces between
minimal separators and together with the relaxed definition of ΓF , all the proofs used to ensure
that the algorithm is correct are still valid. The extraction algorithm also works with the related
definitions.

A tree decomposition of a graph G = (V,E) is a couple T = (T, χ) where T is a tree and χ
tags the vertices of T with subsets of V such that:

i. ∀v ∈ V , ∃w ∈ V (T ) with v ∈ χ(w);

ii. ∀(u, v) ∈ E, ∃w ∈ V (T ) with (u, v) ⊆ χ(w);

iii. for any vertex v ∈ V , the vertices u ∈ V (T ) such that v ∈ χ(u) induce a subtree Tv of T .

The width of a tree decomposition is maxv∈V (T ){|χ(v)| − 1}. The treewidth of a graph is the
minimum width of one of its tree decomposition.

Conditions ii and iii make it natural to see the graph G as a subgraph of the intersection graph
GT of the subtrees Tv. Since the intersection graph of the subtree of a tree is chordal, choosing
a tree decomposition of a graph is the same as choosing a triangulation of G and since the width
of a tree decomposition corresponds to the size of a maximum clique of GT minus one, we can
suppose that GT is a minimal triangulation.

Theorem 3 If a class of graphs G has a polynomial number of maximal potential cliques and for
each graph in G we can list in polynomial time the set of its maximal potential clique, then the
treewidth is polynomial for graphs in G.

Proof. The algorithm works as follow. First remove from the family F of the maximal
potential clique the elements that have more that k + 1 vertices. Then with the elimination
algorithm build the biggest complete family in F . If this family is not empty, then the graph has
treewidth at most k. Then to build a corresponding tree decomposition, we can use the extraction
algorithm on the complete family. ut

Remark 2 In fact we do not need to know all the maximal potential cliques of a graph to be able
to compute the treewidth of a graph. We only need a family F such that if tw(G) = k, then the
maximal potential cliques of size at most k + 1 in F contains a non empty complete family.

2.2 Branchwidth

A branch decomposition of a multigraph G = (V,E) is a pair Θ = (T, τ) where T is a ternary tree
and τ is a bijection from E to the leaves of T . A branch of T is a connected component Ti of T\e
for e ∈ E(T ). The vertex of degree two of Ti is its root. We extend τ to the branches of T by
putting τ(Ti) = {τ(v) | v is a leaf of Ti}. The set SΘ

e is the set of vertices x of G such that for
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each connected component T e
i of T\{e}, there exists an edge in τ(T e

i ) which is incident to x. The
order of an edge e of T is the size of SΘ

e . The width of a branch decomposition Θ = (T, τ) is the
maximum order of an edge of T . The branchwidth bw(G) of G is the minimum width of its branch
decompositions.

We can see the function τ as a tagging function. This way, we can replace T by a new tree T ′

that has the same set of leaves and (T ′, τ) will be a branch decomposition.
The branchwidth and the treewidth are closely related as shown in [16]. Indeed we can trans-

form any tree decomposition without changing the corresponding triangulation in a way that the
tree used by the new tree decomposition can be naturally associated to a branch decomposition.
We will only prove the first implication.

Lemma 2 Let G = (V,E) be an hypergraph and Θ = (T, τ) be a branch decomposition of G.
For any three edges e1, e2 and e3 of T such that e2 is on the path from e1 to e3, SΘ

e1
∩SΘ

e3
⊆ SΘ

e3
.

Proof. Let T e1
1 , T e1

2 , T e2
1 , T e2

2 , T e3
1 and T e3

2 be numbered such that

• e2 and e3 are edges of T e1
2 ;

• e1 is an edge of T e2
1 and e3 is an edge of T e2

2 ;

• e1 and e2 are edges of T e3
1 .

Let x ∈ SΘ
e1
∩ SΘ

e3
. There exists f1 ∈ E(T e1

1 ) and f2 ∈ E(T e3
2 ) which are incident to x. By

construction, f1 ∈ E(T e2
1 ) and f2 ∈ E(T e2

2 ) which proves that x ∈ SΘ
e2

. ut
Lemma 2 proves that every vertex v of G corresponds to a subtree Tv of T . If for w ∈ V (T ),

χ(w) is the set of vertices v of G such that w ∈ V (Tv), then (T, χ) is a tree decomposition.
In a way, branchwidth and treewidth are distinct parameters associated to branch decomposi-

tions. The branchwidth focuses on the size of the edges of T whereas the treewidth focuses on the
vertices of T .

