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Abstract

Given a set L of n points in the d�dimensional Cartesian space
Ed� and a query specifying a domain q in Ed� the Range Search
problem consists in identifying the subset R�q� of the points of
L contained in q�

The Range Tree data�structure represents a particularly good
balance between storage space and search time� The structure
requires O�n logd�� n� space and construction time� but supports
an O�logd n� time search algorithm�

In this paper� we describe a set of e�cient scalable algorithms
for the construction and manipulation of a distributed analog to
the sequential range tree data structure� We then show how to
perform O�n� independent range searches on a distributed range
tree� in parallel�

These parallel construction and search algorithms are both opti�
mal in the Coarse Grained Multicomputer model �also referred to
as the weak�CREW BSP model�� in the sense that their running
times are the sequential time divided by the number of proces�
sors� plus a constant number of parallel communication rounds
�i�e�� h�relations in BSP context��



Keywords� Multidimensional search� Parallel algorithm� Distributed data
structures� Coarse grained multicomputers

R�esum�e

Prenons un ensemble de n points dans un espace cart�esien Ed�
ainsi qu�une requ�ete q d�e	nissant un domaine de Ed� On appelle
Range Search le probl
eme consistant 
a identi	er le sous�ensemble
r�q� de points de L contenu dans q�

Le Range Tree est une structure de donn�ees o�rant un excel�
lent compromis entre la taille m�emoire n�ecessaire 
a son stockage
et le temps de r�eponse au probl
eme� Il n�ecessite O�n logd�� n�
emplacements m�emoire et permet de traiter une requ�ete en
O�logd n� unit�es de temps�

Dans cet article� nous pr�esentons des algorithmes e�caces et ex�
tensibles pour construire et manipuler une version distribu�ee du
Range Tree comparable 
a la version s�equentielle� Nous montrons
comment r�epondre 
a O�n� requ�etes ind�ependantes en parall
ele�

Les algorithmes de construction du Range Tree distribu�e et de
r�eponses aux requ�etes sont optimaux dans le mod
ele de machine

a gros grains �aussi appel�e mod
ele weak CREW�BSP�� optimal
signi	ant que le temps d�ex�ecution en parall
ele est �egal au temps
d�ex�ecution en s�equentiel divis�e par le nombre de processeurs�
auquel on doit ajouter le temps n�ecessaire 
a un nombre constant
d��etapes de communication �ou de h�relations dans le contexte
du mod
ele BSP��

Mots�cl�es� Recherche multidimensionnelle� Algorithme parall
ele� Struc�
ture de donn�ees distribu�ee� Machine parall
ele 
a gros grain
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� Introduction

The range tree is a fundamental data structure for multi�dimensional point
sets� and as such� is central in a wide range of geometric and database
applications
���� The design and implementation of e�cient parallel ver�
sions of this important data structure is one of the primary goals of this
year�s DIMACS Implementation Challenge
��� In this paper� we describe
the 	rst non�trivial adaptation of range trees in the parallel distributed
memory setting�

Our approach is to describe a set of e�cient scalable algorithms for
the construction and manipulation of a distributed analog to the sequential
range tree data structure
��� We then show how to perform O�n� indepen�
dent range searches on a distributed range tree T � in parallel� Note that the
path of an individual search will trace in T is not known ahead of time� and
must instead be determined �on�line�� That is� only when a search query
is at a node of T can it determine which node or nodes of T it should visit
next� Also note that the paths of the search queries can overlap arbitrarily�

�Part of this work was completed while the authors were visiting each other in Lyon
and in Halifax� Support from the respective Institutions is acknowledged�

yPartially supported by the HCM MAP project of the EC�
zPartially supported by the Natural Sciences and Engineering Research Council

�Canada��
xPartially supported by the EC project NATHAN�
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such that any time any node of T may be visited by an arbitrary number of
search queries�

