Zsuzsanna R Oka Decembre 
  
Zsuzsanna R Oka 
email: zroka@lip.ens-lyon.fr
  
Simulations Between Cellular Automata on Cayley Graphs

Keywords: cellular automata, Cayley graphs, simulations R automates cellulaires, graphes de Cayley, simulations

We consider cellular automata on Cayley graphs and compare their computational powers according to the architecture on which t h e y work. We show that, if there exists a homomorphism with a nite kernel from a group into another one such that the image of the rst group has a nite index in the second one, then every cellular automaton on the Cayley graph of one of these groups can be uniformally simulated by a cellular automaton on the Cayley graph of the other one. This simulation can be constructed in a linear time. With the help of this result we also show that cellular automata working on any Archimedean tiling can be simulated by a cellular automaton on the grid of Z 2 and conversely.

Introduction

A cellular automaton (CA) is a network of identical nite automata which w ork in parallel and synchronously. It is also required that the network be regular, thus, it can be considered as a Cayley graph of a nitely presented group. Automata are placed on the vertices of the graph, and they communicate with each other through the edges. Some recent papers 5, 8 , 6 ] h a ve already considered this generalized notion of cellular automata, as we do in this paper.

Our goal is to compare the computational power of di erent models, more precisely, the power of cellular automata working on di erent C a yley graphs. In o r d e r t o d o t h a t , w e study simulations between them. The notion of a simulation is very intuitive but has never been studied for itself. [START_REF] Zs | One-way cellular automata on Cayley graphs (short version)[END_REF], we h a ve s h o wn with the help of various examples that this notion is very complicated, and we h a ve given some possible de nitions for it. Here we shall use a simpli ed de nition which is not the most general one, but ts every simulation presented in our paper.

First, we study some examples: we construct simulations between cellular automata with von Neumann, hexagonal, triangular neighborhoods and also cellular automata on trees. These examples allow u s t o g i v e a su cient c o ndition for every cellular automaton on a Cayley graph to be simulated by a cellular automaton on another Cayley graph. We s h o w that this condition is not necessary. When it holds, simulations are rather simple.

We remark that the same underlying graph can be colored in several ways corresponding to basically di erent groups. We present a more complicated simulation between hexagonal cellular automata on two di erent C a yley graphs. Then, we g i v e a su cient condition for a simulation to be possible in both directions between cellular automata.

In the last section, we s h o w t h a t e v ery planar, modular structure is equivalent to the grid Z 2 with respect to linear time simulations.

De nitions

In this section, we recall some algebraic notions in order to de ne cellular automata on Cayley graphs.

Presentation of a group

Let G be a group and X its element set, and let G = fg 1 g 2 : : : g (possibly in nite set) be a subset of X. W e denote by G ;1 the set of the inverse elements of G: G ;1 = fg ;1 1 g ;1 2 : : : g. I f w e consider the free monoid on G G ;1 , that is, the set of words on G G ;1 , w e can associate to a word w an element w] o f G. More than one words can correspond to one element o f G. I f e v ery element o f G can be expressed as a word on G G ;1 , w e s a y that G is a generating set for G. W e de ne a relation as an equality b e t ween two w ords in G. A generator g is said to be idempotent if g 2 = 1 . I f G is generated by G = fg 1 g 2 : : : g and if every relation in G can be deduced from relations R = fp = p 0 , q = q 0 , r = r 0 , : : : g, then we write G = hg 1 g 2 : : : j p = p 0 q= q 0 r= r 0 : : : i (G = hG j Ri) and hg 1 g 2 : : : j p = p 0 q= q 0 r= r 0 : : : i is said to be a presentation of G. A presentation is said to be nitely generated ( nitely related) i f t h e n umber of generators (de ning relations) is nite. A nite presentation is both nitely generated and nitely related.

In this paper, we shall only study nitely presented in nite groups.

Cayley graphs

For every group presentation G = hG j Ri there is an associated Cayley graph ; = ( V A): the vertices (V ) correspond to the elements of the group, and the arcs (A) are colored with generators in the following way. There exists an arc colored with generator g f r o m a v ertex x to a vertex y, if and only if y = xg in G. Remark that the Cayley graph depends on the group presentation and not on the group itself.

Remark 1 From now on, if we refer to a group G = hG j Ri, w e r efer to its presentation and not to the group itself. Thus, we shall talk about cellular automaton de ned on the Cayley graph of a group G = hG j Ri and not cellular automaton de ned on the Cayley graph of the presentation hG j Ri of group G.

The following properties hold in Cayley graphs ;:

Property 1 (Cayley graphs 1): In ; the arcs have a regular coloring with the generators: for each v ertex v and generator g, there exists exactly one arc colored with g starting at v, and exactly one arc colored with g ending at v. If, in a group, the relation g = g 0 holds for two generators g and g 0 , w e delete one of them from the generating set and replace all of its occurrences by t h e other one in all relations. Thus, we h a ve also the following property:

Property 2 (Cayley graphs 2): If there exists an arc colored with g from the vertex i to the vertex j, then it is the only one from i to j. Remark that the same undirected graph can sometimes be colored in several ways. See an example for the graph which g i v es the triangular tiling of the plane. There are seven possible colorings, here we 

Cellular automata on Cayley graphs

As Cayley graphs are graphical representations of groups, they have v ery regular structures. Hence, by putting automata in the vertices, we can obtain a general notion of cellular automata in an analog way a s A . M a c h and F. Mignosi in 5].

