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Simulations Between Cellular Automata

on Cayley Graphs

Zsuzsanna R�oka

Decembre ����

Abstract

We consider cellular automata on Cayley graphs and compare their
computational powers according to the architecture on which they
work� We show that� if there exists a homomorphism with a �nite
kernel from a group into another one such that the image of the
�rst group has a �nite index in the second one� then every cellular
automaton on the Cayley graph of one of these groups can be uni�
formally simulated by a cellular automaton on the Cayley graph of
the other one� This simulation can be constructed in a linear time�
With the help of this result we also show that cellular automata
working on any Archimedean tiling can be simulated by a cellular
automaton on the grid ofZ� and conversely�

Keywords� cellular automata� Cayley graphs� simulations

R�esum�e

Nous comparons la puissance de calcul des automates cellulaires agis�
sant sur di��erents graphes de Cayley� Nous montrons que� s�il existe
un morphisme �a noyau �ni d�un groupe dans un autre tel que l�indice
de l�image du premier groupe est �ni dans le deuxi�eme� alors tout
automate cellulaire sur le graphe de Cayley d�un de ces groupes
peut��etre simul�e par un automate cellulaire sur le graphe de Cayley
de l�autre groupe avec un facteur de perte de temps lin�eaire� Nous
montrons aussi� que les automates cellulaires agissant sur les pavages
Archim�ediens peuvent �etre simul�es par un automate cellulaire sur la
grille de Z� et r�eciproquement�

Mots�cl�es� automates cellulaires� graphes de Cayley� simulations
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� Introduction

A cellular automaton 	CA
 is a network of identical �nite automata which work
in parallel and synchronously� It is also required that the network be regular�
thus� it can be considered as a Cayley graph of a �nitely presented group� Au�
tomata are placed on the vertices of the graph� and they communicate with each
other through the edges� Some recent papers ��� 
� �� have already considered
this generalized notion of cellular automata� as we do in this paper�

Our goal is to compare the computational power of di�erent models� more
precisely� the power of cellular automata working on di�erent Cayley graphs� In
order to do that� we study simulations between them� The notion of a simulation
is very intuitive but has never been studied for itself� In ���� we have shown with
the help of various examples that this notion is very complicated� and we have
given some possible de�nitions for it� Here we shall use a simpli�ed de�nition
which is not the most general one� but �ts every simulation presented in our
paper�

First� we study some examples� we construct simulations between cellular
automata with von Neumann� hexagonal� triangular neighborhoods and also
cellular automata on trees� These examples allow us to give a su�cient con�
dition for every cellular automaton on a Cayley graph to be simulated by a
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cellular automaton on another Cayley graph� We show that this condition is
not necessary� When it holds� simulations are rather simple�

We remark that the same underlying graph can be colored in several ways
corresponding to basically di�erent groups� We present a more complicated
simulation between hexagonal cellular automata on two di�erent Cayley graphs�
Then� we give a su�cient condition for a simulation to be possible in both
directions between cellular automata�

In the last section� we show that every planar� modular structure is equiva�
lent to the gridZ� with respect to linear time simulations�

� De�nitions

In this section� we recall some algebraic notions in order to de�ne cellular au�
tomata on Cayley graphs�

��� Presentation of a group

Let G be a group and X its element set� and let G � fg�� g�� � � �g 	possibly
in�nite set
 be a subset of X� We denote by G�� the set of the inverse elements
of G� G�� � fg��� � g��� � � � �g� If we consider the free monoid on G�G��� that is�
the set of words on G�G��� we can associate to a word w an element �w� of G�
More than one words can correspond to one element of G� If every element of
G can be expressed as a word on G�G��� we say that G is a generating set for
G� We de�ne a relation as an equality between two words in G� A generator g
is said to be idempotent if g� � �� If G is generated by G � fg�� g�� � � �g and if
every relation in G can be deduced from relations R � fp � p�� q � q�� r � r��
� � �g� then we write

G � hg�� g�� � � � j p � p�� q � q�� r � r�� � � �i 	G � hG j Ri


and hg�� g�� � � � j p � p�� q � q�� r � r�� � � �i is said to be a presentation of G� A
presentation is said to be �nitely generated 	�nitely related
 if the number of
generators 	de�ning relations
 is �nite� A �nite presentation is both �nitely
generated and �nitely related�

In this paper� we shall only study �nitely presented in�nite groups�

��� Cayley graphs

For every group presentation G � hG j Ri there is an associated Cayley graph
� � 	V�A
� the vertices 	V 
 correspond to the elements of the group� and the
arcs 	A
 are colored with generators in the following way� There exists an arc
colored with generator g from a vertex x to a vertex y� if and only if y � xg in
G� Remark that the Cayley graph depends on the group presentation and not
on the group itself�
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Remark � From now on� if we refer to a group G � hG j Ri� we refer to
its presentation and not to the group itself� Thus� we shall talk about cellular
automaton de�ned on the Cayley graph of a group G � hG j Ri and not cellular
automaton de�ned on the Cayley graph of the presentation hG j Ri of group G�

The following properties hold in Cayley graphs ��

Property � 	Cayley graphs �
� In � the arcs have a regular coloring with the
generators� for each vertex v and generator g� there exists exactly one arc col�
ored with g starting at v� and exactly one arc colored with g ending at v�

If� in a group� the relation g � g� holds for two generators g and g�� we delete
one of them from the generating set and replace all of its occurrences by the
other one in all relations� Thus� we have also the following property�

Property � 	Cayley graphs �
� If there exists an arc colored with g from the
vertex i to the vertex j� then it is the only one from i to j�

Remark that the same undirected graph can sometimes be colored in sev�
eral ways� See an example for the graph which gives the triangular tiling of
the plane� There are seven possible colorings� here we present only two of
them� the Cayley graphs of groups G � ha� b� c j abc � �� ab � bai and G� �
ha� b� c j a� � �� b� � �� c� � �� cba � �i are shown in Figure �a� � b 	the other
colorings are presented in Section �
�

... ...