The Model
Recently� there has been much interest in �realistic� parallel models �e�g�
BSP� LogP� C�� CGM� that can better predict the performance of par�
allel algorithms on existing� typically coarse or medium grained� parallel
computers
��� �� ��� ���� In Valiant�s BSP model� each communication
round consists of routing a single arbitrary h�relation �i�e� each proces�
sor send and receives O�h� data�� Slackness in the number of processors is
used to optimally simulate PRAM algorithms on distributed memory multi�
computers� However� as Valiant points out� one may want to design �imple�
mentations of the BSP model that incorporate features for communications�
computation or sychronization that are clearly additional to the ones in the
de	nition�
����

In this paper� we use the Coarse Grained Multicomputer model
�CGM�s� p��� also sometimes referred to as the weak�CREW BSP model
����
This model has been used �explicitly or implicitly� in parallel algorithm de�
sign for variety of problems 
��� ��� �� ��� ��� �� ��� and has led to parallel
codes exhibiting good timing results 
��� �� ���� It consists of a set of p
processors P� to Pp�� with O� s

p
� local memory each� connected via some

arbitrary interconnection network or a shared memory� The term �coarse
grained� refers to the fact that the size of each local memory will typically
be �considerably larger� than O���� We will assume s

p
� p as was assumed

in 
���� which is clearly true for all existing parallel machines� All algo�
rithms consist of alternating local computation with global communications
operations �Supersteps��

In this model� all global communications are performed by a small set
of standard communications operations � Segmented broadcast� Segmented
gather� All�to�All broadcast� Personalized All�to�All broadcast� Partial sum
and Sort� which are typically e�ciently realized in hardware� If a parallel
machine does not provide these operations they can be implemented in terms
of a constant number of sorting operations 
����

Moreover� recently Goodrich 
��� has shown that� given p � n��
�

c �c � ���
sorting O�n� elements distributed evenly over p processors in the BSP �or
LogP� model can be achieved in O�logn� log�h���� communication rounds
and O�n logn�p� local computation time� for h � ��n

p
�� i�e� with optimal

local computation and O��� h�relations� when n
p
� p� Therefore� using this

sort� the communication operations of the CGM�s� p� can be realized in the
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BSP �or LogP� models in a constant number of h�relations� where h � �� s
p
��

Hence� in the remainder� any of the above global communication operations
on the CGM�s� p� will be denoted Tc�s� p��

Finding an optimal algorithm in the CGM model is equivalent to min�
imizing the number of global communication rounds as well as the lo�
cal computation time� It has been shown that minimizing the number
of supersteps also results in improved portability across di�erent parallel
architectures
��� ����

The Multidimensional Range Search Problem

Consider a collection L of n records� where each record l has a value
key�l� and is identi	ed by an ordered d�tuple �x��l�� ���� xd�l�� � Ed� the
d�dimensional Cartesian space� In the orthogonal range search problem� the
query speci	es a domain q in Ed� and the outcome of the search� depend�
ing on the application� may be either the subset R�q� of the points of L
contained in q� or the number of such points� or more generally a function
N

l�R�q� f�l�� where f�l� is an element of a commutative semigroup with op�
eration �� The former version of this problem is called the report mode
while the latter version is called the associative�function mode� For lower
bounds see 
���

There are many sequential data�structures and algorithms for range
searching� each o�ering a di�erent trade�o� between storage and time com�
plexity� These structures include k�D trees� multidimensional trees� Super�B
trees� range trees� and layered range trees�

Multidimensional binary trees� commonly known as k�D trees are an
optimal space solution� requiring ��dn� space� but having a discouraging
worst�case search performance of O�dn����d� time 
���� Parallel algorithms
for the range�search problem based on k�D trees have been studied for the
scan computation model 
���

The Range Tree data�structure represents a particularly good balance
between storage space and search time� The structure requires O�n logd�� n�
space and construction time� but supports an O�logd n� time search algo�
rithm 
���� An improved version of this structure� known as the layered
range tree� saves a factor of log n in the search time� A parallel version of
the range tree data structure was introduced for the SIMD hypercube model
of computation 
���� It required O�d logn� search time per query using
O�logd n� processors� But� the parallelization scheme was based on copying
of the data structure onto each processor� therefore requiring O�pn logd n�
memory space in total which is� in most situations� quite unrealistic� In
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SODA���� a derivative of the range tree data structure for secondary mem�
ory was described 
���� The one dimensional range search problem is solve
in 
����

Our Results

Given a set L of n points in d�dimensional Cartesian space� we show how to
construct on a CGM�s� p� a distributed range tree T in time O� s

p
� Tc�s���

where s � n logd�� n is the size of the sequential data structure� We then
show how T can be used to answer a given set Q of m � O�n� range queries
in time O� s logn

p
� Tc�s� p�� and O� s logn

p
� Tc�s� p� �

k
p
�� for the associative�

function� and report modes respectively� where k is the number of results
to be reported�

These parallel construction and search algorithms are both optimal� in
the sense that their running times are the sequential time divided by the
number of processors� plus a constant number of parallel communication
rounds �i�e�� h�relations with h � ��s�p���

Our solution is� in part� based on the Multisearch paradigm 	rst intro�
duced in 
��� and later used to solve a variety of problems
��� ��� �� ��� It
represents a signi	cant advancement over the multisearch method described
in 
��� in that the lower dimensional substructures pointed to by each node
of T is of non�constant size and queries that must visit several neighbours
of a node of T can do so by �splitting� into several subqueries�

In very broad terms� our techniques for solving the range search problem
are a judicious combination of the following ideas�

� Partition T into pieces �of di�ering shapes and dimensions�� some of
which are processed sequentially� while others are processed in parallel�

� Create multiple copies of those pieces of T for which too many searches
need access� and distribute the copies to processors� each of which
is responsible for advancing a manageable subset of the �congested�
searches� It should be noted that the straightforward strategy of mak�
ing multiple copies of T � and using one copy for each n

p
group of queries�

does not work� This is due to the fact that it would not only take too
much time to create the p copies� but there is not enough space to
store all of these copies of T �

� Implement searches using multiple queries by� when necessary� making
copies of those queries visiting a node v of T who require access to

�In the special case of associative functions with inverses� this problem can be solved
using weighted dominant counting ����
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more than a single neighbour of v� Some of these queries are advanced
sequentially� while others are advanced in parallel�

Of course� the parameters needed to e�ciently perform these partition�
ing� duplication and mapping strategies cannot be precomputed� since the
full search paths are computed on�line� Therefore� these parameters must
also be determined on�line� as the searches advance through T � The above
description is necessarily an over simpli	cation� only a careful look at the
details can reveal the exact interplay between the above ideas� as well as the
exact nature of each of them�

The organization of the paper is as follows� Section � describes the classi�
cal range tree and our distribution scheme on p processors� A coarse grained
parallel algorithm to build this distributed data structure is described in Sec�
tion �� Section � gives a coarse grained parallel algorithm to solve n queries
in parallel with the distributed range tree�

� On Range Trees

In this section we 	rst de	ne the segment tree and range tree data structures
to be used in the remainder� Then� we de	ne a labeling of the nodes of
the range tree� in order to be able to store it e�ciently in a distributed
memory setting� Finally� we de	ne the �hat� of such a structure� which is
fundamental to our partitioning strategy�

��� Recall of Basic De�nitions

Let a ��� n� segment tree 
�� be a complete rooted binary tree with n leaves�
Each node is associated with a segment� The segments associated to the
leaves are 
����
� 
����
�� � � �
�n� ����n
 and 
n� n� �the last segment is reduced
to a point�� Each internal node is associated with the segment formed by
the union of the two segments associated to its children� Thus� the segment
associated with the root is 
���n��

As presented in 
���� the range tree structure is a generalization of the
segment tree� Let each element of L be a point l � �x��l�� x��l�� � � � � xd�l���
j � d� and Lj � L� Finally� a segment tree is said to be in dimension i if the
segments associated to its leaves are obtained by a projection of a subset of
L onto dimension i�

De�nition � The j�dimensional range tree T for a set Lj is recursively
de�ned as follows�
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Figure �� The segment tree structure for ������

i A primary segment tree T � in dimension d � j � � corresponding to
the set fxd�j���l�jl � Ljg� For each node v of T �� let W �v� denote the
set of points such that xd�j���l� lies in the interval associated with v�
De�ne the �j � ���dimensional set