3 Parallel decompositions and branch triangulations

Lemma 3 Let Θ = (T, τ) be a tree decomposition of a multigraph G = (V,E) and e be an edge of
T .

Let C be a connected component of G\SΘ
e and E(C) be the set of the edges that are incident

to at least one vertex of C.
The set E(C) is a subset of either E(T e

1 ) or E(T e
2 ).

Proof. Suppose that there exists e1 and e2 in E(C) such that ei ∈ E(T e
i ). Since C is a

connected component of G\SΘe, there exists a path (x1, . . . , xp) in C from an end of e1 to one of
e2. Since e2 belongs to E(T e

2 ), there exists a first xi which is incident to an edge of E(T e
2 ). This

vertex belongs to SΘe which is absurd. ut
Lemma 3 leads to the definition of a pack. A pack of a set of edges X ⊆ E is either an

hyperedge whose ends all belong to ∂(X) or a subset E(C) of X for some connected component
C of G\∂(X). A pack of ∂(X) is a pack of either X or E\X.

For the treewidth, we did not consider tree decompositions that lead to triangulations that
were not minimal triangulations. For the branchwidth, we want to do the same thing, i.e. to
restrict ourselves to some special branch decompositions that are still optimal. The bond decom-
positions of [18] are one kind of these decompositions. The decompositions we will consider are
parallel decompositions. We need to prove that for every multigraph G, there exists such a decom-
position whose width is bw(G). To do so, we will introduce a new parameter associated to branch
decompositions which is stronger than the branchwidth and then prove that a decomposition that
optimises our parameter is non crossing.
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Let G = (V,E) be an hypergraph and Θ = (T, τ) be a branch decomposition of G. A border
of Θ is a set S such that there exists an edge e of T with S = SΘ

e . A border S is a primary
border for Θ if it is included in no other border of Θ. The profile of Θ is the sequence (un, . . . , u1)
such that ui is the number of primary borders of Θ of size i. We order the profiles of G with the
lexicographical order, that is (un, . . . , u1) < (vn, . . . , v1) if there exists i ∈ [1..n] such that ui < vi

and for every n ≥ j > i, uj = vj . The profile of a graph G is the minimal profile of a branch
decomposition of G. An optimal branch decomposition is a branch decomposition whose profile is
minimum.

Clearly a branch decomposition whose profile is profile(G) has width bw(G).

We want to adapt tools created for the treewidth to the branchwidth. Most of these tools
consider minimal triangulation use the fact that the treewidth of a graph is equal to the treewidth
of one of its triangulation. The same is true for branchwidth.

Property 2 Let G be a graph and H a triangulation of G corresponding to a branch decomposition
of minimum profile. The graphs G and H have the same profile.

Proof. First since G is a subgraph of H, any branch decomposition (T, τ) of H can be
transformed into a decomposition of G by removing the leaves of T that correspond to edges of
E(H)\E(G) and removing the nodes of the resulting tree of degree two. The decomposition has
a profile which is not greater that the first one. So profile(G) ≤ profile(H).

Now consider a branch decomposition Θ = (T, τ) of G of minimum profile. The corresponding
triangulation H is obtained from G by completing the borders of Θ. We can partition the edges
of E(H)\E(G) into subsets (E1, . . . , Ep) such that all the edges of Ei belong to the same border
Si. Build a branch with each sets Ei and plug it in the middle of an edge of T corresponding
to the border Si. Since the border of any subset of Ei is included in Si, the resulting branch
decomposition of H and Θ have the same profile. ut

Property 2 enables us to try to find a triangulation of G with a minimum branchwidth. Property
5 and theorem 6 give properties of such a triangulation but before that, we need to prove an
important theorem.

If one wants to build a branch decomposition Θ with a low profile, it is natural to try to
minimise the number of primary borders of Θ and since the packs of X ⊆ E partition X and the
border of any union of packs of X is a subset of the border of X, it is natural to try to use them.
And indeed properties 7 and 8 prove that this approach works.

