Vincent Bouchitt 
email: fvbouchit@lip.ens-lyon.fr
  
Johanne Cohen 
email: jcohen@lip.ens-lyon.fr
  
Eric Fleury 
email: fleuryg@lip.ens-lyon.fr
  
Optimal Deadlock-free Path-based Multicast Algorithms in Meshes

Keywords: Multicasting, Wormhole Routing, Deadlock F ree, Multiprocessors, Parallel Computers. R esum e di usion partielle, routage wormhole, machines parall eles, interblocage Multicasting, Wormhole Routing, Deadlock F ree, Multiprocessors, Parallel Computers. 1 Introduction

Multicasting is an information dissemination problem which consists, for a node of a distributed memory parallel computer, of sending the same message to an arbitrary subset of nodes. The two major criteria to be considered in multicast communication a r e tra c (number of channels used) and latency (time required). In this paper, we proposed new polynomial algorithms giving optimal solutions in terms of tra c or latency for a mesh network using wormhole routing and path-based facility. All the algorithms are shown to be deadlock-free. Moreover, we generalize our algorithms to arbitrary Hamiltonian graphs.

Collective communication operations may be implemented either in software or hardware. In the rst approach (called unicast-based collective c o m m unications 14]), collective algorithms are implemented atop send and receive primitives. We will focus on the second approach routers are enhanced with generic hardware features which can be used to support collective operations. To reduce software overhead and improve collective algorithm performance, two t e c hniques have been proposed: message replication and intermediate reception.

In message replication, the router is able to replicate message, it-by-it, and forward it onto several outgoing channels. This can be compared with an hardware extension of a multicast or broadcast tree. The main problem with message replication is that when any branch of the tree reaches a busy channel, the whole message must stop and occupying all channels used by the tree. Moreover, the dependencies that may occurre between branches may lead to deadlock 1 2 ].

We will therefore focus on the second technique. In intermediate reception, the router is able to copy the its of an incoming message in the memory of the local processor, while simultaneously forwarding them to another outgoing link. A message (also called multi-destination worm 16]) can be sent b y a source node and be routed as a \single worm" through several destination nodes, delivering a copy of the message at each o f the intermediate destinations as it passes through. Such communication method is called path-based 11, 1 2 ] .

Typically, a m ulti-destination worm contains in its header the list of destination node addresses it has to reach 1 ]. The order of these addresses corresponds to the order in which the destination nodes will be visited. As soon as a message header arrives at the rst intermediate destination node of the list, the router associated with that node deletes its own address from the head of the list, and forwards the remainder of the message toward the next destination node.

A v ery important issue in wormhole-routed networks is to insure the absence of deadlock 9]. The routing algorithms used for multi-destination worms should provide enough degree of liberty in order to allow m a n y intermediate destinations to be reached by a single worm. However, these routing algorithms must still prevent deadlock. One solution is to impose a total order on the use of channels. Lin and Ni 12] proposed to base routing decisions on a order imposed by a Hamiltonian path in the network. Using this method, a family of path-based multicast routing algorithms have been developed for mesh and hypercube networks 7, [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]12]. This method can be used for any n e t work containing a Hamiltonian path. Tseng and Panda 18] extended the path-based approach t o n e t works that either do not contain Hamiltonian path or in which such a path may be unavailable, due to faults.

The two major criteria to be considered in multicast communication are the tra c, that is the number of channels used to deliver the source message to all its destinations, and the latency de ned as the elapsed time from when the source sends out its rst copy of the message until the last destination has received its copy of the message. Depending on the underlying communication paradigm and the routing method, multicast communication problems have been formulated as di erent theoretical graph problems. Multicast Path Problem: Find the shortest path starting from the source node and visiting all destination nodes Steiner Tree P r oblem: Find a Steiner tree with a minimal total length Multicast Tree P r oblem: Find a tree such that the distance from the source node to every destination is minimum. A l l t h e a b o ve problems have been shown to be NP-complete. The Steiner tree and Multicast path problems were shown to be NP-complete for regular topologies such as 2-D meshes and hypercubes 10, 12]. Also the Multicast Tree problem was shown to be NP-complete for hypercubes. Under the path-based communication model, the goal is to nd a multicast-star (MS), i.e., a collection of several multicast paths. To m i n i m ize the tra c ( rst criterion) the goal is to minimize the total number of channels used by t h e MS, and, for the latency (second criterion) the goal is to minimize the maximum length of the several paths of the MS. I t a s b e e n proved in 12] that nding an optimal multicast star according to the rst criterion is a NP-complete problem for mesh and hypercube graphs.