De nition 1 A cellular automaton on a Cayley graph ; = (V A) is a 4-tuple A = ( S ; N ) where S is a nite set, called t h e set of states, ; is the Cayley graph of a nitely presented g r oup G = hG j Ri,

The neighborhood N is a vector de ned by words of G: N = ( w 1 w 2 : : : w m ) where 8i w i is in G G ;1 f 1g, : S m ! S is the local transition rule

In an analog way as for cellular automata in Z n , w e can characterize the global behavior of the cellular automaton. A con guration is an application c from G to S, so the set C of all con gurations is S G . A cellular automaton transforms a con guration into another one:

8c 2 C 8i 2 G A(c)(i) = (c(iw 1 ) c (iw 2 ) : : : c (iw m )):
Remark that a more general de nition of a cellular automaton can also be done by de ning the neighborhood with words on G G ;1 , and not only with generators and their inverses. However, we h a ve s h o wn in 7] that we do not loose any of the generality of the de nition for cellular automata if we m a k e t h i s r estriction. Moreover, this de nition allows us to consider that cells communicate through the arcs of the graph. For short, we shall call automaton (or cell) v the automaton put in vertex v of ;.

2.4

The notion of a simulation between cellular automata.

Many papers have already studied various simulations between cellular automata, but the formal de nition of a simulation has not been clearly given. I n 7 , 8 , 6 ] w e study this notion in details, and we s h o w through some examples, why this notion is not easy to formally de ne and to work with. In this paper, we shall compare the computational power of cellular automata whose neighborhoods are complete, that is, they contain all generators, all inverse generators and also the neutral element. We design some simulations in the sense of the following de nition:

De nition 2 Let A = ( S ; N ) be a c ellular automaton and C A the set of its con gurations. Let B = ( S 0 ; 0 N 0 0 ) be a c ellular automaton and C B the set of its con gurations. We say that B simulates A, i f t h e r e exist an injective application f : C A ! C B and a constant T in Ns uch that for all c in C A f(A(c)) = B T (f(c)):

T is the simulation time factor, that is, the time which is necessary for B to simulate one iteration of A. It depends on f but not on c. This de nition can be illustrated by the following diagram:

c f ;! f(c) A w w w w w w w w B T A(c) f ;! B T (f(c))
This de nition does not cover all simulations. In 7] w e h a ve studied the problem of cellular automata with only one-way communications between cells: \given a Cayley graph, whether all bidirectional cellular automaton can be simulated by a one-way cellular automaton on this graph?" Sometimes, such a s i m ulation is possible, but after the simulation of each iteration of the bidirectional cellular automaton, this con guration is \shifted" in the one-way cellular automaton.

In order to understand this phenomenon, let us consider the example of the line, that is, the Cayley graph of the group G = ha j i . The neighborhood of bidirectional cellular automata is given by N = ( a a ;1 1) and the neighborhood of one-way cellular automata is (for example) by N = ( a 1). Let A be a bidirectional cellular automaton and O a one-way cellular automaton simulating A. Let the initial con guration of O be the same as A's. It is clear that the transition of a cell v of A cannot be computed in the cell itself: it cannot know the state of its neighbor de ned by a ;1 . H o wever, all needed states can arrive in cell va ;1 . It means then, that the con guration of A after the rst iteration can be found in O, but with a \shift" a ;1 . Simulations without shifts are not possible. The De nition 2 does not allow s u c h s i m ulations. However, all along this paper, we restrict ourselves to this de nition, because we do not need shift when simulating: shifts are needed only in the case of cellular automata with one-way c o m m unications. This de nition, even if it is not the most general one, covers also very complicated simulations. In 7] w e h a ve s h o wn with two examples that f is not necessarily a recursive function, a state of a simulated cellular automaton can be \splittered" in the simulating cellular automaton, more states of a simulated cellular automaton can be grouped in the simulating one. In this paper we do not consider simulations where a state can be splittered: we consider that every state of a simulated cellular automaton is an \atomic" information. If every state in the initial con guration of the simulating cellular automaton depends on only one state of the simulated cellular automaton, we shall say that the simulation is elementary (ie. the states are not grouped).

First, we shall present some simulation results between cellular automata with some classical neighborhoods as von Neumann, hexagonal and triangular ones.

3 Some examples with classical neighborhoods

Von Neumann neighborhood

In the n-dimensional space Z n , the von Neumann neighborhood is de ned with n-dimensional unit-vectors and their inverses. These unit-vectors form an independent v ector system, so we can de ne them in a similar way with the help of Cayley graphs: the grid of Z n can be colored as the Cayley graph of the Abelian group with a minimal generating set of n generators.

De nition 3 An n-dimensional von Neumann cellular (resp. one-way cellular)

automaton is a cellular (resp. one-way cellular) automaton on the Cayley graph of the group G n VN = hg 1 g 2 : : : g n j g i g j = g j g i 1 i < j ni:

The Cayley graph of this group for the 2-dimensional case is shown in Figure 2. Proof. We s h o w this result by the simple fact that the growth of two C a yley graphs is di erent. We suppose that every n VNCA can be simulated by a m VNCA. Study the rst iteration of the n VNCA. In order to compute the transition of cell 1 for the n VNCA, the states of ball B n 1 are needed. Let T be the simulation time factor. Then, these states must be found in the initial con guration of m VNCA in the ball B m T . In order to simulate the second iteration of n VNCA, the states of cells of ball B n 2 are necessary, hence they must be in the ball B m 2T . The transition of a cell of n VNCA at time t is computed in function of the states of cells being at distance at most t, hence the states of cells of ball B n t must be in the ball B m tT of m VNCA, and so on. It means that if the simulation is elementary, t h e n # ( B n t ) #(B m tT ), for all t. If it is not elementary, then let k is the maximal number of states belonging to a cell of m VNCA then, we h a ve # (

B n t ) #(B m tTk ). As #(B n t ) = O(t n ) a n d #(B m tTk ) = O(t m ), if t is big enough, then #(B n t ) > #(B m tTk ), which leads to a contradiction.
As G m VN is a subgroup of G n VN , i f n m, a simulation in the other direction is always possible without any loss of time (by \ignoring" the other dimensions). With an analog proof, we can show the following theorem.