Let Θ = (T, τ) be a branch decomposition of an hypergraph G = (V,E) and X be a branch
of T . The branch X is split if there exists a pack B of τ(X) and no branch Y of X is such that
B = τ(Y ).

Theorem 4 Let Θ = (T, τ) be a branch decomposition of an hypergraph G = (V,E) and X be a
branch of T . There exists a branch decomposition Θ′ such that:

i. Θ′ is obtained from Θ by replacing X by X ′ in T ;

ii. X ′ is not split;

iii. profile(Θ′) ≤ profile(Θ). Moreover if there exists a branch W such that ∂
(
τ(W )

)
crosses

∂
(
τ(X)

)
, then profile(Θ′) < profile(Θ).

The decomposition Θ′ is a decomposition Θ cleaned along X.

The proof of theorem 4 can be found in the appendix.
The following theorem is a direct corollary of theorem 4.

Theorem 5 Let G = (V,E) be an hypergraph. A branch decomposition Θ of G whose profile is
minimum has no two borders that cross.

A branch decomposition such that no two borders cross is a parallel decomposition.
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An important corollary of theorem 5 is the following.

Property 3 Let G = (V,E) a graph and Θ = (T, τ) an optimal branch decomposition.
The minimal separators of the triangulation GΘ are minimal separators of G.

Proof. Let us prove that if a minimal separator S of GΘ is not a minimal separator of G then
Θ is not optimal.

Since S is a minimal separator of GΘ, there exists two maximal cliques Ω1 and Ω2 of GΘ such
that S = Ω1 ∩ Ω2. Moreover maximal cliques correspond to some nodes of T . Let v1 and v2 be
two vertices of T that correspond to Ω1 and Ω2. There exists an edge e of T on the path from v1

to v2 that corresponds to S. Let T1 and T2 be the two branches of T\e that contain respectively
v1 and v2. Let Ei = τ(Ti).

Since S is not a minimal separator of G, there is at most one connected component C whose
neighbour is S. We can suppose that no pack B of E1 is such that ∂(B) = S. Let e1, e2 and e3 be
the three edges incident to v1 and S1, S2 and S3 the corresponding borders. In GΘ, the minimal
separator is a strict subset of Ω1.

Let u be a vertex of Ω1\S and C be the connected component of u in G\S. Since S3 ⊆ S1∪S2,
at least one Si say S1 contains u but is not included in (S, C) which proves that S1 crosses S and,
by theorem 5 that Θ is not optimal. ut

Properties 3 enables us to prove that the maximal cliques of a triangulation corresponding to
a parallel branch decomposition are pieces between neighbour separators.

The branchwidth of a set S of neighbour separators is the branchwidth of the clique P (S) to
which we add an hyperedge eS = {S} for every minimal separators of S. A branch clique of a
graph G is the region between a set of neighbour separators.

Theorem 6 Let G = (V,E) be a graph, Θ(T, τ) be parallel branch decomposition of G and GΘ be
the corresponding triangulation of G.

A maximal clique of GΘ is a branch clique.

Proof. Let Ω be a maximal clique of GΘ. Let S1, S2 and S3 be the borders corresponding to
the edges incident to a vertex of T associated with Ω. Let ∆GΘ(Ω) be the set of minimal separators
of GΘ included in Ω. Property 3 proves that ∆GΘ(Ω) is a set of minimal separators of G.

Let S ∈ ∆GΘ(Ω). One of S1, S2 of S3 is not included in S. Suppose that S1 is not included
in S. Since S1 does not cross S, there exists a connected component C such that S1 is included
in C ∪ N(C) and so S1 ⊆ (S, C). But then S2 and S3 are also included in (S, C). This implies
that Ω ⊆ (S, C). So the minimal separators of S = ∆GΘ(Ω) are indeed neighbour separators and
Ω ⊆ PG

(
S

)
. In fact, this inclusion is an equality for since GΘ is a supergraph of G, the region

between S in G is a subset of the one in GΘ. And in GΘ, the equality is true. ut
Although the problem of finding the branchwidth of a branch clique is exactly the same as

finding the branchwidth of a split graph which is NP-complete as shown in [12], if we have a
large enough collection of branch cliques whose branchwidth we know, we can use the elimination
and the extraction algorithms to decide the branchwidth of a graph. In particular, we have the
following theorem:

Theorem 7 Let G = (V,E) if we can compute in polynomial time a family F of branch clique
such that for every Ω ∈ F , we can compute the branchwidth of Ω and such that there exists a
triangulation H of G with bw(H) = bw(G) and whose maximal clique are all in F , then the
branchwidth of G can be computed in polynomial time.