In this paper, we s h o w that, when basing the routing decision on an order imposed by a Hamiltonian path, as in 11] and 12], there exists polynomial time path-based multicast routing algorithms minimizing the number of channels used (criterion 1), or minimizing the maximum path lengths (criterion 2).

The remainder of this paper is organized as follows. Section 2 de nes the system model for which our algorithms are designed. It also brie y gives necessary background information on wormhole routing. Section 3 reviews our algorithm minimizing the number of channels, and section 4 reviews our algorithm minimizing the maximum of the path lengths. Section 5 addresses generalization of both algorithms to another class of graphs. Finally, w e present our conclusion in section 6 where we discuss possible future areas of investigation.

2 Model and de nitions

System model

In this paper, we consider massively parallel computers composed of nodes interconnected together by a xed topology. The common element of nodes in recent m ulticomputers is a router, which determines the route of messages arriving, leaving and passing through the node. Figure 1 (taken from 15]) represents the architecture of a generic node. A router is connected to the local memory by pairs of internal channels (input internal channel, output internal channel). In this paper, we suppose that routers are all-ports, that is: every pair of external channels have a corresponding pair of internal channels. The node can send to and receive from all its ports simultaneously. External channels are used to connect the router to neighboring routers, de ning the topology of the network. As usual, we model the topology of the interconnection network by a graph G = ( V E) i n w h i c h e a c h n o d e i n t h e s e t V corresponds to a processor node and each edge in the set E corresponds to a communication channel. Our discussion is mainly restricted to the two-dimensional mesh topology. This graph is formally de ned as follow: a m n mesh is a graph G = ( V E) where V = f(x y) 2 N N j 0 x < n and 0 y < m g and E = f((x i y i ) (x j y j )) j j x i ; x j j + jy i ; y j j = 1 g.

The predominant s w i t c hing technique used in the last generation of MPC is the wormhole routing. W e refer to 15] for a detailed survey on wormhole techniques. Roughly speaking, a message is divided into a number of its for transmission. The header it(s) of the message governs the route, and the remaining its follow in a pipeline fashion. For wormhole routing, the network latency for sending a message of length L along a path of length d is:

+ d + ( L ; 1) (1)
where is the startup time, is the time for a it to be forwarded from a router to a neighboring one (commutation time plus the transfer time of one it) and is the inverse of the bandwidth. Equation 1 does not take i n to account c hannel contentions that may appear on the route of the message when two messages want to use a same link in the same direction. We suppose that routers supports intermediate reception capability: the router is able to copy the its of an incoming message to the memory of the local processor, while simultaneously forwarding them to another outgoing link. This feature allows the performance of hardware-supported multicast, called path-based routing 12]. The source forms a message, which is going to be routed through several destination nodes, delivering a copy o f t h e m e s s a g e a t e a c h of the intermediate destinations as it passes through. Path-based multicasting can be done by building a list of destination addresses (according to the order in which they are to be visited) and setting the header to be this list of destinations, instead of being only one destination. Encoding the destination addresses in the header can be performed in several ways 1, 17].

Multicast and deadlocks

A multicast-set on a network G = ( V E) i s a t u p l e ( u 0 K ) where u 0 2 V and K = fu 1 : : : u k g u i 2 V i= 1 : : : k . T h e n o d e u 0 is called the source node, and the k nodes of K are the destination nodes. Given a source node u 0 , a multicast from u 0 is de ned by a m ulticast-set (u 0 K ), and corresponds to the information dissemination problem in which the node u 0 has to send the same message to all the nodes in K. All the previous works done by Lin et al. 11,12] and Duato 4, 5, 6] use the concept of split-and-sort function whose aim is to prepare the multicast. Given a multicast-set (u K), the split-and-sort function partitions the set of destinations into several subsets K 1 K 2 : : : K r . T h e m ulticast algorithm consists then of sending one copy of the message to each subset. To do that, the split-and-sort function will build an appropriate header for each destination subsets by sorting the destinations according to the order in which they are to be visited. Each di erent w ay of splitting the destination set and sorting the destination subsets de nes a di erent m ulticast algorithm.

Wormhole routing is very susceptible to deadlock since messages are allowed to hold many resources while requesting others. Hence, designing deadlock-free routing algorithms is an important issue. Multicast algorithms strongly depend on the routing function used to route messages. On a mesh, the most popular routing function is the XY-routing and consists of rst routing in the X-dimension and then in the Ydimension. When using unicast communication, this routing function is deadlock f r e e 3 ] (the only type of channel dependencies created by this routing function is X to Y ). However, using path-based hardware facility i n troduces new dependencies (more especially Y to X), and therefore the XY-routing is not deadlockfree anymore.