Lj���v� � f�xd�j���l�� ���� xd�l��jp � W �v�g�
ii Each node v of T � has a pointer to a range tree for Lj���v� which is
called descendent�v�� For each node w in the primary segment tree of
descendent�v�� we de�ne ancestor�w� � v�

��� Labeling

To each node v of the range tree� we associate a unique label denoted path�v�
which enables us to refer to nodes and to subtrees of T � which is de	ned as
follows�

De�nition � For any node v of a range tree we de�ne the following indices�

i Level�v� is the length of the shortest path from v to a leaf �or � if v
is a leaf��

ii Index�v� �
� � if v is the root of T
� Index�ancestor�v�� if v is a root of any segment tree except T
� ��Index�parent�v�� if v is a left child in a segment tree�
� ��Index�parent�v���� if v is a right child in a segment tree�
�see Fig� 	�

iii Path�index�v� � hindex�v��level�v�i
iv Path�v� �

� path�index�v� if v is a node of T �

� hpath�index�v��path�ancestor�v��i� otherwise�
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Dimension iDimension i-1 Dimension i+1

U

V

Index = 2x+1
Level = 1

Index = 4x+1
Level = 0

Index = 4x
Level = 0

Index = 4x+2
Level = 0

Index = 4x+3
Level = 0

Index(V)=Index(U)=x
Level(V)=2
Ancestor(V)=U

Index(U)=x

Level = 1
Index = 2x

leaves

Figure �� Illustration of Index and Level of a node of T �

Lemma � For every segment tree t � F and all nodes v � t�
path�ancestor�v�� uniquely identi�es the tree t to which v belongs�

Proof� It is easy to see that for all nodes v � T � path�v� is unique�
Furthermore� it follows from De	nition � that for every segment tree t � T
and each pair of nodes u� v � t� it holds that ancestor�u� � ancestor�v��
Hence� path�ancestor�u�� � path�ancestor�v�� and this can be interpreted
as the name of the segment tree t� �

��� The �hat�

A range tree T for a set of n points is of size s � O�n logd�� n� 
���� which
is as large as the total memory available on our CGM�s� p�� Therefore� the
range tree must be partitioned into substructures where each substructure
is of size O�s�p�� To support an e�cient search strategy� some of these
substructures will be stored on a single processor while others will be copied
on to all processors such that each processor stores no more than O��� such
structures�

De�nition � Given a range tree T �

i Let the 
hat� H of T denote the subtree of T induced by all nodes v
of T in the top log p levels� i�e� with level�v� � logn � log p�
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n/p points n/p points n/p points n/p points n/p points n/p points n/p points

log P
levels

d-1  dimensional Range Tree with n points

d-1  dimensional Range Tree with n/2 points

d-1  dimensional Range Tree with n/4 points

n/p points

Hat H in dimension one

Forest F in dimension one

Figure �� The hat of T in dimension �� along with the associated part of F �
for p � ��

ii Let F denote the forest of subtrees of T whose roots are the leaves of
the hat H� i�e� the subtrees induced by all nodes v of T with level�v�
� logn � log p� Note that each element of this forest is a range�tree
on n�p points and has dimension j � 
���d� �see Fig� ����

iii For each range tree t in F with root r� let location�t�� i� where i is
the index of the leaf of H corresponding to r� Note that such indexes
are in the range � � � �p� �� Let Fi � ft � F jlocation�t� � ig�

Theorem � The following holds for H and Fi as de�ned above�

i� The hat H has size O�p logd�� p� � O�s�p��

ii� For every i� Fi has size O�s�p��

Proof�

i� Immediate from the fact that the hat is a range�tree with p leaves�
ii� For each i � 
���p � ��� Fi consists of a set of range trees of various

dimension �from � to d� of n�p points� By de	nition� the sets Fi are
disjoint and have equal size� yielding jFij � O�s�p�� since the total
data size is O�s��

�

�In the one�dimensional case� where the range tree is just a segment tree� the hat
consists of the top log p levels of the tree and the forest consists of the p subtrees rooted
at level log p�
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� Constructing a Distributed Range Tree