Theorem 2 Let B k and B 0 k be t h e b alls of radius k in the Cayley graphs ; and ; 0 , r espectively. If #(B k ) is a polynomial of degree p and #(B 0 k ) is a polynomial of degree q, i f p q, then not every CA on Cayley graph ; can be simulated b y a C A o n C a y l e y g r aph ; 0 . This result is not very astonishing. S. Cole has been shown in 2], that the language recognition power of CA increases with the dimension of the space, which is a similar statement.

We shall now study simulations between CA with di erent kinds of neighborhoods.

Von Neumann and hexagonal neighborhoods

First of all, we present a n i n tuitive de nition of a hexagonal cellular automaton, then we de ne it formally, o n C a yley graphs.

A hexagonal cellular automaton is usually de ned as a cellular automaton in the plane R 2 , where the cells are at the centers of hexagons which tile the plane, and the neighbors of a cell are the cells located at the center of the adjacents hexagons (see Figure 3). We present b e l o w a formal de nition with the help of Cayley graphs.

De nition 5 A hexagonal cellular (one-way cellular) automaton is a cellular (one-way cellular) automaton de ned on the Cayley graph of the group G h = ha b c j ab = ba abc = 1 i The Cayley graph of G h is shown in Figure 4a.

Physicists have s h o wn in 3] that, in certain cases, 3 VN nets can be simulated by hexagonal nets. The idea comes from the identical number of neighborhoods of a cell: 7 in both cases. Unfortunately, in general the simulation is not possible. Here, we g i v e all possible simulations between CA with these two kinds of neighborhoods, and show when a simulation is not possible. For short, we denote hexagonal CA by HCA. In the plane, all given simulations are very simple, because these cellular automata are de ned on the Cayley graphs of isomorphic groups. Later we g i v e some more complicated examples.

Proposition 1 For n 2, every HCA can be simulated b y a n n VNCA. Proof. First we p r o ve this proposition for n = 2 : l e t A = ( S h ; h N h h ) b e a hexagonal CA de ned by De nition 5 with an initial con guration c 0 A . We construct a 2 VNCA B = ( S 2 VN ; 2 VN N 2 VN 2 VN ) w h i c h simulates A. First, let us consider the elements of G h as words in fa bg. W e can do this, because c = a ;1 b ;1 . Let : G h ! G 2 VN be de ned by (u) = u for all u 2 G h . L e t S 2 VN be a sup-set of S h . W e de ne the initial con guration c 0 B of B by c 0 B ( (u)) = c 0 A (u) for all u in G h , see Figure 5. For computing the transition of a cell v of the HCA, the states of all of its neighbors de ned by a, b, c, a ;1 , b ;1 , c ;1 are needed. In c 0 B , t h e y c a n b e found in cells de ned by va, vb, va ;1 b ;1 , va ;1 , vb ;1 and vab, respectively. A s not all of these cells are neighbors of v by t h e v on Neumann neighborhood, the simulation cannot be given with T = 1. They are in a ball of radius 2, so T = 2 is possible. This simulation can be done as in all previous simulations: the rst step of the simulation of an iteration is a memorizing step, and in the second step cells can compute the transitions of A. F ormally, w e de ne B by S 2 VN = S h S 5 h 2 VN : S 5 2 VN ! S 2 VN 2 VN (x y z r s ) = ( x y z r s ) 2 VN ((x 1 x 2 : : : x 5 ) (y 1 y 2 : : : y 5 ) (z 1 z 2 : : : z 5 ) (r 1 r 2 : : : r 5 ) (s 1 s 2 : : : s 5 )) = h (x 1 x 2 x 3 x 4 r 4 y 2 x 5 ):

For n = 3 : a s G 2 VN G 3 VN , w e can de ne the simulation as before (by \ignoring" the third dimension): we de ne the initial con guration of B with c 0 B (u) = !, ! 6 2 S h , for all u not being an image by ;, and with a little modication of the transition function.

We give another simulation: we can use the third dimension in order to decrease the simulation time factor down to T = 1 . W e construct a 3 VNCA B simulating A as follows.

Let : G h ! P (G 3 VN ) be de ned by (1) = f1 a b c (abc) ;1 (abc) 2 (abc) ;2 : : : g (u) = fu uabc u(abc) ;1 u (abc) 2 u (abc) ;2 : : : g 8u 2 G h Remark that each element o f G h has an in nite number of images by ; , which w as not the case in the previous simulations.

We d e n e S 3 VN as a sup-set of S h the initial con guration c 0 B of B is de ned by c 0 B ( (u)) = c 0 A (u) and is shown in Figure 6b. With this construction, if two 3 VN (x y z r s t u ) = h (x y z r s t u ) For n > 3, as ; 3 VN is a subgraph of ; n VN and every CA on ; 3 VN can be simulated by a CA on ; n VN with T = 1, hence every HCA can be simulated also by a n VNCA n > 2, with a simulation time factor T = 1 .