To o vercome this problem, Lin and Ni 12] proposed to base routing decisions on a order imposed by a n

Hamiltonian path in the network. Each n o d e u of a m n mesh is assigned a label L(u) according to an Hamiltonian path: the labeling function L is the snake representation. More formally, the labeling function L for nodes of a m n mesh is de ned by: if u = ( x y) then L(u) = y n + x if y is even y n + n ; x ; 1 if y is odd where x and y are respectively the column and the row coordinates of the nodes. This labeling constructs an

Hamiltonian path whose nodes are labeled consecutively from 0 to mn ; 1. Figure 2 shows the Hamiltonian label assignment f o r a 3 4 mesh.

The route of a message is de ned by a routing function R : V V ! V based on this Hamiltonian labeling. If u is the node currently holding the message and v is the destination node, then R(u v) = w such that w is a neighboring node of u and:

L(w) = maxfL(z) j L (z) L (v) z is a neighboring node of ug if L(u) < L(v) minfL(z) j L (z) L (v) z is a neighboring node of ug if L(u) > L(v)
A message will visit its destination nodes sequentially according to R. In order to be deadlock-free, destinations must be visited in an monotonic order according to their label, allowing to maintain a monotonic order on channels. This implies that there cannot exist cyclic dependencies among the channels 12]. Given a m ulticast set (u 0 K ), the split-and-sort function will rst split K into two subset K inf and K sup where K inf = fv 2 K j L (v) < L(u 0 )g and K sup = fv 2 K j L (v) > L(u 0 )g. The split-and-sort function then de nes several subsets inside each K inf and K sup 8, [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]12]. We suppose here, without loss of generality, t h a t t h e label of destinations belonging to K are all greater than u 0 because, once the source has been chosen, the way the algorithm will treat K inf or K sup is symmetric.

Statement of the problem

The goal of a multicast algorithm is to nd a collection of multicast-paths called multicast-star. Multicaststar may be de ned as follows:

De nition 1 Let G(V E) be a graph, let L be a labeling of the nodes of this graph and R be a routing function requiring that destinations of messages are visited in a monotonic order according to the labeling L _ Let (u 0 K ) b e a m ulticast set where the degree of u 0 is , a multicast-star (MS) is a collection of multicast-paths fP i g described by the set of destination nodes D i that they should reach, 1 i , such that:

1. No destination node belongs to more than one multicast-path, i.e., D i \ D j = if i 6 = j 2. The multicast-paths cover all the destinations, i.e., 1 i D i = K 3. Destinations inside each m ulticast-path are visited in a monotonic order according to their labeling, i.e., L(u ij ) < L(u ij+1 ) i f u i1 > u 0 or L(u ij ) > L(u ij+1 ) i f u i1 < u 0 where u ij 2 D i for 1 i < and 1 j < jD i j 4. The path P i uses the output channel i of the source node u 0 , 1 i .

According to our system model, we can derive t h e c o m m unication t i m e o f a MS using equation 1. The communication time will be bounded by:

+ ( L ; 1) + max 1 i jDij;1 X j =0 d R (u ij u ij+1 ) with u i0 = u 0 1 i (2)
where d R (u v) is the length of the path from u to v de ned by the routing function R. E cient m ulticast algorithms involve several, often incompatible, requirements. The rst one is to minimize the message latency de ned as the elapsed time from when the source sends out its rst copy o f the message until the last destination has received its copy of the message. The second requirement i s t o minimize the amount o f n e t work tra c, that is minimize the number of channels involved in the multicast.

Given a host graph G(V E), a labeling L of the nodes of this graph, a routing function R requiring that destinations of messages are visited in a monotonic order according to the labeling L a n d a m ulticast set (u 0 K ) where the degree of u 0 is , both minimization problems can be formulate as follows:

Problem 1 Find a optimal channel multicast star (OCMS). That is, a MS such t h a t t h e t h e n umber of channels used is minimum:

min MS X i=1 jDij;1 X j=0 d R (u ij u ij+1 ) with u i0 = u 0 1 i (3)
Problem 2 Find a optimal time multicast star (OT MS). That is, a MS such that the total time given by equation 2 is minimum, w h i c h is equivalent t o :

min MS max 1 i jDij;1 X j=0 d R (u ij u ij+1 ) with u i0 = u 0 1 i (4) 
We are now going to describe our algorithms solving these two problems. Remember that in the following we suppose, without loss of generality, that the source label is smaller than the label of the destination nodes, i.e., L(u 0 ) < L(u i ), 1 i k = jKj. Since we are considering a grid, the source node will construct at most two m ulticast-paths for the corresponding destination set. We note f` `0g these two output ports connecting the source u 0 to two neighboring nodes which h a ve a greater label. If the source node has only one output port, the problem is obviously solved by the construction of only one multicast-path, obtained by sorting the destinations according to their labels.