Our range search algorithm is based on a distributed representation of a
range tree� The size of the range tree data structure for n items is s �
n logd�� n� therefore we will use a p processor coarse grained multicomputer
with O�n logd�� n

p
� memory per processor� i�e� CGM�s� p�� Without lost of

generality� we assume �as in 
���� that all coordinates� in each dimension�
are normalized by replacing each of them by their rank in increasing order
�i�e� points are in f�� � � � � ng� and that n � �k�

In the following� our distributed range tree will be stored on a CGM�s� p�
as follows�

� A copy of the hat H will be stored on every processor and used as an
index structure for the forest F �

� Each range tree t in Fi will be stored on processor Pi�

As seen in the previous section� both H and the Fi 	t in a single proces�
sors memory�

In the following we describe a parallel algorithm for constructing the
previously de	ned distributed range tree� As shown in 
���� there exists
an optimal sequential algorithm to build a d�dimensional range tree of size
O�n logd�� n�� running in time O�n logd�� n�� This algorithm works in a
bottom�up fashion in which segment trees are built up from their leaves one
dimension after another�

As in sequential� the distributed range tree is constructed in d phases
from phase j � � to phase j � d� At the start of phase j� let Sj be
a set of records representing leaves of segment trees of T in dimension j�
These segment trees must be constructed� More precisely� a record in Sj�
corresponding to a point l from the original point set L� consists of two
vectors� l � fx��l�� � � � � xd�l�g and a label index�l�� This record in Sj is
to become a leaf of the segment tree in T which is uniquely identi	ed by
index�l��

In phase j we 	rst perform the data distribution� Sj will be sorted
such that leaves of segment trees t � T with location�t� � i are routed to
processor Pi� Elements of F can then be sequentially constructed� Since the
roots of the segment trees in F are the leaves of H � it su�ces to perform an
all�to�all broadcast of these roots in order to have all information required
to complete the construction of the segment trees t � H in dimension j�
Then� the set Sj�� is constructed�

��



The algorithm is as follows�

Algorithm Construct

Input� Each processor Pi stores a set Ii of n�p points drawn from L� arbitrarily�
Output� Each processor Pi stores

i� A copy of H�
ii� The set Fi�

� Each processor creates for each element l of Ii an initial record e of S� with
e � �x��l�� ���� xd�l�� and index�e�� nil� Let j � ��

� Globally sort Sj by primary key index and secondary key xj�
� Each processor receives an ordered set of records from Sj representing leaves

of trees t � F which are in dimension j� These trees must now be routed
to the correct location� Each processor Pi divides its set into groups of n�p
consecutive records� computes the global rank of each group and routes the

kth group to processor P
k mod p

� using global sort�
� Each processor Pi constructs sequentially the elements of Fi� Since the roots

of F correspond to the leaves of H� all processors perform an all�to�all broad�
cast of the roots of their Fi�

� Each processor receives O�p logd�� p� roots and constructs its own copy of
segment trees of H in dimension j�

� if j � d then exit�
� Each record z � Sj stored in processor Pi belongs to a segment associated

with a leaf y ofH in dimension j �corresponding to the root of z
s tree t � F ��
In each processor Pi� for all z� walk from y
s parent to the root of y
s segment
tree and for each node u visited create a new element s of Sj�� as follows�
x�s� � x�z� and index�s��path�u��

� j � j � �� Goto step ��

The correctness of Algorithm Construct follows from the sequential con�
struction algorithm in 
���� De	nitions � and �� Lemma �� and Theorem ��
Its time complexity is O� s

p
� Tsort�s� p�� where the 	rst term comes from

Steps �� �� � and �� and the second from Steps �� �� and ��
We thus have the following result�

Theorem � A distributed range tree T can be constructed on a CGM�s� p�
in time O� s

p
� Tc�s� p���

This theorem and the weak�CREW BSP sorting algorithm from 
���
imply the following�

Corollary � A distributed range tree T can be constructed on a weak�
CREW BSP in a constant number of h�relations �h � ��s�p�� and O�s�p�
local computation time�
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� Parallel Range Search

