
HAL Id: hal-02102047
https://hal-lara.archives-ouvertes.fr/hal-02102047v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

d-Dimensional Range Search on Multicomputers
Afonso Ferreira, Claire Kenyon, Andrew Rau-Chaplin, Stephane Ubeda

To cite this version:
Afonso Ferreira, Claire Kenyon, Andrew Rau-Chaplin, Stephane Ubeda. d-Dimensional Range Search
on Multicomputers. [Research Report] LIP RR-1996-23, Laboratoire de l’informatique du parallélisme.
1996, 2+18p. �hal-02102047�

https://hal-lara.archives-ouvertes.fr/hal-02102047v1
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

d�Dimensional Range Search on

Multicomputers

Afonso Ferreira

Claire Kenyon

Andrew Rau�Chaplin

St�ephane Ub�eda

August ����

Research Report No �����

Ecole Normale Supérieure de Lyon

Adresse électronique : lip@lip.ens−lyon.fr
Téléphone : (+33) 72.72.80.00 Télécopieur : (+33) 72.72.80.80

46 Allée d’Italie, 69364 Lyon Cedex 07, France

d�Dimensional Range Search on Multicomputers

Afonso Ferreira

Claire Kenyon

Andrew Rau�Chaplin

St�ephane Ub�eda

August ����

Abstract

Given a set L of n points in the d�dimensional Cartesian space
Ed� and a query specifying a domain q in Ed� the Range Search
problem consists in identifying the subset R�q� of the points of
L contained in q�

The Range Tree data�structure represents a particularly good
balance between storage space and search time� The structure
requires O�n logd�� n� space and construction time� but supports
an O�logd n� time search algorithm�

In this paper� we describe a set of e�cient scalable algorithms
for the construction and manipulation of a distributed analog to
the sequential range tree data structure� We then show how to
perform O�n� independent range searches on a distributed range
tree� in parallel�

These parallel construction and search algorithms are both opti�
mal in the Coarse Grained Multicomputer model �also referred to
as the weak�CREW BSP model�� in the sense that their running
times are the sequential time divided by the number of proces�
sors� plus a constant number of parallel communication rounds
�i�e�� h�relations in BSP context��

Keywords� Multidimensional search� Parallel algorithm� Distributed data
structures� Coarse grained multicomputers

R�esum�e

Prenons un ensemble de n points dans un espace cart�esien Ed�
ainsi qu�une requ�ete q d�e	nissant un domaine de Ed� On appelle
Range Search le probl
eme consistant
a identi	er le sous�ensemble
r�q� de points de L contenu dans q�

Le Range Tree est une structure de donn�ees o�rant un excel�
lent compromis entre la taille m�emoire n�ecessaire
a son stockage
et le temps de r�eponse au probl
eme� Il n�ecessite O�n logd�� n�
emplacements m�emoire et permet de traiter une requ�ete en
O�logd n� unit�es de temps�

Dans cet article� nous pr�esentons des algorithmes e�caces et ex�
tensibles pour construire et manipuler une version distribu�ee du
Range Tree comparable
a la version s�equentielle� Nous montrons
comment r�epondre
a O�n� requ�etes ind�ependantes en parall
ele�

Les algorithmes de construction du Range Tree distribu�e et de
r�eponses aux requ�etes sont optimaux dans le mod
ele de machine

a gros grains �aussi appel�e mod
ele weak CREW�BSP�� optimal
signi	ant que le temps d�ex�ecution en parall
ele est �egal au temps
d�ex�ecution en s�equentiel divis�e par le nombre de processeurs�
auquel on doit ajouter le temps n�ecessaire
a un nombre constant
d��etapes de communication �ou de h�relations dans le contexte
du mod
ele BSP��

Mots�cl�es� Recherche multidimensionnelle� Algorithme parall
ele� Struc�
ture de donn�ees distribu�ee� Machine parall
ele
a gros grain