3 An algorithm for nding an OCMS in a mesh Before presenting our algorithm formally, w e rst give a description of how i t w orks. In accordance with the hypothesis of de nition 1, we are given a mesh G = ( V E), a labeling L, a routing function R and a multicast set (u 0 K ). We w ant to construct an optimal channel multicast star using at most two paths. The algorithm is divided into three phases. The rst phase builds a weighted bipartite graph, the second phase computes a minimum weighted perfect matching and the last phase extracts the multicast star from the matching.

We n o w i n troduce some de nitions relevant to the notion of constraints, induced by both the labeling and the routing function, which will be needed in the formulation of our algorithm.

The constraint function c

Given a multicast set (u 0 K ), we w ant t o n d m ulticast-paths satisfying the conditions of de nition 1. T he source node u 0 plays an important role since this speci c node has two a vailable ports to \build" the two m ulticast-paths. For example, on Figure 2, the source node is allowed to send a message to node a via its \horizontal" output port `(respectively to node b via its \vertical" output port `0) but it cannot send a message to node a using its \vertical" output port `0. Moreover, we h a ve t o t a k e i n to account the constraining conditions needed to guarantee a deadlock-free routing function, that is, destinations of a message must be visited in a monotonic order according to their label. Since we are considering only destinations which h a ve a label greater than the source label, this means that from a node u i , the message will be able to reach another node u j only if L(u i ) < L(u j ). To deal with this constraints, we i n troduce the constraint function c : K K E ! N where E = E f g.

The constraint function between two nodes u i , u j and relative to an output link `is de ned by:

c(u i u j ) = 8 < : d R (u i u j ) if `= and L(u i ) < L(u j ) d R (u i u j ) if `= ( u i w ) L(u i ) < L(u j ) a n d R ( u i u j ) = w 1 otherwise (5) 
In other terms, `= , means that we do not specify the out-port. This will be in fact the case for each intermediate destination. On the other hand, l = e, e 2 E, implies that we are considering the case of sending a message using the out-port e. T o resume the behavior of this function: the constraint function c(v w l) yields 1 if it is impossible to forward a message from v to w using the edge l as an out-port of the vertex v.

The bipartite graph

Give n a m ulticast set (u 0 K ), the key idea of the construction phase is to build a bipartite graph B (u0 K) = (Q R F w) w h e r e Q and R are the two sets of vertices, F is the set of edges and w is a weight function. This bipartite graph models all the constraints imposed by the routing function R and/or induced by the labeling L. More formally, l e t ( u 0 ) be the set of output links of the source node u 0 such that a multicast path using any of these links can reach at least one destination node in K. F or a mesh, j (u 0 )j equals 1 or 2 depending

d + (u 0 ) = 2 a n d d ; (u 0 ) = 0 8 i 2 1 : : : k ], d ; (u i ) = 1 d + (u k ) = 0
there exits a single integer j in 1 : : : k ], d + (u j ) = 0 (corresponding to the edge (q j r l ) o f t h e m a t c hing M where l 2 f k + 1 k + 2 g 8 i 2 1 : : : k a n d i 6 = j, d + (u i ) = 1 .

Thus, the graph that we obtaine consists of two disjoint paths but vertex u 0 , and it covers all vertices of K. In fact, each path contains those vertices which are either in the destination nodes of a multicast-paths or in he other one but not both. It follows that we can deduce a multicast-star from a graph H. 2

Theorem 1 Each OCMS of a given multicast set (u 0 K ) induces a minimum weighted p erfect matching of the bipartite graph B (u0 K ) , a n d c onversely.

Proof. According to lemma 2, it is su cient to notice that the weights of the MS and of the perfect matching associated with this MS are the same. 2

The algorithm

Now, we describe our algorithm which is decomposed in three phases, namely the construction phase, the computation phase and the extraction phase. Initially, w e execute the construction phase (see section 3.2).

This phase constructs the bipartite graph B (u0 K) corresponding to the multicast-set (u 0 K ) and to the routing function R. Once the construction phase is achieved, we execute the computation phase which computes a minimum-weight perfect matching M of the bipartite graph B (u0 K) using the method described in 13]. Finally, the extraction phase constructs the two sets of destination nodes D 1 and D 2 of the two multicast-paths P 1 and P 2 respectively. The correctness of Algorithm 1 is given by theorem 1.