Proposition 2 Every 2 VNCA can be simulated by a HCA.

Proof. The simulation can be given as in the converse direction the von Neumann neighborhood is included in the hexagonal neighborhood, so for computing the transition of a cell of the 2 VNCA in the HCA, it is su cient t o c hoose the needed information.

Formally, let A = ( S 2 VN ; 2 VN N 2 VN 2 VN ) b e a 2 VNCA. We construct a hexagonal CA B = ( S h ; h N h h ) in a \natural" way w h i c h simulates it with T = 1 .

Let : G 2 VN ! G h be an application de ned by (u) = u for all u 2 G 2 VN . Let S h = S 2 VN . W e de ne the initial con guration c 0 B of B by c 0 B ( (u)) = c 0 A (u).

We can see, that neighbor information in c 0 A are also neighbors in c 0 B , hence we can de ne A by S h = S 2 VN h (x y z r s t u ) = 2 VN (x y r s u ) Theorem 3 For n > 2, n VNCA cannot be simulated by HCA.

Proof. Hexagonal CA can be simulated by 2 VNCA, and conversely. I f n VNCA could be simulated by HCA, then it would imply that n VNCA can be simulated by 2 VNCA which i s i n c o n tradiction with Theorem 1.

In Section 2.2 we h a ve remarked that the same non-oriented graph can be colored in di erent w ays. We h a ve a l s o s h o wn in Figure 1 the Cayley graph of group G h2 = ha b c j a 3 = 1 b 3 = 1 c 3 = 1 c b a = 1 i. Its underlying graph gives the same triangular tiling of the plane, so we could have use it to de ne hexagonal. Similar simulation results can be done but these simulations are a bit more complicated, because G 2 VN and G h2 are not isomorphic, while G 2 VN and G h are. This means that not only the physical architecture of cellular automata is important for simulations, but also the local communications, that is, Cayley graphs on which w e de ne them. We shall study this problem in Section 5.1.

Simulations between CA on the Cayley graph of freegroups

Here we study a bit more complicated simulations. First of all, we study the Cayley graphs ; and ; 0 of the groups FR 3 = ha b c j i and FR 2 = ha b j i , respectively (see Figure 7). Let A = ( S ; N ) be a cellular automaton. We w ant to construct a cellular automaton B = ( S 0 ; 0 N 0 0 ) which s i m ulates A. L e t : FR 3 ! FR 2 be a homomorphism de ned by

( 1 ) = 1 (a) = ab (b) = ba (c) = a 2 (uv) = (u) (v) u v 2 FR 3 : (see Figure 8) We de ne S 0 as a sup-set of S. Let the initial con guration of B given by c 0 B ( (u)) = c 0 A (u) u 2 FR 3 :

(a) γ (b) γ (c) γ 1 Figure 8:
The mapping : FR 3 ! FR 2 Then, B is de ned by S 0 = S S 5 0 : S 05 ! S 0 0 (x y z r s ) = ( x y z r s ) 0 ((x 1 : : : x 5 ) (y 1 : : : y 5 ) (z 1 : : : z 5 ) (r 1 : : : r 5 ) (s 1 : : : s 5 )) = (x 2 y 1 x 1 r 3 z 4 z 3 s 5 ):

With this construction, neighbor states in A are not neighbors in B: while the needed states to compute the new state of a cell arrive b y single arcs in A, they arrive b y pairs of arcs in B. So, in the rst step of the simulation of an iteration, all cells store the states of all of its neighbors, and in the second step they compute the transition of A (the simulation time factor is T = 2).

L e t u s n o w study free groups generated by a n y n umber of generators.

Theorem 4 Every CA A de ned on the Cayley graph of a free-group with n generators FR n can be simulated b y a C A B de ned on the Cayley graph of another free-group with m(> 1) generators FR m with a simulation time factor dlog m ne.

Proof. The assertion is true if m n, because we can de ne the initial con guration of a simulating CA by \ignoring" some branches of the tree. If m < n , then we de ne a mapping : FR n ! FR m with

(g 1 ) = w 1 (g 2 ) = w 2 . . . (g n ) = w n (uv) = (u) (v) u v 2 FR n
where w 1 : : : w n are di erent w ords of the same length k. I f k d log m ne, t h e n these w i 's can be given. We can construct a simulation with a simulation time factor k in a similar way as in the case of CA on the Cayley graph of FR 3 and FR 2 .

An example for simulation by grouping states

Sometimes, only non-elementary simulations are possible between two cellular automata. Here we give an example for such a simulation.

Example 1 ( Cylinder automaton on the line):

Let G = ha b j ab = ba b 2 = 1 i and G 0 = ha j i and ;, ; 0 their Cayley graphs, respectively. L e t A = ( S ; N ) b e a C A . L e t : G ! G 0 be a homomorphism de ned by (1) = 1, (b) = 1 , (a) = a and for all u, for all v in G, (uv) = (u) (v) (see Figure 9). We build a CA B = ( S 0 ; 0 N 0 0 ) s i m ulating A by S 0 = S S 2 0 : ( S 0 ) 3 ! S 0 0 ((x 1 x 2 ) (y 1 y 2 ) (z 1 z 2 )) = ( (z 2 x 2 z 1 ) (x 1 z 1 x 2 )) starting from the initial con guration given by c 0 B ( (u)) = c 0 A (u) for all u in G.