4 Circular-arc graphs

In this section, we will only consider circular-arc graphs. An circular arc graph is the intersection
graph of the arcs of a circle. The treewidth of circular-arc graphs can be computed in polynomial
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time as shown in [19]. To prove this, they use a circular interpretation of the graph (this can be
done in polynomial time [10]) and give a geometrical interpretation of maximal potential cliques
which allows them to prove that a tree decomposition correspond to a planar triangulation of
some polygon. We will follow exactly the same path to prove that the branchwidth of circular-arc
graphs can be computed in polynomial time.

We can suppose that the intersection graph I of a circular-arc graph G = (V,E) is such that the
ends of two distinct arcs are also distinct. From now on we will only consider such representations.
Between two such ends, be put a scan point. A scan line is a chord of the circle between two distinct
scan points. A scan triangle is a triangle between three distinct scan points. It is easy to see that
there are 2n scan points, n(2n− 1) scan lines and n(2n− 1)(2n− 2)/3. The arcs inside of which
lie the ends of a scan line are cut by the scan line.

Lemma 4 Let S be a minimal separator of G = (V,E) and I a representation of G. There exists
a scan line of I that cut exactly S.

Property 4 Let Ω be a maximal potential clique of G = (V,E) and I a representation of G.
There exists a scan triangle that cuts exactly Ω.

Let Θ be a minimal triangulation of G. There exists a plane triangulation Σ of the scan polygon
such that the triangles of Σ correspond to all the maximal cliques or subsets of maximal cliques of
Θ.

The algorithm of [19] finds a plane triangulation of I whose biggest triangle cuts a minimal
number of arc. And since there are O(n3) scan triangles, we can use the algorithm of [6] to
compute a tree-decomposition.

Consider a branch decomposition Θ = (T, τ) of G with a minimum profile, the corresponding
triangulation GΘ and Ω a maximal clique of GΘ.

Theorems 5 and 6 show that Ω is a branch clique so by property 4, we know that Ω is the
piece between the minimal separators that border Ω. Knowing ∆G(Ω) is enough to know Ω. Since
∆G(Ω) is made of minimal separators, by lemma 4, we know that we can represent ∆G(Ω) with
a set of scan points. We want to prove that we use at most six scan points to do so. That way,
we will have proven that we can enumerate in polynomial time a family of the branch clique that
build up the triangulation GΘ. If we can compute their branchwidth in polynomial time, then
by theorem 7 we will have proven that the branchwidth of the circular-arc graph is polynomial.
This pattern is exactly the one used in [12]. They prove that an interval graph has a polynomial
number of branch clique which they can list. Moreover, they can compute the branchwidth of a
branch clique easily.

Property 5 Let Θ = (T, τ) be a branch decomposition of G of minimal profile and Ω a maximal
clique of the corresponding triangulation GΘ. Let e1, e2 and e3 the edges of T incident to a vertex
corresponding to Ω.

There exists at most three scan lines lj that cut exactly ∆G(Ω) and such that lj cuts a subset
of the border associated to an ei.

A branch clique of an circular-arc graph that admits such a representation is called a tight
branch clique.

Proof. Let Si be the borders associated to ei.
For Sj ∈ ∆G(Ω), by lemma 4 let lj be the scan line between uj and vj that cuts exactly Sj .

Each Sj is a subset of one Si. So there exists a set of scan lines L that cuts exactly ∆G(Ω) and
such that each lj ∈ L cuts a subset of one Si. Moreover, two chords lj and lk can only meet at
there ends. Choose such a set L with as few elements as possible.