Algorithm 1 OCMS(u 0 K )

. Construction phase 1 Construct the valuated bipartite graph B (u 0 K ) = ( Q R F w)

. Computation phase 2 Compute a minimum weighted perfect matching M of B (u 0 K )

. Extraction phase 3 let target be a function from F to R such t h a t i f a n e d g e e of F equals to tuple (q r), then target(e) = r 4 let D1 = 5 let e = ( q0 r i 1 ) 2 M 6 while (target(e) 6 2 f rk+1 rk+2g) do 7 let D1 = D1 f uj g such that rj = target(e) 8 let e = ( qj r t ) such t h a t e 2 M 9 end while 10 let D2 = 11 let e = ( q 0 0 r i 1 ) 2 M 12 while (target(e) 6 2 f rk+1 rk+2g) do [START_REF] Lin | Deadlock-free multicast wormhole routing in multicomputer networks[END_REF] let D2 = D2 f uj g such that rj = target(e) 14 let e = ( qj r t ) such t h a t e 2 M 15 end while It is easy to see that this algorithm can be implemented so as to run in O(k 3 )-time. More precisely, f o r each phase we h a ve:

The construction of the bipartite graph in line 1 can be done in O(k 2 ) operations

The computation of a minimum-weight perfect matching M of the bipartite graph B (u0 K ) in line 2 can be achieved in O(k 3 ) operations using the method described in 13] And the extraction phase (lines 3-10) requires no more than O(k) operations.

4 An algorithm for nding an OTMS in a mesh

The purpose of this section is to describe a polynomial time algorithm computing an optimal time multicast star (OTMS) for a given multicast set (u 0 K ). This problem is equivalent to minimize the maximum length of all the multicast-paths of the MS. Our algorithm is composed of three phases, namely the initialization phase, the computation phase and the extraction phase. First, using the same argument as in section 3, we do not consider the case where the source node u 0 has only one output link (i.e., ( u 0 ) = 1). So, we will assume in the following that the source node u 0 has two output links (i.e., ( u 0 ) = 2).

The key idea is to consider all the possible choices to perform a multicast from the source node u 0 to the set of destination nodes K = fu 1 : : : u k g. More formally, w e are interested in all the MS of a multicast set (u 0 K i ), where K i = fu 1 : : : u i g 1 i k = jKj. In order to do this, we construct a set of vertices Q as follows:

The source node u 0 , will have j (u 0 )j = 2 instances fu 0 2 (u0) g in Q. These 2 instances represent the 2 output links available from the source node u 0 to build the j (u 0 )j multicast-paths. To simplify notations, these two instances of u 0 are called q 0 and q 1 Each v ertex u i of K, 1 i k = jKj, has one instance q i+1 in Q. We are going to consider a MS of a multicast-set (u 0 K i ) as a tuple (i + 1 j l 1 l 2 ) s u c h t h a t 1. i + 1 > j 2. One of these two m ulticast-paths has the node q i+1 (corresponding to node u i ) as its extremity. And its length is equal to l 1 3. The other multicast-path has the node q j (corresponding to node u j ;1 if j > 0, otherwise u 0 ) a s i t s extremity, and its length is equal to l 2 . First, let us consider the particular case where the multicast-set is equal to (u 0 ). There is only one MS corresponding to this multicast-set and it is de ned by the tuple (1 0 0 0). In other words, the MS is composed of one multicast-path such that its extremity i s q 1 , corresponding to vertex u 0. It means that this multicast-path will use output link `. Note that all multicast-stars of a given multicast-set (u 0 K ) m a y b e represented by a tuple (jKj + 1 j l 1 l 2 ). Indeed, one of the two paths must end at node with the greatest label, and the other path may end at any other node, included the source node.

Description of the algorithm

Our algorithm is based on a dynamic programming approach. We split our algorithm into three parts:

1. In a rst step, we initialize a 4-dimensional array T , s u c h that all the elements are equal to F a l s e except the element ( 1 0 0 0) which is equal to T r u e . W e will see in the following how to bound the indexes of this array. T o simplify the algorithm, we de ne the function c 0 : Q Q ! N as follows: c 0 (q i q j ) = c(q i q j ) if q i = u 0 where `2 (u 0 ) c(q i q j ) if q i = 2 f u l 0 u l 0 0 g (6)

2. In a second step, the array T is lled by Algorithm 2 below:

Algorithm 2 Fill(T,u,K)

. To ll array T 1 for i1 = 2 t o k do 2 for i2 = 2 t o i1 do 3 for k1 k 2 = 2 t o n do 4 if T(i1,i2,k1,k2)= True then 5 T(i1 + 1 , i2,k1+c 0 (qi 1 q i 1 +1),k2) True 6 T(i1 + 1 , i1,k2+c 0 (qi 2 q i 1 +1),k1) True