A su cient condition

In the simulation between CA de ned on the Cayley graph of free groups, we can remark that is an injective homomorphism. W e can then remark also that in Example 1, is a homomorphism with a nite kernel f1 b g. In general we can state that: Proof. Let A = ( S ; N ) be a cellular automaton and : G ! G 0 a homomorphism with a nite kernel: for each generator g i in G, (g i ) = w i where for all i, w i is a word in G 0 and maxfjw i jg = m. W e w ant to construct a cellular automaton B = ( S 0 ; 0 N 0 0 ) which simulates A. First, let be injective. Let n be the number of neighbors of a cell in B. Let ! be a state not belonging to S. W e de ne the set of states of B by S 0 = ( S f !g) (S f !g) n (S f !g) n 2 : : :

(S f !g) n m
and the transition function by 0 : S 0n ! S 0 in the following way. Cells with no preimage are in state !. A t time 1, they store all states of all of their neighbors at time 0: 0 (x 1 x 2 : : : x n ) = ( x 1 x 2 : : : x n ):

At time 2, they store all states of all of their neighbors at time 1, that is, the states of those cells at time 0, which are at distance at most 2 from the cell: 0 ((x 11 x 12 : : : x 1n ) : : : (x n1 x n2 : : : x nn )) = (x 11 x 12 : : : x nn ):

At t i m e m, cell v stores the states of all cells which are de ned by generators, inverse generators, words of length two, words of length 3, : : : , w ords of length m in G 0 . A s e v ery w i is a word of length at most m, its state is known by the cell v. As the local function is the same for each c e l l a n d is a homomorphism, for every cell v in B, for all i, the state of the cell vw i arrives by the same path and as the same component o f v ector, hence, at time m, the transitions of A can be computed in B.

We n o w study the case where : G ! G 0 is not injective b u t i t s k ernel is nite. As the kernel of a homomorphism forms a group, this kind of simulation is possible only if G has a nitely presented non-trivial nite subgroup. The simulation can be de ned as before, the only di erence is that, while in the previous case, in each c e l l o f B, the transition of a single cell of A is computed, here the transitions of all cells which h a ve the same image by are computed.

Remark that if is injective, the simulation constructed in this way is elementary.

Corollary 1 If two groups are isomorphic, then cellular automata de ned o n their Cayley graphs can be simulated b y e ach other in an elementary way.

We cannot say a n ything about the simulation time factor, it depends on the Cayley graph.

Elementary simulations

In this section, we study only elementary simulations. We h a ve seen, that the existence of an injective h o m o m orphism allows elementary simulations. On the other hand, if there did not exist homomorphism with a nite kernel from a group into another one, then we could not de ne any s i m ulation. In the following example we show, that in some cases, there does not exist a homomorphism with a nite kernel, but the simulation (even elementary) is possible: the condition given in Theorem 5 is not necessary. In Section 6, we study other, non-elementary simulations.

Hexagonal and triangular neighborhoods

First, we present the intuitive de nition of a triangular cellular automaton, then we de ne it formally, o n C a yley graphs.

A triangular cellular automaton is usually de ned as a cellular automaton in the plane R 2 , where the cells are at the center of equilateral triangles, and the neighbors of a cell are the cells located at the center of the triangles which are adjacent side by side (see Figure 10).

De nition 6 A triangular cellular automaton is a cellular automaton de ned on the Cayley graph of the group G t = ha b c j a 2 = 1 b 2 = 1 c 2 = 1 (abc) 2 = 1 i: In the Cayley graph of G t , as for all generator g in G t , g 2 = 1 , b e t ween every pair of neighbor vertices there are two arcs colored with g: w e replace them by single, non-oriented edges colored with g. This de nition is a bit special relatively to all the de nitions we h a ve g i v en before: the neighborhood of a cell formally consists of 7 neighbors (N = ( a b c a ;1 b ;1 c ;1 1)). In reality, it consists of only 4 neighbors, because each neighbor de ned by a generator g is the same cell as the neighbor de ned by t h e inverse generator g ;1 . The de nition of hexagonal cellular automata had already been given in Section 3.2 (De nition 5). We recall that they are de ned on the Cayley graph of the group G h = ha b j ab = ba abc = 1 i.

We shall show that an elementary simulation can also be de ned sometimes without the existence of any homomorphism with nite kernel. We shall denote triangular cellular automata by TCA.

Lemma 1 There d o es not exist a homomorphism with a nite kernel from G t to G h .

Proof. We suppose that : G t ! G h is a homomorphism with a nite kernel, (a) = w 1 , (b) = w 2 and (c) = w 3 . I f w 1 = w 2 = w 3 = 1 , t h e n t h e k ernel of is in nite. Hence, at most one of the w i 's must be di erent f r o m 1 . W e suppose that it is w 1 . A s w 1 is an element o f G h , a n d G h is commutative, w 1 can be expressed as w 1 = a n b m 6 = 1 . T h e n , 1 = (1) = (a 2 ) = (a) (a) = w 2 1 = a 2n b 2m 6 = 1, which leads to a contradiction. Lemma 2 There exists an injective homomorphism from G h to G t . Proof. Let : G h ! G t de ned by ( 1 ) = 1 , (a) = ba, (b) = ac, (c) = cb and for all u and for all v in G h , (uv) = (u) (v). See Figure 12. In order to show t h a t is a homomorphism, it is su cient t o s h o w t h a t (ab) = (ba) and (abc) = 1 :

(ab) = (a) (b) = ba:ac = bc (ba) = (b) (a) = ac:ba = ac:ba:abc:abc = bc (abc) = ba:ac:cb = 1 It is clear that is an injective homomorphism.