...

...

... ...

...

...

a. b.

a

bc

a b c

Figure �� Two colorings for triangular tiling�

��� Cellular automata on Cayley graphs

As Cayley graphs are graphical representations of groups� they have very regular
structures� Hence� by putting automata in the vertices� we can obtain a general
notion of cellular automata in an analog way as A� Mach�� and F� Mignosi in ����
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De�nition � A cellular automaton on a Cayley graph � � 	V�A
 is a ��tuple
A � 	S��� N� �
 where

� S is a �nite set� called the set of states�

� � is the Cayley graph of a �nitely presented group G � hG j Ri�

� The neighborhood N is a vector de�ned by words of G�
N � 	w�� w�� � � � � wm
 where �i� wi is in G �G�� � f�g�

� � � Sm � S is the local transition rule

In an analog way as for cellular automata inZn� we can characterize the global
behavior of the cellular automaton� A con�guration is an application c from G
to S� so the set C of all con�gurations is SG� A cellular automaton transforms
a con�guration into another one�

�c � C� �i �G� A	c
	i
 � �	c	iw�
� c	iw�
 � � � � c	iwm

�

Remark that a more general de�nition of a cellular automaton can also be done
by de�ning the neighborhood with words on G �G��� and not only with gen�
erators and their inverses� However� we have shown in ��� that we do not loose
any of the generality of the de�nition for cellular automata if we make this re�
striction� Moreover� this de�nition allows us to consider that cells communicate
through the arcs of the graph� For short� we shall call automaton 	or cell
 v the
automaton put in vertex v of ��

��� The notion of a simulation between cellular automata�

Many papers have already studied various simulations between cellular au�
tomata� but the formal de�nition of a simulation has not been clearly given�
In ��� 
� �� we study this notion in details� and we show through some examples�
why this notion is not easy to formally de�ne and to work with� In this paper�
we shall compare the computational power of cellular automata whose neighbor�
hoods are complete� that is� they contain all generators� all inverse generators
and also the neutral element� We design some simulations in the sense of the
following de�nition�

De�nition � Let A � 	S��� N� �
 be a cellular automaton and CA the set of
its con�gurations� Let B � 	S����� N �� ��
 be a cellular automaton and CB the
set of its con�gurations� We say that B simulates A� if there exist an injective
application f � CA � CB and a constant T in N such that for all c in CA

f	A	c

 � BT 	f	c

�
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T is the simulation time factor� that is� the time which is necessary for B to
simulate one iteration of A� It depends on f but not on c� This de�nition can
be illustrated by the following diagram�

c
f
�� f	c


A

w
w
w
w
�

w
w
w
w
�
BT

A	c

f
�� BT 	f	c



This de�nition does not cover all simulations� In ��� we have studied the problem
of cellular automata with only one�way communications between cells� �given a
Cayley graph� whether all bidirectional cellular automaton can be simulated by
a one�way cellular automaton on this graph�� Sometimes� such a simulation is
possible� but after the simulation of each iteration of the bidirectional cellular
automaton� this con�guration is �shifted� in the one�way cellular automaton�
In order to understand this phenomenon� let us consider the example of the
line� that is� the Cayley graph of the group G � ha j �i� The neighborhood of
bidirectional cellular automata is given by N � 	a� a��� �
 and the neighborhood
of one�way cellular automata is 	for example
 by N � 	a� �
� Let A be a
bidirectional cellular automaton and O a one�way cellular automaton simulating
A� Let the initial con�guration of O be the same as A�s� It is clear that the
transition of a cell v of A cannot be computed in the cell itself� it cannot know
the state of its neighbor de�ned by a��� However� all needed states can arrive
in cell va��� It means then� that the con�guration of A after the �rst iteration
can be found in O� but with a �shift� a��� Simulations without shifts are not
possible� The De�nition � does not allow such simulations� However� all along
this paper� we restrict ourselves to this de�nition� because we do not need shift
when simulating� shifts are needed only in the case of cellular automata with
one�way communications�

This de�nition� even if it is not the most general one� covers also very com�
plicated simulations� In ��� we have shown with two examples that

� f is not necessarily a recursive function�

� a state of a simulated cellular automaton can be �splittered� in the sim�
ulating cellular automaton�

� more states of a simulated cellular automaton can be grouped in the sim�
ulating one�

In this paper we do not consider simulations where a state can be splittered�
we consider that every state of a simulated cellular automaton is an �atomic�
information� If every state in the initial con�guration of the simulating cellular
automaton depends on only one state of the simulated cellular automaton� we
shall say that the simulation is elementary 	ie� the states are not grouped
�
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First� we shall present some simulation results between cellular automata
with some classical neighborhoods as von Neumann� hexagonal and triangular
ones�

� Some examples with classical neighborhoods

��� Von Neumann neighborhood

In the n�dimensional space Zn� the von Neumann neighborhood is de�ned with
n�dimensional unit�vectors and their inverses� These unit�vectors form an inde�
pendent vector system� so we can de�ne them in a similar way with the help of
Cayley graphs� the grid ofZn can be colored as the Cayley graph of the Abelian
group with a minimal generating set of n generators�

De�nition � An n�dimensional von Neumann cellular 	resp� one�way cellular

automaton is a cellular �resp� one�way cellular� automaton on the Cayley graph
of the group