6 Conclusion

We h a ve considered wormhole routing in a mesh network with path-based facility. Under this assumptions, two new polynomial algorithms computing an OTMS and an OCMS for a given multicast-set (u 0 K ) i n a n Hamiltonian graph G have been proposed. These algorithms were the rst deadlock-free optimal polynomial algorithms that are able to optimize the communication tra c or minimize the time required to perform path-based multicasts. Moreover, both algorithms can be used to any networks that contain Hamiltonian path, included n-dimensional meshes. One of the disadvantages of this two path-based multicast algorithms is that some contentions may occurred in the network under certain conditions since the paths generated by the algorithms are not necessarily edge disjoint. If two messages want to use the same channel, one must be delayed and the total communication time will be increased. Possible extension of this wo r k i s o p e n t o i n vestigation. Perhaps improvements can be made to the algorithms presented here if it is possible to build an OT MS and an OCMS such that the multicast-paths are edge-disjoint. Also, the algorithms presented in this paper and their generalization are designed explicitly for Hamiltonian graph. One open question is to know if the same algorithms may be used on other networks providing deadlock-free path-based wormhole routing function. This is an interesting issue and deserves further study.
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It is easy to note that the routing function R having the same properties as described in section

2.1 may be used on a network if and only if this network contains an Hamiltonian path. To p r o ve it, it is enough to consider the case of a broadcast from a node having the smallest label in the network to all other nodes.

on the location of the source node u 0 in the mesh. We de ne the bipartite graph B (u0 K ) = ( Q R F w) a s follows:

Each v ertex u i of K, 1 i k = jKj, has one instance q i in Q and one instance r i in R The source node u 0 , will have j (u 0 )j instances fq 0 2 (u0) g in Q. Theses j (u 0 )j instances represent the j (u 0 )j output links available from the source node u 0 to build the j (u 0 )j multicast-paths In order to have the same number of vertices in Q and in R, w e i n s e r t j (u 0 )j nodes fr k+i i2 1:::j (u0)j] g in R. Theses j (u 0 )j nodes are not involved in the multicast set. They will represent the ended extremities of the j (u 0 )j multicast-paths. The j (u 0 )j multicast-paths will end respectively at these j (u 0 )j nodes There is a directed edge e from q 0 to r j in B (u0 K ) if c(u 0 u j ) 6 = 1 and the weight of the edge e is set to w(e) = c(u 0 u j ). That means that according to the routing function R, a message can go from u 0 to u j using the output link `, and the length of the path is given by d R (u 0 u j ). Moreover, there is a directed edge e from q i to r j in B (u0 K ) if c(u i u j ) 6 = 1 and the weight o f t h e e d g e e is set to w(e) = c(u i u j ). That means that, according the routing function R, a message can go from u i to u j Every node q 2 Q is connected by a directed edge to every nodes in fr k+i i2 1:::j (u0)j] g. T h e w eight of all this edges, is set to be 0. That means that every node u i 0 i k, o f t h e m ulticast set can be the last destination of the j (u 0 )j multicast-paths. Note that this includes the source node u 0 . If j (u 0 )j = 1, then it implies that any MS of the multicast-set (u 0 K ) is reduced to a single multicastpath and the solution of the problem becomes obvious. Now, we shall focus on the case where j (u 0 )j = 2 : to simplify the notation, we call q 0 and q 0 0 the vertices in Q representing the node u 0 . N o w, we will present the basic properties of the bipartite graph B (u0 K ) .

Recall that a matching M of B (u0 K) is a subset of edges M F such that no two e l e m e n ts of M are adjacent. The matching is said to be perfect if every vertex in Q R is an end-point of some element of the matching M. T h e weight of the matching is given by P e2M w(e).

Lemma 1 B (u0 K) contains a perfect matching. Proof. Clearly, fq 0 r 1 q 1 r 2 : : : q k r k+1 q 0 0 r k+2 g is a perfect matching. 2

Lemma 2 Each MS of a given multicast set (u 0 K ) is represented b y a p erfect matching of the bipartite graph B (u0 K) , and conversely. Proof.

Given a MS of a multicast set (u 0 K ), we build a matching M in the graph B (u0 K) as follows. Let P 1 and P 2 be the two m ulticast-paths of the MS, and let D 1 and D 2 be the set of destination nodes that they should reach respectively. According to De nition 1, the destination nodes of each path are visited in the monotonic order given by their label. We consider D 1 = fu i1 : : : u is g, a n d D 2 = fu j1 : : : u jt g. We de ne a perfect matching of B (u0 K ) by M = f(q 0 r i1 ) (q i1 r i2 ) : : : (q is;1 r is ) (q is r k+1 )g f(q 0 0 r j1 ) (q j1 r j2 ) : : : (q jt;1 r jt ) (q jt r k+2 )g. We suppose here, without loss of generality, that the multicast-path P 1 uses the output link `of the source node u 0 corresponding to the node q 0 in Q.