Let P be the convex polygon defined by the chords of L. Any diagonal of P induce a partition
L1 ∪ L2 of L. If |L| > 3, then there are two scan lines lj and lk in L that cut the same Si. This
implies that there is a scan line l whose ends lie in the ends of lj and lk that is a diagonal of P
which induces a partition L1 ∪ L2 of L such that |L1| ≥ 2 and |L2| ≥ 2.
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We claim that either L1∪{l} or L2∪{l} is a representation of ∆G(Ω) which is absurd by choice
of L. Indeed by theorem 4 we can suppose that the branches Ti are not split. For every scan line
s in L, we can build a branch corresponding to connected components of G\Ω that lie in the cap
bordered by s. Now in L1, take all the scan line si that cut a subset of S1 and create with the
corresponding branches a branch corresponding to S1. Do this for S2 and S3 and with the three
branches build a branch T1. Create in a similar way a branch T2 associated to L2. By gluing T1

and T2 together, we have a new tree decomposition. If neither L1 ∪ {l} nor L2 ∪ {l} represent Ω,
then the new branch decomposition has a profile which is strictly smaller than profile(Θ). ut

Property 6 Let Ω be a tight branch clique, l1, l2 and l3 the scan line representing Ω and Si the
set cut by li.

Computing the branchwidth of Ω can be done in polynomial time.

Proof. There is a branch decomposition of width k of the branch clique Ω if and only if there
exists a partition A ∪ B ∪ C of Ω such that |A ∪ B| ≤ k, |A ∪ C| ≤ k and |B ∪ C| ≤ k, with
S1 ⊆ A ∪B, S2 ⊆ A ∪B and S3 ⊆ B ∪ C.

This proves that the branchwidth k of Ω is the minimum integer such that there exists α, β
and γ satisfying:

• |Ω| = α + β + γ;

• |S1| ≤ α + β ≤ k, |S2| ≤ α + γ ≤ k, |S3| ≤ β + γ ≤ k;

• |S1 ∩ S2| ≤ α, |S1 ∩ S3| ≤ β and |S2 ∩ S3| ≤ γ.

This system can be solved O(1) in |Ω| and k. ut
Property 5 and 6 prove that we can apply theorem 7 and thus the branchwidth problem is

polynomial for circular-arc graphs.

5 Conclusion

We have given a framework to compute the branchwidth for classes of graphs. However, this
framework is difficult to use. Indeed the number of branch clique of a graph is greater than the
number of its maximal potential clique. For instance for a chordal graph G, there are as many
branch clique as the number of subtrees of its clique tree. This number is at least exponential
in the size of the tree. Knowing this, it is not surprising that the branchwidth of split graphs is
NP-complete. We conjecture that the class of chordal graphs whose clique trees have a polynomial
number of subtrees, the branchwidth problem is polynomial. Note that interval graph belong to
this class.

The work we have conducted seem to show that the branchwidth problem is more difficult that
the treewidth problem. The fact that the branchwidth is NP-complete for split graphs whereas
the treewidth can be computed in linear time for them confirms this intuition. However, although
the branchwidth can be computed in polynomial time for planar graph, the treewidth problem
remains open to planar graph. Robertson and Thomas have used deep topological results to
solve the branchwidth for planar graphs. We feel that a pure combinatorial approach will not be
sufficient to solve the treewidth for planar graphs. Maybe one can find a general algorithm that
can solve branchwidth and treewidth for graphs on a surface of fixed genus.
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A Appendix

The following property proves that one can suppose that a branch X of a branch decomposition
is not split.

Property 7 Let Θ = (T, τ) be a branch decomposition of an hypergraph G = (V,E) and X be a
branch of T . There exists a branch decomposition Θ′ such that:

i. Θ′ is obtained from Θ by replacing X by X ′ in T ;

ii. X ′ is not split;

iii. profile(Θ′) ≤ profile(Θ).

The decomposition Θ′ is a decomposition Θ cleaned along X.

Proof. Let X = T e. We will prove the lemma by induction on |X|,
If |X| = 1, then X is not split, we can take Θ′ = Θ.

Otherwise, let Y and Z be the two branches of X.
We may suppose that neither Y nor Z are split. For otherwise, by induction we can change Y

in T without increasing the profile and suppose that Y is not split. And then, we can change Z
to ensure that Z is not split.

At this point we have a branch decomposition Θ′′ in which neither Y nor Z are split and such
that profile(Θ′′) ≤ profile(Θ). We can suppose that Θ = Θ′′.

Let Yi (resp. Zj) be the branches of T that correspond to the packs of τ(Y ) (resp. τ(Z)).
We build X ′ from the branches Yi and Zj in the following way:

• For each pack B of X, let Y B
i be the branches of Y corresponding to the packs of τ(Y )

included in B. Since τ(Y ) ⊆ τ(X), a pack of τ(Y ) cannot intersect two packs of τ(X) so all
the leaves of Y appear in the branches Y B

i . Grow a branch Y B between the branches Y B
i .