Gn VN � hg�� g�� � � � � gn j gigj � gjgi� � � i � j � ni�

The Cayley graph of this group for the ��dimensional case is shown in Figure ��

b
a

Figure �� The Cayley graph of group G � ha� b j ab � bai�

Here� we study� whether n�dimensional von Neumann CA can be simulated
by m�dimensional von Neumann CA�

De�nition � Let � be the Cayley graph of group Gn VN � We call ball of radius
k and denote by Bn

k the set of all vertices being at distance at most k from ��
We denote by �	Bn

k 
 the number of vertices in Bn
k �

Theorem � For n � m� n�dimensional von Neumann CA cannot be simulated
by m�dimensional von Neumann CA�

�



Proof� We show this result by the simple fact that the growth of two Cayley
graphs is di�erent� We suppose that every n VNCA can be simulated by a
m VNCA� Study the �rst iteration of the n VNCA� In order to compute the
transition of cell � for the n VNCA� the states of ball Bn

� are needed� Let T
be the simulation time factor� Then� these states must be found in the initial
con�guration of m VNCA in the ball Bm

T � In order to simulate the second
iteration of n VNCA� the states of cells of ball Bn

� are necessary� hence they
must be in the ball Bm

�T � The transition of a cell of n VNCA at time t is
computed in function of the states of cells being at distance at most t� hence
the states of cells of ball Bn

t must be in the ball Bm
tT of m VNCA� and so on�

It means that if the simulation is elementary� then �	Bn
t 
 � �	Bm

tT 
� for all t�
If it is not elementary� then let k is the maximal number of states belonging to
a cell of m VNCA� then� we have �	Bn

t 
 � �	Bm
tTk
� As �	Bn

t 
 � O	tn
 and
�	Bm

tTk
 � O	tm
� if t is big enough� then �	Bn
t 
 � �	Bm

tTk
� which leads to a
contradiction� �

As Gm VN is a subgroup of Gn VN � if n � m� a simulation in the other
direction is always possible without any loss of time 	by �ignoring� the other
dimensions
� With an analog proof� we can show the following theorem�

Theorem � Let Bk and B�
k be the balls of radius k in the Cayley graphs � and

��� respectively� If �	Bk
 is a polynomial of degree p and �	B�
k
 is a polynomial

of degree q� if p � q� then not every CA on Cayley graph � can be simulated by
a CA on Cayley graph ���

This result is not very astonishing� S� Cole has been shown in ���� that the
language recognition power of CA increases with the dimension of the space�
which is a similar statement�

We shall now study simulations between CA with di�erent kinds of neigh�
borhoods�

��� Von Neumann and hexagonal neighborhoods

First of all� we present an intuitive de�nition of a hexagonal cellular automaton�
then we de�ne it formally� on Cayley graphs�

A hexagonal cellular automaton is usually de�ned as a cellular automaton in
the plane R�� where the cells are at the centers of hexagons which tile the plane�
and the neighbors of a cell are the cells located at the center of the adjacents
hexagons 	see Figure �
�

We present below a formal de�nition with the help of Cayley graphs�

De�nition � A hexagonal cellular 	one�way cellular
 automaton is a cellular
�one�way cellular� automaton de�ned on the Cayley graph of the group

Gh � ha� b� c j ab � ba� abc � �i

�



Figure �� The hexagonal neighborhood�
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Figure �� Cayley graphs of Gh and Gh� �

The Cayley graph of Gh is shown in Figure �a�
Physicists have shown in ��� that� in certain cases� � VN nets can be simu�

lated by hexagonal nets� The idea comes from the identical number of neigh�
borhoods of a cell� � in both cases� Unfortunately� in general the simulation
is not possible� Here� we give all possible simulations between CA with these
two kinds of neighborhoods� and show when a simulation is not possible� For
short� we denote hexagonal CA by HCA� In the plane� all given simulations are
very simple� because these cellular automata are de�ned on the Cayley graphs
of isomorphic groups� Later we give some more complicated examples�

Proposition � For n � �� every HCA can be simulated by an n VNCA�

Proof� First we prove this proposition for n � �� let A � 	Sh��h� Nh� �h
 be a
hexagonal CA de�ned by De�nition � with an initial con�guration c�

A
�

We construct a � VNCA B � 	S� VN ��� VN � N� VN � �� VN 
 which simulates A�
First� let us consider the elements of Gh as words in fa� bg� We can do this�
because c � a��b��� Let � � Gh � G� VN be de�ned by �	u
 � u for all
u �Gh� Let S� VN be a sup�set of Sh� We de�ne the initial con�guration c�

B
of

B by c�
B
	�	u

 � c�

A
	u
 for all u in Gh� see Figure ��
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Figure �� Initial con�gurations of �D VNCA and HCA�

For computing the transition of a cell v of the HCA� the states of all of
its neighbors de�ned by a� b� c� a��� b��� c�� are needed� In c�

B
� they can be

found in cells de�ned by va� vb� va��b��� va��� vb�� and vab� respectively� As
not all of these cells are neighbors of v by the von Neumann neighborhood� the
simulation cannot be given with T � �� They are in a ball of radius �� so T � �
is possible� This simulation can be done as in all previous simulations� the �rst
step of the simulation of an iteration is a memorizing step� and in the second
step cells can compute the transitions of A� Formally� we de�ne B by