By construction of B (u0 K) , all the edges of M exist. We n o w show that M is a matching. Clearly, t h e r e is only one edge of M incident to the vertices q 0 q 0 0 r k+1 and r k+2 . N o w consider a vertex q i (resp. r i ), 1 i k. The vertex q i (resp. r i ) represents the vertex u i 2 K. Since u i appears only once in D 1 D 2 , u i has at most one successor (resp. predecessor) in D 1 D 2 , t h e n q i (resp. r i ) is incident to at most one edge of M. Thus M is a matching. Moreover, the number of edges of the matching M is s + t + 2 = k + 2 and since we know that jQj = jRj = k + 2, it follows that M is a perfect matching. Conversely, w e consider a perfect matching M of the graph B (u0 K) . Such a matching exits from Lemma 1. Let M be a matching represented by the set f(q 0 r i1 ) (q 0 0 r i2 ) : : : (q k r ik+2 )g. F rom the matching M, w e de ne a directed graph H = ( K fu 0 g U ) where the set U equals to f(u 0 u i1 ) (u 0 u i2 )g f(u i u j ) j (q i r j ) 2 M and r j = 2 f r k+1 r k+2 gg.

Let d + (x) ( r e s p . d ; (x)) be the number of successors (predecessor) of the vertex x in the directed graph H. A s M is a matching and thanks to the de nition of the graph H, it is easily to check that: end if

The way the array is lled insures that the following relation holds: T(X) = T r u e, there exists a MS de ned by the tuple X.

3. Finally, among all the MS of the multicast set (u 0 K ) (be reminded that the MS are represented by elements (jKj + 1 j l jKj l j ) o f T such t h a t T(jKj + 1 j l jKj l j ) = T r u e ), we n d t h e t wo paths which minimize the maximum length. In the next section, we will prove the correctness of this algorithm.

Correctness of algorithm

We shall show h o w to bound the indexes of the 4-dimensional array T. First, we should ask whether or not there exists a MS o f a m ulticast set such that the length of one of the two m ulticast-paths is greater than the number of vertices of the graph G. Clearly, the answer is \no" since the routing function R does not allow a m ulticast-path to pass through a same vertex more than one time. Indeed, by de nition, the routing function imposes the restriction that a message must pass through nodes in a monotonic order according to their labels. Thus the maximum length of a multicast-path is bounded by N ; 1 w h e r e N = mn is the number of nodes of the graph G. It follows that all MS can be de ned by a 4-tuple in the space 0 : : : k ] 2 1 : : : N; 1] 2 . Secondly, note that algorithm 2 lls the entire array T in the following way: the algorithm will compute the element X of T before the element X 0 of T if the tuple X 0 is greater than X considering the lexicographic order. It follows that a path will visit destinations nodes in a monotonic order according to their labels. Finally, to conclude the proof of the correctness of our algorithm, we s h o w the following theorem:

Theorem 2 If there exists a MS of a given multicast-set (u 0 K i ) such that (i) one extremity of the multicast-path P 1 is the vertex u i and its length is equal to k 1 (ii) one extremity of the multicast-path P 2 is the vertex u j ;1 (if j > 0 otherwise u 0 ) and its length equals to k 2 (iii) K i = fu 1 : : : u i g where 8j 2 1 : : : i ] u j 2 K.

then, the element (i + 1 j k 1 k 2 ) of the array T is equal to T r u e , and conversely.

Proof. We shall show that if there exists a MS de ned by X = ( i + 1 j k 1 k 2 ), then T (X) = T r u e . W e prove this property b y induction on parameter i. As the basis for our induction, let us consider the case i = 0 . W e note that the statement is trivially true since after the initialization phase, only the element ( 1 0 0 0) of T is equal to T r u e . So, this multicast star is composed of two m ulticast-paths that contain only the source node u 0 . Then, their length are equal to zero, and they correspond to a MS for the multicast-set (u 0 ). Thus, for i = 0, the theorem holds. We assume then, that it is true whatever the integer value s < i Now let us consider s = i. Assume that, on the contrary to this property, there exists a MS de ned by a tuple X such that T (X) = F a l s ewhere X = ( i + 1 j l 1 l 2 ). Let P 1 and P 2 be the two m ulticast-paths of the MS de ned by X = ( i + 1 j l i+1 l j ). Without loss of generality, w e can consider that u i;1 is in P 1 .