The borders created are the borders of unions of packs of τ(Y ) and thus are included in the
border of τ(Y );

• Create in the same way a branch ZB ;

• Grow a branch TB between Y B and ZB . The created border is the border of B and is
included in the border of τ(X);

• Finally grow the branch X ′ between the branches TB and replace T e by T ′e in T to obtain
T ′. The borders created are the borders of unions of packs of τ(X) and thus are included in
the border of τ(X);

We claim that Θ′ = (T ′, τ) satisfies the required conditions.
By construction Θ′ satisfies condition i. It also satisfies ii for the packs of X ′ and X are the

same and the branches TB are associated to the packs of X.

As already noted the created borders are subsets of ∂
(
τ(Y )

)
, ∂

(
τ(Z)

)
or ∂

(
τ(X)

)
which proves

that profile(Θ′) ≤ profile(Θ).
ut

Property 7 proves that when we clean an edge of a decomposition, we do not increase the
profile but in many cases the profile strictly diminishes.

Property 8 Let G = (V,E) be an hypergraph, Θ = (T, τ) be a branch decomposition of G and X
a branch of T .

If there exists a branch W of X such that ∂
(
τ(W )

)
crosses ∂

(
τ(X)

)
, then Θ cleaned along X

has a profile strictly smaller than the profile of Θ.
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Proof. Define Y and Z as in lemma 7. We can suppose that W = Y or W is a branch of Y .
We prove by induction on the distance between the root of X and W .
If W = Y , then by property 7 we can suppose that neither Y nor Z is split. We will prove

that any border containing ∂
(
τ(Y )

)
has been removed from Θ′ and that profile(Θ′) < profile(Θ).

Since the packs of τ(Y ) are included in the packs of τ(X), the borders created to build up
the branches Y B are strictly included in ∂

(
τ(Y )

)
. This proves that no border corresponding to a

branch of Y B contains ∂
(
τ(Y )

)
. We also have that no border corresponding to a branch of ZB

contains ∂
(
τ(Y )

)
. Moreover since ∂

(
τ(Y )

)
is not included in ∂

(
τ(X)

)
, lemma 2 proves that no

border corresponding to a branch of T\X contains ∂
(
τ(Y )

)
. In the end, no branch of Θ′ has a

border that contains ∂
(
τ(Y )

)
which proves our claim.

Suppose that W 6= Y . Since ∂
(
τ(W )

)
crosses ∂

(
τ(X)

)
, there exists a connected component C

of G\∂
(
τ(X)

)
that intersects ∂

(
τ(W )

)
. Since τ(W ) ⊆ τ(Y ), ∂

(
τ(Y )

)
is not included in (S, C).

• If C is also a connected component of G\∂
(
τ(Y )

)
, then ∂

(
τ(W )

)
is not included in ∂

(
τ(Y )

)
.

By construction ∂
(
τ(W )

)
is not included in (S, C). Let C ′ be another connected component

of G\∂
(
τ(Y )

)
. ∂

(
τ(W )

)
cannot be included in C ′ ∪N(C ′) for ∂

(
τ(W )

)
intersects C and C

avoids C ′∪N(C ′). This proves that ∂
(
τ(W )

)
also crosses ∂

(
τ(Y )

)
. By induction hypothesis,

the branch decomposition Θ′′ defined in property 7 is such that profile(Θ′)≤ profile(Θ′′) <
profile(Θ).

• If C is not a connected component of G\∂
(
τ(Y )

)
, then ∂

(
τ(Y )

)
intersects C. So for any

other connected component C ′ of G\∂
(
τ(X)

)
, since C∩

(
(S, C)

)
= ∅, ∂

(
τ(Y )

)
is not included

is (S, C). This proves that ∂
(
τ(Y )

)
crosses ∂

(
τ(X)

)
.

ut


	1 Introduction
	2 Preliminaries
	2.1 Treewidth and minimal triangulations
	2.2 Branchwidth

	3 Parallel decompositions and branch triangulations
	4 Circular-arc graphs
	5 Conclusion
	A Appendix