S� VN � Sh � S�h
�� VN � S�� VN � S� VN

�� VN 	x� y� z� r� s
 � 	x� y� z� r� s

�� VN 		x�� x�� � � � � x�
� 	y�� y�� � � � � y�
� 	z�� z�� � � � � z�
� 	r�� r�� � � � � r�
�

	s�� s�� � � � � s�

 � �h	x�� x�� x�� x�� r�� y�� x�
�

For n � �� as G� VN 	 G� VN � we can de�ne the simulation as before 	by
�ignoring� the third dimension
� we de�ne the initial con�guration of B with
c�
B
	u
 � �� � 
� Sh� for all u not being an image by �� and with a little modi��

cation of the transition function�
We give another simulation� we can use the third dimension in order to

decrease the simulation time factor down to T � �� We construct a � VNCA B
simulating A as follows�

Let � � Gh � P	G� VN 
 be de�ned by

�	�
 � f�� abc� 	abc
��� 	abc
�� 	abc
��� � � �g
�	u
 � fu� uabc� u	abc
��� u	abc
�� u	abc
��� � � �g� �u �Gh

Remark that each element of Gh has an in�nite number of images by ��
which was not the case in the previous simulations�

We de�ne S� VN as a sup�set of Sh� the initial con�guration c�B of B is de�ned
by c�

B
	�	u

 � c�

A
	u
 and is shown in Figure �b� With this construction� if two

�
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Figure �� Initial con�gurations of HCA and � VNCA�

information are neighbors in c�A� they are also neighbors in c�B� So B can simply
de�ned by

S� VN � Sh
�� VN � S�� VN � S� VN

�� VN 	x� y� z� r� s� t� u
 � �h	x� y� z� r� s� t� u


For n � �� as �� VN is a subgraph of �n VN and every CA on �� VN can be
simulated by a CA on �n VN with T � �� hence every HCA can be simulated
also by a n VNCA n � �� with a simulation time factor T � �� �

Proposition � Every � VNCA can be simulated by a HCA�

Proof� The simulation can be given as in the converse direction� the von Neu�
mann neighborhood is included in the hexagonal neighborhood� so for computing
the transition of a cell of the � VNCA in the HCA� it is su�cient to choose the
needed information�

Formally� let A � 	S� VN ��� VN � N� VN � �� VN 
 be a � VNCA� We construct
a hexagonal CA B � 	Sh ��h� Nh� �h
 in a �natural� way which simulates it with
T � ��
Let � �G� VN � Gh be an application de�ned by �	u
 � u for all u � G� VN �
Let Sh � S� VN � We de�ne the initial con�guration c�B of B by c�B	�	u

 � c�A	u
�
We can see� that neighbor information in c�A are also neighbors in c�B� hence we
can de�ne A by

Sh � S� VN

�h	x� y� z� r� s� t� u
 � �� VN 	x� y� r� s� u


�

� 



Theorem � For n � �� n VNCA cannot be simulated by HCA�

Proof� Hexagonal CA can be simulated by � VNCA� and conversely� If n VNCA
could be simulated by HCA� then it would imply that n VNCA can be simulated
by � VNCA which is in contradiction with Theorem �� �

In Section ��� we have remarked that the same non�oriented graph can be
colored in di�erent ways� We have also shown in Figure � the Cayley graph
of group Gh� � ha� b� c j a� � �� b� � �� c� � �� cba � �i� Its underlying graph
gives the same triangular tiling of the plane� so we could have use it to de�ne
hexagonal� Similar simulation results can be done but these simulations are a bit
more complicated� because G� VN and Gh� are not isomorphic� while G� VN

and Gh are� This means that not only the physical architecture of cellular
automata is important for simulations� but also the local communications� that
is� Cayley graphs on which we de�ne them� We shall study this problem in
Section ����

��� Simulations between CA on the Cayley graph of free�
groups

Here we study a bit more complicated simulations� First of all� we study the
Cayley graphs � and �� of the groups FR� � ha� b� c j �i and FR� � ha� b j �i�
respectively 	see Figure �
�

1
a

b

c 1

a

b

Figure �� The Cayley graphs of FR� and FR��

Let A � 	S��� N� �
 be a cellular automaton� We want to construct a cellular
automaton B � 	S����� N �� ��
 which simulates A� Let � � FR� � FR� be a

��



homomorphism de�ned by

�	�
 � � �	a
 � ab �	b
 � ba �	c
 � a�

�	uv
 � �	u
�	v
� u� v � FR�� 	see Figure 



We de�ne S� as a sup�set of S� Let the initial con�guration of B given by

c�B	�	u

 � c�A	u
� u � FR��

(a)γ

(b)γ

(c)γ

1

Figure 
� The mapping � � FR� � FR�

Then� B is de�ned by

S� � S � S�

�� � S�� � S�

��	x� y� z� r� s
 � 	x� y� z� r� s

��		x�� � � � � x�
� 	y�� � � � � y�
� 	z�� � � � � z�
� 	r�� � � � � r�
� 	s�� � � � � s�

 �

�	x�� y�� x�� r�� z�� z�� s�
�

With this construction� neighbor states in A are not neighbors in B� while the
needed states to compute the new state of a cell arrive by single arcs in A�
they arrive by pairs of arcs in B� So� in the �rst step of the simulation of an
iteration� all cells store the states of all of its neighbors� and in the second step
they compute the transition of A 	the simulation time factor is T � �
�

Let us now study free groups generated by any number of generators�

��



Theorem � Every CA A de�ned on the Cayley graph of a free�group with n
generators FRn can be simulated by a CA B de�ned on the Cayley graph of
another free�group with m	� �
 generators FRm with a simulation time factor
dlogm ne�

Proof� The assertion is true if m � n� because we can de�ne the initial con�g�
uration of a simulating CA by �ignoring� some branches of the tree� If m � n�
then we de�ne a mapping � � FRn � FRm with