As presented in the Introduction� the parallel range search problem consists
of answering the set Q of m � O�n� range queries in parallel� In 
���� an
O�logd n� sequential algorithm to solve the single query problem is given�
The sequential algorithm for a query q on a range tree T runs as follows�
Initially� q visits the root of T � When a query visits a node v in dimension j

of T � it compares the query in the jth dimension to the interval associated
with v� There are four cases�

�� If the two segments are equal and j � d then proceed to the next
dimension� and the next node to be visited is the root of descendent�v��

�� If the two segments are equal and j � d then v is the last node on q�s
search path and the segment tree rooted at v should be selected by q
�i�e� all of its leaves are in the range of q��

�� If the two segments overlap �but are not equal�� then the query q
should be split into two queries� q�� which is to visit the left child of
v� and q��� which is to visit the right child of v�

�� If the two segments do not overlap the query q is deleted�

Note that each query q will visit at most O�logn� nodes in each di�
mension of T and O�logd n� nodes will be selected in the 	nal dimension
d�

��� Identifying the results

The parallel algorithm for solving m � O�n� queries takes the same basic
approach� Initially� each processor Pi stores a set Qi of n�p queries drawn
from Q arbitrarily� and a distributed range tree T as described in Section ��
Note that a query is ready to report its result only when it visits a segment
tree in dimension d of a range tree�

Thus� each processor Pi advances its queries through its copy of the
hat H � This set dealt with� some of these queries select segment trees in
dimension d of H � while others need to continue in F � The queries that have
not completed their search paths and the required elements of F are then
evenly balanced such that each processor stores O� s

p
� queries along with

the range trees from F they require� Finally� the queries are sequentially
advanced through elements of F until they select segment trees in dimension
d�

��



In the following algorithm� let �Q denote the queries which have selected
a segment tree in dimension d�

Algorithm Search

Input� Each processor Pi stores a set Qi of n�p queries drawn arbitrarily
from Q and a distributed range tree T �

Output� For each query q � Q� a set of selected segment trees in dimension
d of T and whose leaves correspond to the points of L in q�s domain�
Each such selected segment tree is given by an element of �Q�

� Each processor Pi� advances its queries Qi through the hat H � The
queries which have already selected a segment tree in dimension d of
H are put in �Q� Let �Q denote the remaining queries� which need to
visit a node in F �

� Let �QFj denote those queries wanting to visit a tree t � Fj� Globally�

compute c�j� � j �QFj j��j �Qj�p��
� Make c�j� copies of Fj and distribute them evenly�
� Redistribute �Q evenly so that every query q � �Q is stored on a pro�

cessor that also stores a copy of the element of F which q is visiting�
	 Each processor Pj thus receives a set of queries and performs the se�

quential algorithm to select the appropriate segment trees� and puts
the corresponding queries in �Q� thus completing �Q�

The load balancing phase� implemented in Steps � through � evenly
distributes queries and forests Fi� such that each processor has O��� copies
of each� as proved in 
����

Therefore� the correctness of Algorithm Search follows from the sequen�
tial construction algorithm 
��� and from 
���� The time complexity of Algo�
rithm Search is O� s logn

p
�Tsort�s� p�� where the 	rst term comes from Steps

�� and �� and the second from Steps �� �� and ��

Theorem � Given a set Q of m � O�n� range queries and a distributed
range tree T for a set L of O�n� points in Ed� stored on a CGM�s� p�� Each
element of Q can identify the subset of points from L in its domain� in time
O� s logn

p
� Tc�s� p���

As in the previous section� combining this result with the weak�CREW
BSP sort presented in 
��� we get�

��



Corollary � Given a set Q of m � O�n� range queries and a distributed
range tree T for a set L of O�n� points in Ed� stored on a weak�CREW�
BSP� Each element of Q can identify the subset of points from L in its
domain� in a constant number of h�relations �h � ��s�p�� and O� s logn

p
�

local computation time�

��� Reporting the results

In the range search problem� the query speci	es a domain q in Ed� and
the outcome of the search depends on the application� It may be either
the subset Lq of the points of L contained in q �the report mode�� or the
number of such points� or more generally a function

N
l�Lq f�l�� where f�l� is

an element of a commutative semigroup with operation � �the associative�
function mode��

In this section we describe algorithms for both the associative�function
and report modes running in time O� s logn

p
�Tc�s� p�� and O� s logn

p
�Tc�s� p��

k
p
�� respectively� where k is the number of results to be reported�

Algorithm Associative�Function

Input� A distributed range tree T � an associative function f � and a set Q of n
queries�

Output� f�q� for each query q � Q�
� Compute f�v� bottom�up for each node v in dimension d of T as follows�

� Compute f�v� for each node in trees of F in dimension d sequentially�
� All�to�all broadcast the values of f�v� for each root of trees of F in

dimension d�
� Compute f�v� for each node v of the hat H in dimension d�

� Perform Algorithm Search�
� For each q� � �Q� we create the pair �q� f�root of selected segment tree���
� Sort the pairs according to their �rst coordinate q�
� For each block of pairs sharing a common q� compute f over the whole block

�using a segmented partial sum��

Once we have the output of the Algorithm Search� it only remains to
report the leaves of each selected segment tree� In order to do this in a
balanced manner� we weigh the selected segment trees according to their
sizes and redistribute them evenly� using again the load balancing procedure
from 
����

Algorithm Report

��



Input� A distributed range tree T and a set Q of n queries�
Output� For each q � Q and each l � L in q
s range� the pair �q� l� is on some

processor�
� Perform Algorithm Search to obtain a set of queries q� � �Qi which have�

each� selected segment trees in dimension d of T �
� Compute for all q � �Q having selected a segment tree t � T � the weight

w�q� � �level�root�t�� � number of leaves of t�
� Sort the elements of �Q by weight�
� Compute the partial sum psw�q� for the element q of �Q with respect to the

weight w���� and let dest�q� � pbpsw�q��
P

�Qw�q�c� Perform a segmented
broadcast with destination dest����

� Make w�q� copies of each query q and add it to �Q� associating with each copy
a path to a leaf of the selected segment tree t� Each such copy corresponds
to a pair �query of Q� point of L in q
s range��

It is clear that algorithms Associative�Function and Report use only
sequential procedures and the load balancing technique from 
���� Therefore�

Theorem 	 Given a set Q of m � O�n� range queries and a distributed
range tree T for a set L of O�n� points in Ed� stored on a CGM�s� p�� All
queries can be answered in both the associative�function and report modes in
times O� s logn

p
� Tc�s� p�� and O� s logn

p
� Tc�s� p� �

k
p
�� respectively� where k

is the number of results to be reported�

Again� considering the weak�CREW BSP sort presented in 
��� we get�

Corollary � Given a set Q of m � O�n� range queries and a distributed
range tree T for a set L of O�n� points in Ed� stored on a weak�CREW BSP�
Each element of Q can identify the subset of points from L in its domain�
in a constant number of h�relations �h � ��s�p�� and O� s logn

p
� k

p
� internal

computation time�

� Conclusion

In this paper� we de	ned a distributed range tree� the 	rst non�trivial adap�
tation of range trees in the coarse�grained multicomputer model� We use this
data structure to perform batched range search operations� in associative�
function or in report mode� in optimal time� Our algorithms for construct�
ing and searching the distributed range tree are a combination of standard
communication primitives �such as parallel sort� used as a black box� and

��



of standard sequential range tree operations� so that the implementation
on any variety of multicomputer should be relatively easy for a range tree
expert�

Nonetheless� here we should inject a caveat� 	rst� the construction algo�
rithm is not quite optimal� since it uses parallel sort operations on sets of
size n logd�� p� the number of leaves of the range tree� while ideally we would
only wish to sort sets of size at most n� the number of input points� Second�
there are some issues which need to be addressed in applications� in partic�
ular retrieving the answers to the queries in the report mode� However� we
must stress that there currently is no viable alternative to the distributed
range tree when the database is large enough to require a distributed data
structure�

Finally� there are many issues still open� One is that the range tree
is inherently static� a dynamic distributed data structure would be more
powerful� although more di�cult to implement� Another is that answering
queries in batches of size n may be unsatisfactory in some applications�
where n is very large� The question of using parallelism to speed up just
one single query �or a few queries� is also wide open� This is open even in
the much simpler case of segment trees� and would be worth studying�
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