There are two cases:

(i) u i is in P 1 : w e can split the path P 1 into two sub-paths P 0 1 P ui;1 !ui where P 0 1 is a sub-path of P 1 from the source node u 0 to u i;1 and P ui;1 !ui is a sub-path of P 1 from u i;1 to u i . By de nition, it implies that these two paths P 0 1 P 2 form a MS of multicast-set (u 0 K i;1 ) de ned by the tuple X 0 = ( i j d(P 0 1 ) l j ) w h e r e d(P 0 1 ) is the length of path P 0 1 . N o w, by the induction hypothesis, since i ; 1 < i , the property h o l d s : T(X 0 ) = T r u e . Using line (5), we set T (i j d(P 0 1 ) + c 0 (u i;1 u i ) l j ) t o T r u e . Hence by de nition of the function c 0 , w e h a ve ( i j d(P 0 1 ) + c 0 (u i;1 u i ) l j ) = X and we can not have T(X) t o b e e q u a l t o F a l s e . S o i t l e a d s t o a c o n tradiction. (ii) u i is in P 2 : w e apply the same argument as the previous case.
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Both cases provides a contradiction so that it must be the case that if there exists a MS de ned by a tuple X then T (X) = T r u e .

Conversely, using the same arguments as previously, it is easy to see by de nition that if T(X) = T r u e , then there exists a MS de ned by X. 2 Thanks to theorem 2, after lling the array T , all elements X = ( k + 1 i l k+1 l i ) i n T such t h a t T(X) = T r u e , represent all possibilities of MS corresponding to the multicast-set (u 0 K ). It remains to be found the minimum of the maximum length of this two paths among all these elements of T. It follows that our algorithm computes an OTMS.

It is easy to see that the whole algorithm may be implemented so as to run in O(k 2 N 2 ) where N is the numb e r o f v ertices in the mesh. More precisely, for each phase we h a ve:

The initialization phase and the lling phase of the array T , can be done in O(k 2 N 2 ) operations The extraction of the solution is equivalent to searching for the maximum value among O(kN 2 ) e l ements, and so the complexity of this part is equal to O(kN 2 ).

Generalization

In the two previous sections 3 and 4, given a mesh, a labeling L, a routing function R and a multicast-set (u 0 K ), we h a ve described two algorithms computing an OCMS and an OTMS respectively. Unfortunately, the topology of the networks was xed and the two algorithms were described for a speci c topology, i.e., a mesh. The purpose of this section is to apply ours algorithms to a more general class of graphs. More precisely, w e are going to consider Hamiltonian graphs. By considering an Hamiltonian path in a graph G = ( V E), we construct a labeling function L of the nodes according to this path. Thus, a routing function R h a ving the same properties as described in section 2.1 may be used on any Hamiltonian graphs. 1 Note that it does not imply that this kind of routing function uses minimal path, which w as the case for the mesh. Indeed, any other Hamiltonian labeling of the mesh would have lead to a non-minimal path routing function. First, we can notice that the two algorithms described in sections 3 and 4 and the proofs of their correctness are based on the constraint function c that should be adapted. We assume that k is the cardinality of the set K and (u) is the set of output links of the node u such t h a t a m ulticast path passing through u and using any of these links can reach at least one other destination node in K. L e t d be a distance function depending on the routing function R in G: d R (u i u j ) is the minimum number of links used by function R to transmit a message from u i to node u j using the out-port `of u i . So, the constraint function between two n o d e s u i and u j and an output link `2 (u i ) of the node u i is de ned by: c(u i u j ) = 8 < : min `0 2 (ui) d R (u i u j 0) if `= d R (u i u j ) if `= ( u i w ) and R(u i u j ) = w 1 otherwise (7)

Now, we can describe the modi cations needed for our algorithms such that they compute the OTMS or the OCMS of a multicast-set (u 0 K ).

To compute the OCMS, w e will apply the same algorithm but we slightly modify the construction of the bipartite graph B (u0 K) = ( Q R F w). Now, j (u 0 )j nodes in Q and R (2 nodes in section 3) are going to represent the source node u 0 and each of them is associated with one output link of u 0 . T h e j (u 0 )j nodes represented u 0 in Q (resp. in R) are the beginning (resp. the end) of one multicast-path. The time complexity of the resulting algorithm is O((k + j (u 0 )j) 3 ) operations.

To compute the OTMS, w e can use the same algorithm as in section 4. Instead of considering a MS as a 4-tuple, we are going to consider it as a 2j (u 0 )j-tuple: the multicast star MS is composed of j (u 0 )j paths. The time complexity of the resulting algorithm is O((kN) j (u0)j ). Unfortunately, the complexity o f the algorithm depends on the number of output links of the source node. However, the complexity of this algorithm remains polynomial if the degree of the source node is constant.