�	g�
 � w�

�	g�
 � w�

���
�	gn
 � wn

�	uv
 � �	u
�	v
� u� v � FRn

where w�� � � � � wn are di�erent words of the same length k� If k � dlogm ne� then
these wi�s can be given� We can construct a simulation with a simulation time
factor k in a similar way as in the case of CA on the Cayley graph of FR� and
FR�� �

��� An example for simulation by grouping states

Sometimes� only non�elementary simulations are possible between two cellular
automata� Here we give an example for such a simulation�

Example � 	Cylinder automaton on the line
�

Let G � ha� b j ab � ba� b� � �i and G� � ha j �i and �� �� their Cayley graphs�
respectively� Let A � 	S��� N� �
 be a CA� Let � �G�G

� be a homomorphism
de�ned by �	�
 � �� �	b
 � �� �	a
 � a and for all u� for all v in G� �	uv
 �
�	u
�	v
 	see Figure �
� We build a CA B � 	S����� N �� ��
 simulating A by

S� � S � S�

�� � 	S�
� � S�

��		x�� x�
� 	y�� y�
� 	z�� z�

 � 	�	z�� x�� z�
� �	x�� z�� x�



starting from the initial con�guration given by c�B	�	u

 � c�A	u
 for all u in G�

� A su�cient condition

In the simulation between CA de�ned on the Cayley graph of free groups� we
can remark that � is an injective homomorphism� We can then remark also that
in Example �� � is a homomorphism with a �nite kernel f�� bg� In general we
can state that�

��
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Figure �� The homomorphism � � ha� b j ab � ba� b� � �i � ha j �i�

Theorem � If there exists a homomorphism � with a �nite kernel from a group
G into another group G�� then every cellular automaton de�ned on the Cayley
graph of G can be simulated by a cellular automaton de�ned on the Cayley graph
of G��

Proof� Let A � 	S��� N� �
 be a cellular automaton and � � G � G
� a homo�

morphism with a �nite kernel� for each generator gi in G� �	gi
 � wi where for
all i� wi is a word in G� and maxfjwijg � m� We want to construct a cellular
automaton B � 	S����� N �� ��
 which simulates A� First� let � be injective� Let
n be the number of neighbors of a cell in B� Let � be a state not belonging to
S� We de�ne the set of states of B by

S� � 	S � f�g
 � 	S � f�g
n � 	S � f�g
n
�

� � � �� 	S � f�g
n
m

and the transition function by

�� � S�n � S�

in the following way� Cells with no preimage are in state �� At time �� they
store all states of all of their neighbors at time  �

��	x�� x�� � � � � xn
 � 	x�� x�� � � � � xn
�

At time �� they store all states of all of their neighbors at time �� that is� the
states of those cells at time  � which are at distance at most � from the cell�

��		x��� x��� � � � � x�n
� � � � � 	xn�� xn�� � � � � xnn

 � 	x��� x��� � � � � xnn
�

At time m� cell v stores the states of all cells which are de�ned by generators�
inverse generators� words of length two� words of length �� � � � � words of length
m in G�� As every wi is a word of length at most m� its state is known by the
cell v� As the local function is the same for each cell and � is a homomorphism�
for every cell v in B� for all i� the state of the cell vwi arrives by the same path

��



and as the same component of vector� hence� at time m� the transitions of A
can be computed in B�

We now study the case where � � G � G
� is not injective but its kernel is

�nite� As the kernel of a homomorphism forms a group� this kind of simulation
is possible only if G has a �nitely presented non�trivial �nite subgroup� The
simulation can be de�ned as before� the only di�erence is that� while in the
previous case� in each cell of B� the transition of a single cell of A is computed�
here the transitions of all cells which have the same image by � are computed�
�

Remark that if � is injective� the simulation constructed in this way is elemen�
tary�

Corollary � If two groups are isomorphic� then cellular automata de�ned on
their Cayley graphs can be simulated by each other in an elementary way�

We cannot say anything about the simulation time factor� it depends on the
Cayley graph�

� Elementary simulations

In this section� we study only elementary simulations� We have seen� that the
existence of an injective homomorphism allows elementary simulations� On the
other hand� if there did not exist homomorphism with a �nite kernel from a
group into another one� then we could not de�ne any simulation� In the fol�
lowing example we show� that in some cases� there does not exist a homomor�
phism with a �nite kernel� but the simulation 	even elementary
 is possible� the
condition given in Theorem � is not necessary� In Section �� we study other�
non�elementary simulations�

��� Hexagonal and triangular neighborhoods

First� we present the intuitive de�nition of a triangular cellular automaton� then
we de�ne it formally� on Cayley graphs�

A triangular cellular automaton is usually de�ned as a cellular automaton
in the plane R�� where the cells are at the center of equilateral triangles� and
the neighbors of a cell are the cells located at the center of the triangles which
are adjacent side by side 	see Figure � 
�

De�nition 	 A triangular cellular automaton is a cellular automaton de�ned
on the Cayley graph of the group

Gt � ha� b� c j a� � �� b� � �� c� � �� 	abc
� � �i�

��



Figure � � Triangular neighborhood�

In the Cayley graph of Gt� as for all generator g in Gt� g� � �� between
every pair of neighbor vertices there are two arcs colored with g� we replace
them by single� non�oriented edges colored with g�

This de�nition is a bit special relatively to all the de�nitions we have given
before� the neighborhood of a cell formally consists of � neighbors 	N � 	a� b� c�
a��� b��� c��� �

� In reality� it consists of only � neighbors� because each neigh�
bor de�ned by a generator g is the same cell as the neighbor de�ned by the
inverse generator g���

a

b c

...

...

...

...