Proposition 3 Every TCA can be simulated by a HCA in an elementary way, and conversely.

Proof. Lemma 2 and Theorem 5 imply that every hexagonal CA can be simulated by a triangular CA.

L e t u s s t u d y n o w the converse simulation, when we w ant t o s i m ulate every TCA T with a HCA H. W e de ne the set of states of H by S h = S t f !g (! 6 2 S t ). The initial con gurations of T and H are shown in Figure 13, cells without pre-image are in state !. The transition function of H is given by h (x y z r s t u ) = t (x y z u) i f s = t = u = ! h (x y z r s t u ) = t (r s t u ) i f x = y = z = ! h (x y z r s t u ) = ! if u = !: This construction is a bit di erent from the others. For example, consider the cell having information 12 in the initial con guration of T . The states of its neighbor de ned by the generator a (resp. b, c) ( n umber 4 (resp. 11,13)) is in a neighbor cell de ned by generator a ;1 (resp. b ;1 , c ;1 ) in the initial con guration of H. Let us study now the cell numerated 11 in the initial con guration of T .

The state of its neighbor de ned by the generator a (resp. b, c) is in a neighbor cell de ned by a (resp. b, c) in the initial con guration of H. So there are two types of cells, but we can de ne the transition function without contradiction, because if the needed states are in neighbors de ned by a, b, c (resp. a ;1 , b ;1 , c ;1 ), then the others are in state ! (only one choice is available).

As we h a ve already noticed, the same graph can be colored in di erent w ays.

Here, we do not give a l l s i m ulations between cellular automata on the other Cayley graphs, we study this problem in a more general way in Section 7. We take only one example. In Figure 4b, we show the Cayley graph of group G h2 = ha b c j a 3 = 1 b 3 = 1 c 3 = 1 cba = 1 i:

As this graph gives also the triangular tiling of the plane, it can be used in order to de ne hexagonal cellular automata. For short, we denote cellular automata on the Cayley graph of G h2 by HCA2. In order to show that every HCA can be simulated by a HCA2, it is su cient t o g i v e an injective h o m o m orphism from G h to G h2 .

Lemma 3 There exists an injective homomorphism from G h to G h2 . Proof. Let : G h ! G h2 de ned by (a) = abc (b) = cab (c) = bca and for all u, for all v in G h , (uv) = (u) (v), see Figure 14.

In order to prove that is an injective homomorphism, it is su cient t o show t h a t (abc) = 1 and (ab) = (ba):

( In a similar way a s i n L e m m a 1 , w e can show that there does not exist any homomorphism with a nite kernel in the converse direction. Thus, we d o n o t know whether every HCA2 can be simulated by a HCA in an elementary way or not. In the following section, we g i v e another, non-elementary simulation. In order to compute the new state of xu i in B, for all g in G 0 G 0;1 , the states of its neighbor cells xu i g in A are needed. Let xu i g be in (G)u j for some j.

γ : G G 1 h h 2 (1)=1 γ γ (a )= abc γ ( b )= cab γ ( )= c bca
It means that there exists X in G such that ( X) = x and xu i g = xu j , h e n c e c 0 B ( X) = ( c 0 A (x) c 0 A (xu 1 ) : : : c 0 A (xu j ) = c 0 A (xu i g) : : : c 0 A (xu m ))

and X = XU for some U in G.

Let Y 2 G and (Y ) = y. Consider cell yu i in A. Its state can be found as the i-th component in the state of a cell Y in B: c 0 B (Y ) = ( c 0 A (y) c 0 A (yu 1 ) : : : c 0 A (yu i ) : : : c 0 A (yu m )):

We w ant t o k n o w, in which c e l l o f B the state of the cell yu i g of A can be found.

Because of the properties of groups, we k n o w t h a t i t w i l l b e t h e j-th component in the state-vector of some cell Ỹ in B: let ( Ỹ ) = ỹ, then yu i g = ỹu j and c 0 B ( Ỹ ) = ( c 0 A (ỹ) c 0 A (ỹu 1 ) : : : c 0 A (ỹu j ) = c 0 A (yu i g) : : : c 0 A (ỹu m )):

We m ust show that Ỹ = Y U .

As is a homomorphism, w e k n o w t h a t ( X) = (XU) = (X) (U) = x (U) = x and hence (U) = x ;1 x: On the other hand, from xu i g = xu j , w e h a ve x ;1 x = u i gu ;1 j : From yu i g = ỹu j , w e h a ve Ỹ = ;1 (ỹ) = ;1 (y) ;1 (U) = Y U :

Let us consider the case when is not injective. Then there exists an injective homomorphism 0 : G= ker( ) ! G 0 , and we can construct a simulation in a similar way as before.

Remark that the simulation time factor is not always 1, it depends on the generating sets.

Then, from Theorem 5, the following assertion holds. by h starting at A. We say that two vertices A and B have the same situation if for all generator and inverse generator h, \ (x h ) A = \ (x h) B . See an example for same and di erent situations in Figure 19. Vertices A and B have the same situation, but not A and C.