Figure ��� The Cayley graph of Gt�

The de�nition of hexagonal cellular automata had already been given in
Section ��� 	De�nition �
� We recall that they are de�ned on the Cayley graph
of the group Gh � ha� b j ab � ba� abc � �i�

We shall show that an elementary simulation can also be de�ned sometimes
without the existence of any homomorphismwith �nite kernel� We shall denote
triangular cellular automata by TCA�

��



Lemma � There does not exist a homomorphism with a �nite kernel from Gt

to Gh�

Proof� We suppose that � � Gt � Gh is a homomorphism with a �nite kernel�
�	a
 � w�� �	b
 � w� and �	c
 � w�� If w� � w� � w� � �� then the kernel
of � is in�nite� Hence� at most one of the wi�s must be di�erent from �� We
suppose that it is w�� As w� is an element of Gh� and Gh is commutative� w�

can be expressed as w� � anbm 
� �� Then� � � �	�
 � �	a�
 � �	a
�	a
 �
w�
� � a�nb�m 
� �� which leads to a contradiction� �

Lemma � There exists an injective homomorphism from Gh to Gt�

Proof� Let � � Gh � Gt de�ned by �	�
 � �� �	a
 � ba� �	b
 � ac� �	c
 � cb
and for all u and for all v in Gh� �	uv
 � �	u
�	v
� See Figure ���

a

b c

Figure ��� The injective homomorphism � �Gh �Gt�

In order to show that � is a homomorphism� it is su�cient to show that
�	ab
 � �	ba
 and �	abc
 � ��

�	ab
 � �	a
�	b
 � ba�ac � bc
�	ba
 � �	b
�	a
 � ac�ba � ac�ba�abc�abc � bc

�	abc
 � ba�ac�cb � �

It is clear that � is an injective homomorphism� �

Proposition � Every TCA can be simulated by a HCA in an elementary way�
and conversely�

��



Proof� Lemma � and Theorem � imply that every hexagonal CA can be simu�
lated by a triangular CA�

Let us study now the converse simulation� when we want to simulate every
TCA T with a HCA H� We de�ne the set of states of H by
Sh � St � f�g 	� 
� St
� The initial con�gurations of T and H are shown in
Figure ��� cells without pre�image are in state �� The transition function of H
is given by

�h	x� y� z� r� s� t� u
 � �t	x� y� z� u
 if s � t � u � �
�h	x� y� z� r� s� t� u
 � �t	r� s� t� u
 if x � y � z � �

�h	x� y� z� r� s� t� u
 � � if u � ��
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Figure ��� Initial con�gurations of TCA and HCA�

This construction is a bit di�erent from the others� For example� consider
the cell having information �� in the initial con�guration of T � The states of its
neighbor de�ned by the generator a 	resp� b� c
 	number � 	resp� �����

 is in a
neighbor cell de�ned by generator a�� 	resp� b��� c��
 in the initial con�guration
of H� Let us study now the cell numerated �� in the initial con�guration of T �
The state of its neighbor de�ned by the generator a 	resp� b� c
 is in a neighbor
cell de�ned by a 	resp� b� c
 in the initial con�guration of H� So there are two

�




types of cells� but we can de�ne the transition function without contradiction�
because if the needed states are in neighbors de�ned by a� b� c 	resp� a��� b���
c��
� then the others are in state � 	only one choice is available
� �

As we have already noticed� the same graph can be colored in di�erent ways�
Here� we do not give all simulations between cellular automata on the other
Cayley graphs� we study this problem in a more general way in Section �� We
take only one example� In Figure �b� we show the Cayley graph of group

Gh� � ha� b� c j a� � �� b� � �� c� � �� cba � �i�

As this graph gives also the triangular tiling of the plane� it can be used in order
to de�ne hexagonal cellular automata� For short� we denote cellular automata
on the Cayley graph ofGh� by HCA�� In order to show that every HCA can be
simulated by a HCA�� it is su�cient to give an injective homomorphism from
Gh to Gh� �

Lemma � There exists an injective homomorphism from Gh to Gh� �

Proof� Let � �Gh �Gh� de�ned by

�	a
 � abc� �	b
 � cab� �	c
 � bca

and for all u� for all v in Gh� �	uv
 � �	u
�	v
� see Figure ���
In order to prove that � is an injective homomorphism� it is su�cient to

show that �	abc
 � � and �	ab
 � �	ba
�

�	abc
 � abc�cab�bca� ab�	cc
�a�	bb
�ca � ab�	c��
�a�	b��
�ca � ab�b	a�a�a
c�ca�
a�	bb
�	cc
�a � a�	b���c��
�a � aaa � ��

�	ab
 � abc�cab � ab�	c��
�ab � a	b�b
	a�a
b � a	b��
	a��
b � 	a�a
	c�c
	b�b
 �
a��c��b��

�	ba
 � cab�abc � ca	ba
bc � ca	c��
bc � c	a�c
	c�b
c � c	b��
	a��
c �
	c�b
	b�a
	a�c
 �
a��c��b���
It is clear that � is an injective homomorphism� �

In a similar way as in Lemma �� we can show that there does not exist any
homomorphism with a �nite kernel in the converse direction� Thus� we do not
know whether every HCA� can be simulated by a HCA in an elementary way
or not� In the following section� we give another� non�elementary simulation�

� Other simulations

Here� we study other� more complicated simulations� We have seen that every
HCA can be simulated by a HCA�� Here we construct the converse simulation�

��



a b

c

Figure ��� The injective homomorphism � �Gh �Gh� �

Theorem 	 Every HCA� can be simulated by a HCA�

Proof� Let A � 	S��� N� �
 be a HCA� and let c�A be its initial con�guration�
Let � �Gh �Gh� be a homomorphism de�ned by

�	�
 � �� �	a
 � abc� �	b
 � cab� �	c
 � bca�

We construct a CA B � 	S����� N �� ��
 which simulates A� let S � S�� and we
de�ne the initial con�guration c�

B
of B by

c�
B
	u
 � 	c�

A
	�	u

� c�

A
	�	u
b
� c�

A
	�	u
bc
� c�

A
	�	u
b��
� c�

A
	�	u
b��a��
�

c�
A
	�	u
a
� c�

A
	�	u
ab
� c�

A
	�	u
bc��
� c�

A
	�	u
ac��

�

The de�nition of this initial con�guration is shown in Figure ��� The grey
triangle is the image of a triangle abc of HCA� in the large shape are cells whose
information are grouped in c�B� The tuple 	�� �� � � �� �
 denotes the order of
information in a state�vector of HCA� With this construction� for all information
of c�

A
� the neighbor information are located in a uniform way in c�

B
and at

distance �� a simulation can be given without any loss of time�

� 
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We de�ne the transition function �� � S� � S by

��		x�� x�� � � � � x�
� 	y�� y�� � � � � y�
� 	z�� z�� � � � � z�
� 	r�� r�� � � � � r�
�
	s�� s�� � � � � s�
� 	t�� t�� � � � � t�
� 	w�� w�� � � � � w�

 �

	�	w�� w�� y�� t�� w�� r�� w�
� �	r�� w�� w�� r�� w�� w	� w�
�
�	z�� x�� w	� z�� r�� w�� w�
� �	w	� w�� w�� w�� w�� w�� w�
�
�	w�� x�� z�� w	� w�� s�� w�
� �	t�� w�� w�� w�� t	� w�� w�
�
�	w�� t	� x�� x�� w�� t�� w�
� �	t�� w�� w�� w�� t	� w�� w	
�

�	x�� w�� w�� w�� x�� w�� w�

�

�

Remark that in the proof of Theorem �� the grouped cells are

fx� xb� xbc� xb��� xb��a��� xa� xab� xbc��� xac��g

where x is an image element� Notice that x is in �	Gh
� xb is in the left�coset
�	Gh
b of �	Gh
� and so on� xac�� is in �	Gh
ac��� In general� we can state
the following theorem�

Theorem 
 Let � be a homomorphism from G to G�� If the index of the image
of G is �nite� then every cellular automaton on the Cayley graph of G� can be
simulated by a cellular automaton on the Cayley graph of G�

Proof� We �rst study the case when � is injective� Let H be the subgroup of
G
� such that H � �	G
� Let H � fH�Hu��Hu�� � � � �Humg be the set of all

distinct left�cosets of H� Let A � 	S��� N� �
 be a CA on the Cayley graph of
G
� and c�

A
its initial con�guration� We de�ne a CA B � 	S����� N �� ��
 on the

Cayley graph of G which simulates A�
We de�ne S� as a sup�set of Sm
� � In order to de�ne the initial con�guration

c�B� we group the states of c�A in the following way� for all v in G� let

c�B	v
 � 	c�A	�	v

� c
�
A	�	v
u�
� c

�
A	�	v
u�
� � � � � c

�
A	�	v
um 

�

We have to show� that neighbor information of c�
A
are uniformally placed in

c�B for every components of every vectors� for all i� if for some u in G�� c�A	u
 is
the i�th component in the state�vector c�B	v
 for some v in G� and a neighbor
information c�A	ug
 is the j�th component in the state�vector c�B	w
 for some
g in G� and w in G such that w � vx� then for all U in G� being the i�th
component in a state�vector c�

B
	V 
 for some V in G� the neighbor information

c�
A
	Ug
 must be the j�th component in the state�vector c�

B
	W 
 where W is in

G and W � V x�
Let X � G and �	X
 � x� Consider cell xui	� �	G
ui
 in A� By the

de�nition of c�B� its state can be found as the i�th component in the state of cell
X in B�

c�B	X
 � 	c�A	x
� c
�
A	xu�
� � � � � c

�
A	xui
� � � � � c

�
A	xum

�

��



In order to compute the new state of xui in B� for all g in G� �G���� the states
of its neighbor cells xuig in A are needed� Let xuig be in �	G
uj for some j�

It means that there exists !X in G such that �	 !X 
 � !x and xuig � !xuj � hence

c�B	 !X
 � 	c�A	!x
� c
�
A	!xu�
� � � � � c

�
A	!xuj
 � c�A	xuig
� � � � � c

�
A	!xum



and !X � XU for some U in G�
Let Y � G and �	Y 
 � y� Consider cell yui in A� Its state can be found as

the i�th component in the state of a cell Y in B�

c�B	Y 
 � 	c�A	y
� c
�
A	yu�
� � � � � c

�
A	yui
� � � � � c

�
A	yum

�

We want to know� in which cell of B the state of the cell yuig of A can be found�
Because of the properties of groups� we know that it will be the j�th component
in the state�vector of some cell !Y in B� let �	 !Y 
 � !y� then yuig � !yuj and

c�B	 !Y 
 � 	c�A	!y
� c
�
A	!yu�
� � � � � c

�
A	!yuj
 � c�A	yuig
� � � � � c

�
A	!yum

�

We must show that !Y � Y U �
As � is a homomorphism� we know that

�	 !X 
 � �	XU 
 � �	X
�	U 
 � x�	U 
 � !x

and hence
�	U 
 � x��!x�

On the other hand� from xuig � !xuj� we have

x��!x � uigu
��
j �

From yuig � !yuj� we have

!Y � ���	!y
 � ���	y
����	U 
 � Y U�

Let us consider the case when � is not injective� Then there exists an injective
homomorphism �� � G� ker	�
 � G