The following lemma is a consequence of the facts that in an Archimedean tiling, the type of vertices is the same [START_REF] Frisch | Lattice gas hydrodynamics in two and three dimensions[END_REF]) and that the geometrical order of generators in every vertex is the same ( 1]).

Lemma 4 Let x and y be two vertices having the same situation. Then for all generator (or inverse generator) g, xg and yg have the same situation. Now w e can show the following proposition: Proposition 5 There i s a n i n j e ctive homomorphism from G 2 VN to all groups whose Cayley graphs have an underlying graph corresponding to an Archimedean tiling.

Proof. Let ; be the Cayley graph of a group G such that its underlying graph corresponds to an Archimedean tiling. Let x, y be two v ertices having the same situation and let p 1 be a path from x to y: y = xp 1 . Let z be a third vertex having the same situation as x and y and let p 2 be a path from x to z: z = xp 2 . We suppose that x, y and z are chosen in such a w ay t h a t p n 1 6 = p n 0 2 for all n > 0 and n 0 > 0 in N. It is possible, because these tilings are periodic in the plane in two independant directions. Then, from Lemma 4, for all n > 0 in N,p n 1 6 = 1 and p n 2 6 = 1. On the other hand, also from Lemma 4, the path p 1 starting at z is \parallel" to the path between x and y, and the path p 2 starting at y is \parallel" to the path between x and z, hence, zp 1 = yp 2 , that is, p 1 p 2 = p 2 p 1 .

Recall This result can also be interpreted in the following way. If we consider Cayley graphs as possible architectures for parallel machines, we c a n c hoose any of Archimedean tilings for such a n a r c hitecture in the plane, they have t h e s a m e computational power. However, as simulations between cellular automata on these graphs require many states, it is necessary that machines have a su cient amount of local memory.

Open problems

In this paper, we h a ve only studied simulations, where the states of the simulated cellular automaton are considered as atomic informations. However, many simulations exist with splitting states, they should also be studied. We h a ve g i v en a su cient condition for converse simulations between cellular automata on Cayley graph. Can any su cient and necessary condition be given? This is the question that we h a ve asked ourselves when we h a ve de ned the relation between groups. If the answer is \no" in the general case, whether does a subclass of groups exist for which s u c h a condition can be given?
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 2 Figure 2: The Cayley graph of group G = ha b j ab = bai. Here, we study, whether n-dimensional von Neumann CA can be simulated by m-dimensional von Neumann CA. De nition 4 Let ; be the Cayley graph of group G n VN . W e c all ball of radius k and denote by B n k the set of all vertices being at distance at most k from 1. We denote by #(B n k ) the number of vertices in B n k . Theorem 1 For n > m , n-dimensional von Neumann CA cannot be simulated by m-dimensional von Neumann CA.
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 6 Figure 6: Initial con gurations of HCA and 3 VNCA.

Figure 7 :
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 9 Figure 9: The homomorphism : ha b j ab = ba b 2 = 1 i ! h a j i .
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 11 Figure 11: The Cayley graph of G t .
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 12 Figure 12: The injective homomorphism : G h ! G t .
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 13 Figure 13: Initial con gurations of TCA and HCA.

  abc) = abc:cab:bca = ab:(cc):a:(bb):ca = ab:(c ;1 ):a:(b ;1 ):ca = ab:b(a:a:a)c:ca = a:(bb):(cc):a = a:(b ;1 :c ;1 ):a = aaa = 1 : (ab) = abc:cab = ab:(c ;1 ):ab = a(b:b)(a:a)b = a(b ;1 )(a ;1 )b = ( a:a)(c:c)(b:b) = a ;1 c ;1 b ;1 (ba) = cab:abc = ca(ba)bc = ca(c ;1 )bc = c(a:c)(c:b)c = c(b ;1 )(a ;1 )c = (c:b)(b:a)(a:c) = a ;1 c ;1 b ;1 : It is clear that is an injective homomorphism.
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 14 Figure 14: The injective h o m o m orphism : G h ! G h2 . Theorem 6 Every HCA2 can be simulated b y a H C A . Proof. Let A = ( S ; N ) be a HCA2 and let c 0 A be its initial con guration. Let : G h ! G h2 b e a h o m o m orphism de ned by ( 1 ) = 1 (a) = abc (b) = cab (c) = bca:We construct a CA B = ( S 0 ; 0 N 0 0 ) which s i m ulates A: l e t S = S 9 , a n d w e de ne the initial con guration c 0 B of B by
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 15 Figure 15: Initial con gurations.
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 81617 Figure 16: All Cayley graphs for hexagonal CA.

Figure 19 :

 19 Figure 19: Di erent v ertex-situations.

  that two-dimensional von Neumann CA are de ned on the Cayley graph of the group G 2 VN = ha b j ab = bai. Let : G 2 VN ! G be a mapping de ned by (1) = 1 (a) = p 1 (b) = p 2 and(uv) = (u) (v) u v 2 G 2 VN :It is clear that is an injective homomorphism.Then, from Theorems 5 and 7 and Proposition 5, the following assertion holds.Theorem 9 Every two-dimensional von Neumann cellular automaton can be simulated b y a c ellular automaton on any Archimedean tiling and conversely.
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Other simulationsHere, we study other, more complicated simulations. We h a ve seen that every HCA can be simulated by a HCA2. Here we construct the converse simulation.

c 0 B (u) = ( c 0 A ( (u)) c 0 A ( (u)b) c 0 A ( (u)bc) c 0 A ( (u)b ;1 ) c 0 A ( (u)b ;1 a ;1 ) c 0 A ( (u)a) c 0 A ( (u)ab) c 0 A ( (u)bc ;1 ) c 0 A ( (u)ac ;1 )): The de nition of this initial con guration is shown in Figure15. The grey triangle is the image of a triangle abc of HCA, in the large shape are cells whose information are grouped in c 0 B . The tuple (1 2 : : : 9) denotes the order of information in a state-vector of HCA. With this construction, for all information of c 0 A , the neighbor information are located in a uniform way i n c 0 B and at distance 1: a simulation can be given without any loss of time.