�� and we can construct a simulation in a
similar way as before�

Remark that the simulation time factor is not always �� it depends on the
generating sets� �

Then� from Theorem �� the following assertion holds�

Theorem � Let � be a homomorphism from a group G in another group G�� If
� has a �nite kernel� if the index of the image of G is �nite� then every cellular
automaton on the Cayley graph of G can be simulated by a cellular automaton
on the Cayley graph of G� and conversely�

��



De�nition 
 We shall say that G� B G� if and only if there exists a homo�
morphism � �G� �G� with a �nite kernel such that the index of the image of
G� is �nite�

If G� B G�� then there exist simulations in both directions between cellular
automata de�ned onG� andG�� We are interested by the symmetrized relation
of B� As simulations are transitives� we study the symmetric and transitive
closure of B�

De�nition � We de�ne on �nitely presented groups the relation G� � G� as
the symmetric and transitive closure of the relation B�

From Theorem 
� the following proposition holds�

Proposition � G� � G� if and only if there exists a suite of �nitely presented
groups G�

��G
�
�� � � � �G

�
n such that G�

� � G� and G�
n � G� and for all i �  �

G
�
i B G

�
i
� or G�

i
� B G
�
i�

Conjecture� If there exist a simulation between cellular automata on G� and
cellular automata on G� in both directions� then G� �G��

If this assertion is true� it would imply that the existence of simulations in both
directions between cellular automata de�ned on two groups is an indecidable
problem�

� Cellular automata on Archimedean tilings

In the previous section we have studied hexagonal and triangular CA� Let us
denote by �H and �T � respectively� the underlying graphs on which these CA
work� T� Chaboud 	���
 has shown that Figures �� and �� show all possible
colorings for these graphs�

The Archimedean tilings are presented in Figure �
� they are exactly the
tilings using a �nite number of regular and convex polygons such that the degree
of every vertex and the order of polygons around every vertex is the same�

In ��� it is shown that all Archimedean tilings can be colored as Cayley
graphs� he has also given all possible colorings�

We show now that cellular automata on all these graphs are equivalent from
a computational point of view� they can be simulated by each other in a linear
time� In order to show the existence of injective homomorphisms from G� VN

to groups corresponding to these tilings� we introduce the following notion�

De�nition � Let � be an Archimedean tiling colored as a Cayley graph� Con�
sider vertex �� a generator g� Let us denote by 	x the arc starting at � colored by
g and considered as a vector in R�� Let A be a vertex and h a generator or an

inverse generator� We denote by�		x� h

A
the angle between 	x and the arc colored

��
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Figure ��� All Cayley graphs for hexagonal CA�
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Figure ��� All Cayley graphs for triangular CA�

by h starting at A� We say that two vertices A and B have the same situation

if for all generator and inverse generator h��		x� h

A
��		x� h


B
�

See an example for same and di�erent situations in Figure ��� Vertices A
and B have the same situation� but not A and C�

The following lemma is a consequence of the facts that in an Archimedean
tiling� the type of vertices is the same 	���
 and that the geometrical order of
generators in every vertex is the same 	���
�

Lemma � Let x and y be two vertices having the same situation� Then for all
generator �or inverse generator� g� xg and yg have the same situation�

Now we can show the following proposition�

Proposition � There is an injective homomorphism from G� VN to all groups
whose Cayley graphs have an underlying graph corresponding to an Archimedean
tiling�

Proof� Let � be the Cayley graph of a group G such that its underlying graph
corresponds to an Archimedean tiling� Let x� y be two vertices having the same
situation and let p� be a path from x to y� y � xp�� Let z be a third vertex
having the same situation as x and y and let p� be a path from x to z� z � xp��

��



Figure �
� Archimedean tilings�
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Figure ��� Di�erent vertex�situations�

We suppose that x� y and z are chosen in such a way that pn� 
� pn
�

� for all n �  
and n� �  in N� It is possible� because these tilings are periodic in the plane
in two independant directions� Then� from Lemma �� for all n �  in N� pn� 
� �
and pn� 
� �� On the other hand� also from Lemma �� the path p� starting at
z is �parallel� to the path between x and y� and the path p� starting at y is
�parallel� to the path between x and z� hence� zp� � yp�� that is� p�p� � p�p��

Recall that two�dimensional von Neumann CA are de�ned on the Cayley
graph of the group G� VN � ha� b j ab � bai� Let � �G� VN �G be a mapping
de�ned by

�	�
 � �� �	a
 � p�� �	b
 � p�� and
�	uv
 � �	u
�	v
 u� v � G� VN �

It is clear that � is an injective homomorphism� �

Then� from Theorems � and � and Proposition �� the following assertion holds�

Theorem � Every two�dimensional von Neumann cellular automaton can be
simulated by a cellular automaton on any Archimedean tiling and conversely�

This result can also be interpreted in the following way� If we consider
Cayley graphs as possible architectures for parallel machines� we can choose any
of Archimedean tilings for such an architecture in the plane� they have the same
computational power� However� as simulations between cellular automata on
these graphs require many states� it is necessary that machines have a su�cient
amount of local memory�

	 Open problems

In this paper� we have only studied simulations� where the states of the simu�
lated cellular automaton are considered as atomic informations� However� many
simulations exist with splitting states� they should also be studied�

�




We have given a su�cient condition for converse simulations between cellular
automata on Cayley graph� Can any su�cient and necessary condition be given�
This is the question that we have asked ourselves when we have de�ned the
relation � between groups� If the answer is �no� in the general case� whether
does a subclass of groups exist for which such a condition can be given�
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