We de ne the transition function 0 : S 7 ! S by 0 ((x 1 x 2 : : : x 9 ) (y 1 y 2 : : : y 9 ) (z 1 z 2 : : : z 9 ) (r 1 r 2 : : : r 9 ) (s 1 s 2 : : : s 9 ) (t 1 t 2 : : : t 9 ) (w 1 w 2 : : : w 9 )) = ( (w 6 w 2 y 5 t 3 w 4 r 7 w 1 ) (r 7 w 4 w 3 r 9 w 1 w 8 w 2 ) (z 1 x 9 w 8 z 4 r 4 w 2 w 3 ) (w 8 w 1 w 9 w 5 w 2 w 6 w 4 ) (w 4 x 3 z 7 w 8 w 9 s 1 w 5 ) (t 3 w 7 w 4 w 1 t 8 w 9 w 6 ) (w 9 t 8 x 1 x 2 w 6 t 5 w 7 ) (t 3 w 7 w 4 w 1 t 8 w 9 w 8 ) (x 2 w 5 w 6 w 7 x 3 w 4 w 9 )):

Remark that in the proof of Theorem 6, the grouped cells are fx xb xbc xb ;1 x b ;1 a ;1 xa xab xbc ;1 x a c ;1 g where x is an image element. Notice that x is in (G h ), xb is in the left-coset (G h )b of (G h ), and so on, xac ;1 is in (G h )ac ;1 . In general, we can state the following theorem: Theorem 7 Let be a homomorphism from G to G 0 . If the index of the image of G is nite, then every cellular automaton on the Cayley graph of G 0 can be simulated b y a c ellular automaton on the Cayley graph of G. Proof. We rst study the case when is injective. Let H be the subgroup of G 0 such that H = (G). Let H = fH Hu 1 Hu 2 : : : Hu m g be the set of all distinct left-cosets of H. Let A = ( S ; N ) be a CA on the Cayley graph of G 0 and c 0 A its initial con guration. We de ne a CA B = ( S 0 ; 0 N 0 0 ) on the Cayley graph of G which s i m ulates A.

We d e n e S 0 as a sup-set of S m+1 . In order to de ne the initial con guration c 0 B , w e group the states of c 0 A in the following way: for all v in G, l e t c 0 B (v) = ( c 0 A ( (v)) c 0 A ( (v)u 1 ) c 0 A ( (v)u 2 ) : : : c 0 A ( (v)u m )): We h a ve to show, that neighbor information of c 0 A are uniformally placed in c 0 B for every components of every vectors: for all i, if for some u in G 0 , c 0 A (u) i s the i-th component in the state-vector c 0 B (v) for some v in G, and a neighbor information c 0 A (ug) i s t h e j-th component i n t h e s t a t e -v ector c 0 B (w) for some g in G 0 and w in G such t h a t w = vx, then for all U in G 0 being the i-th component in a state-vector c 0 B (V ) for some V in G, the neighbor information c 0 A (Ug ) m ust be the j-th component in the state-vector c 0 B (W) where W is in G and W = V x .

Let X 2 G and (X) = x. Consider cell xu i (2 (G)u i ) i n A. By the de nition of c 0 B , its state can be found as the i-th component i n t h e s t a t e o f c e l l X in B: From Theorem 8, the following proposition holds.

Proposition 4 G 1 G 2 if and only if there exists a suite of nitely presented groups G 0 0 G 0 1 : : : G 0 n such that G 0 0 = G 1 and G 0 n = G 2 and for all i 0, G 0 i B G 0 i+1 or G 0 i+1 B G 0 i . Conjecture: If there exist a simulation between cellular automata on G 1 and cellular automata on G 2 in both directions, then G 1 G 2 . If this assertion is true, it would imply that the existence of simulations in both directions between cellular automata de ned on two groups is an indecidable problem.

Cellular automata on Archimedean tilings

In the previous section we h a ve studied hexagonal and triangular CA. Let us denote by ; H and ; T , respectively, the underlying graphs on which these CA work. T. Chaboud ( 1]) has shown that Figures 16 and17 show all possible colorings for these graphs.

The Archimedean tilings are presented in Figure 18 they are exactly the tilings using a nite number of regular and convex polygons such that the degree of every vertex and the order of polygons around every vertex is the same.

In 1] i t i s s h o wn that all Archimedean tilings can be colored as Cayley graphs he has also given all possible colorings.

We show n o w that cellular automata on all these graphs are equivalent from a computational point of view: they can be simulated by e a c h other in a linear time. In order to show the existence of injective homomorphisms from G 2 VN to groups corresponding to these tilings, we i n troduce the following notion.

De nition 9 Let ; be a n A rchimedean tiling colored as a Cayley graph. Consider vertex 1, a generator g. L et us denote by x the arc starting at 1 colored b y g and considered a s a v e ctor in R 2 . L et A be a vertex and h a generator or an inverse generator. We denote by \ (x h) A the angle between x and the arc c olored