�

d�Dimensional Range Search on Multicomputers�

Afonso Ferreira���y Claire Kenyon��� Andrew Rau�Chaplin���z St�ephane Ub�eda���x

��� LIP ENS�Lyon ��� Technical Univ� of Nova Scotia
��� all	ee d
Italie P�O� Box ����� Halifax

���� Lyon Cedex ��� France Nova Scotia� Canada BJ �X�
Firstname�Name�lip�ens�lyon�fr arc�tuns�ca

September �� ����

� Introduction

The range tree is a fundamental data structure for multi�dimensional point
sets� and as such� is central in a wide range of geometric and database
applications���� The design and implementation of e�cient parallel ver�
sions of this important data structure is one of the primary goals of this
year�s DIMACS Implementation Challenge��� In this paper� we describe
the 	rst non�trivial adaptation of range trees in the parallel distributed
memory setting�

Our approach is to describe a set of e�cient scalable algorithms for
the construction and manipulation of a distributed analog to the sequential
range tree data structure��� We then show how to perform O�n� indepen�
dent range searches on a distributed range tree T � in parallel� Note that the
path of an individual search will trace in T is not known ahead of time� and
must instead be determined �on�line�� That is� only when a search query
is at a node of T can it determine which node or nodes of T it should visit
next� Also note that the paths of the search queries can overlap arbitrarily�

�Part of this work was completed while the authors were visiting each other in Lyon
and in Halifax� Support from the respective Institutions is acknowledged�

yPartially supported by the HCM MAP project of the EC�
zPartially supported by the Natural Sciences and Engineering Research Council

�Canada��
xPartially supported by the EC project NATHAN�

�

such that any time any node of T may be visited by an arbitrary number of
search queries�

The Model
Recently� there has been much interest in �realistic� parallel models �e�g�
BSP� LogP� C�� CGM� that can better predict the performance of par�
allel algorithms on existing� typically coarse or medium grained� parallel
computers��� �� ��� ���� In Valiant�s BSP model� each communication
round consists of routing a single arbitrary h�relation �i�e� each proces�
sor send and receives O�h� data�� Slackness in the number of processors is
used to optimally simulate PRAM algorithms on distributed memory multi�
computers� However� as Valiant points out� one may want to design �imple�
mentations of the BSP model that incorporate features for communications�
computation or sychronization that are clearly additional to the ones in the
de	nition�����

In this paper� we use the Coarse Grained Multicomputer model
�CGM�s� p��� also sometimes referred to as the weak�CREW BSP model����
This model has been used �explicitly or implicitly� in parallel algorithm de�
sign for variety of problems ��� ��� �� ��� ��� �� ��� and has led to parallel
codes exhibiting good timing results ��� �� ���� It consists of a set of p
processors P� to Pp�� with O� s

p
� local memory each� connected via some

arbitrary interconnection network or a shared memory� The term �coarse
grained� refers to the fact that the size of each local memory will typically
be �considerably larger� than O���� We will assume s

p
� p as was assumed

in ���� which is clearly true for all existing parallel machines� All algo�
rithms consist of alternating local computation with global communications
operations �Supersteps��

In this model� all global communications are performed by a small set
of standard communications operations � Segmented broadcast� Segmented
gather� All�to�All broadcast� Personalized All�to�All broadcast� Partial sum
and Sort� which are typically e�ciently realized in hardware� If a parallel
machine does not provide these operations they can be implemented in terms
of a constant number of sorting operations ����

Moreover� recently Goodrich ��� has shown that� given p � n��
�

c �c � ���
sorting O�n� elements distributed evenly over p processors in the BSP �or
LogP� model can be achieved in O�logn� log�h���� communication rounds
and O�n logn�p� local computation time� for h � ��n

p
�� i�e� with optimal

local computation and O��� h�relations� when n
p
� p� Therefore� using this

sort� the communication operations of the CGM�s� p� can be realized in the

�

BSP �or LogP� models in a constant number of h�relations� where h � �� s
p
��

Hence� in the remainder� any of the above global communication operations
on the CGM�s� p� will be denoted Tc�s� p��

Finding an optimal algorithm in the CGM model is equivalent to min�
imizing the number of global communication rounds as well as the lo�
cal computation time� It has been shown that minimizing the number
of supersteps also results in improved portability across di�erent parallel
architectures��� ����

The Multidimensional Range Search Problem

Consider a collection L of n records� where each record l has a value
key�l� and is identi	ed by an ordered d�tuple �x��l�� ���� xd�l�� � Ed� the
d�dimensional Cartesian space� In the orthogonal range search problem� the
query speci	es a domain q in Ed� and the outcome of the search� depend�
ing on the application� may be either the subset R�q� of the points of L
contained in q� or the number of such points� or more generally a function
N

l�R�q� f�l�� where f�l� is an element of a commutative semigroup with op�
eration �� The former version of this problem is called the report mode
while the latter version is called the associative�function mode� For lower
bounds see ���

There are many sequential data�structures and algorithms for range
searching� each o�ering a di�erent trade�o� between storage and time com�
plexity� These structures include k�D trees� multidimensional trees� Super�B
trees� range trees� and layered range trees�

Multidimensional binary trees� commonly known as k�D trees are an
optimal space solution� requiring ��dn� space� but having a discouraging
worst�case search performance of O�dn����d� time ���� Parallel algorithms
for the range�search problem based on k�D trees have been studied for the
scan computation model ���

The Range Tree data�structure represents a particularly good balance
between storage space and search time� The structure requires O�n logd�� n�
space and construction time� but supports an O�logd n� time search algo�
rithm ���� An improved version of this structure� known as the layered
range tree� saves a factor of log n in the search time� A parallel version of
the range tree data structure was introduced for the SIMD hypercube model
of computation ���� It required O�d logn� search time per query using
O�logd n� processors� But� the parallelization scheme was based on copying
of the data structure onto each processor� therefore requiring O�pn logd n�
memory space in total which is� in most situations� quite unrealistic� In

�

SODA���� a derivative of the range tree data structure for secondary mem�
ory was described ���� The one dimensional range search problem is solve
in ����

Our Results

Given a set L of n points in d�dimensional Cartesian space� we show how to
construct on a CGM�s� p� a distributed range tree T in time O� s

p
� Tc�s���

where s � n logd�� n is the size of the sequential data structure� We then
show how T can be used to answer a given set Q of m � O�n� range queries
in time O� s logn

p
� Tc�s� p�� and O� s logn

p
� Tc�s� p� �

k
p
�� for the associative�

function� and report modes respectively� where k is the number of results
to be reported�

These parallel construction and search algorithms are both optimal� in
the sense that their running times are the sequential time divided by the
number of processors� plus a constant number of parallel communication
rounds �i�e�� h�relations with h � ��s�p���

Our solution is� in part� based on the Multisearch paradigm 	rst intro�
duced in ��� and later used to solve a variety of problems��� ��� �� ��� It
represents a signi	cant advancement over the multisearch method described
in ��� in that the lower dimensional substructures pointed to by each node
of T is of non�constant size and queries that must visit several neighbours
of a node of T can do so by �splitting� into several subqueries�

In very broad terms� our techniques for solving the range search problem
are a judicious combination of the following ideas�

� Partition T into pieces �of di�ering shapes and dimensions�� some of
which are processed sequentially� while others are processed in parallel�

� Create multiple copies of those pieces of T for which too many searches
need access� and distribute the copies to processors� each of which
is responsible for advancing a manageable subset of the �congested�
searches� It should be noted that the straightforward strategy of mak�
ing multiple copies of T � and using one copy for each n

p
group of queries�

does not work� This is due to the fact that it would not only take too
much time to create the p copies� but there is not enough space to
store all of these copies of T �

� Implement searches using multiple queries by� when necessary� making
copies of those queries visiting a node v of T who require access to

�In the special case of associative functions with inverses� this problem can be solved
using weighted dominant counting ����

�

more than a single neighbour of v� Some of these queries are advanced
sequentially� while others are advanced in parallel�

Of course� the parameters needed to e�ciently perform these partition�
ing� duplication and mapping strategies cannot be precomputed� since the
full search paths are computed on�line� Therefore� these parameters must
also be determined on�line� as the searches advance through T � The above
description is necessarily an over simpli	cation� only a careful look at the
details can reveal the exact interplay between the above ideas� as well as the
exact nature of each of them�

The organization of the paper is as follows� Section � describes the classi�
cal range tree and our distribution scheme on p processors� A coarse grained
parallel algorithm to build this distributed data structure is described in Sec�
tion �� Section � gives a coarse grained parallel algorithm to solve n queries
in parallel with the distributed range tree�

� On Range Trees

In this section we 	rst de	ne the segment tree and range tree data structures
to be used in the remainder� Then� we de	ne a labeling of the nodes of
the range tree� in order to be able to store it e�ciently in a distributed
memory setting� Finally� we de	ne the �hat� of such a structure� which is
fundamental to our partitioning strategy�

��� Recall of Basic De�nitions

Let a ��� n� segment tree �� be a complete rooted binary tree with n leaves�
Each node is associated with a segment� The segments associated to the
leaves are ����� ������ � � ��n� ����n and n� n� �the last segment is reduced
to a point�� Each internal node is associated with the segment formed by
the union of the two segments associated to its children� Thus� the segment
associated with the root is ���n��

As presented in ���� the range tree structure is a generalization of the
segment tree� Let each element of L be a point l � �x��l�� x��l�� � � � � xd�l���
j � d� and Lj � L� Finally� a segment tree is said to be in dimension i if the
segments associated to its leaves are obtained by a projection of a subset of
L onto dimension i�

De�nition � The j�dimensional range tree T for a set Lj is recursively
de�ned as follows�

�

[3,4) [4,5) [5,6) [6,7) [7,8) [8,8)[2,3)[1,2)

[3,5)[1,3) [5,7) [7,8]

[5,8][1,5)

[1,8]

Figure �� The segment tree structure for ������

i A primary segment tree T � in dimension d � j � � corresponding to
the set fxd�j���l�jl � Ljg� For each node v of T �� let W �v� denote the
set of points such that xd�j���l� lies in the interval associated with v�
De�ne the �j � ���dimensional set

Lj���v� � f�xd�j���l�� ���� xd�l��jp � W �v�g�
ii Each node v of T � has a pointer to a range tree for Lj���v� which is
called descendent�v�� For each node w in the primary segment tree of
descendent�v�� we de�ne ancestor�w� � v�

��� Labeling

To each node v of the range tree� we associate a unique label denoted path�v�
which enables us to refer to nodes and to subtrees of T � which is de	ned as
follows�

De�nition � For any node v of a range tree we de�ne the following indices�

i Level�v� is the length of the shortest path from v to a leaf �or � if v
is a leaf��

ii Index�v� �
� � if v is the root of T
� Index�ancestor�v�� if v is a root of any segment tree except T
� ��Index�parent�v�� if v is a left child in a segment tree�
� ��Index�parent�v���� if v is a right child in a segment tree�
�see Fig� 	�

iii Path�index�v� � hindex�v��level�v�i
iv Path�v� �

� path�index�v� if v is a node of T �

� hpath�index�v��path�ancestor�v��i� otherwise�

�

Dimension iDimension i-1 Dimension i+1

U

V

Index = 2x+1
Level = 1

Index = 4x+1
Level = 0

Index = 4x
Level = 0

Index = 4x+2
Level = 0

Index = 4x+3
Level = 0

Index(V)=Index(U)=x
Level(V)=2
Ancestor(V)=U

Index(U)=x

Level = 1
Index = 2x

leaves

Figure �� Illustration of Index and Level of a node of T �

Lemma � For every segment tree t � F and all nodes v � t�
path�ancestor�v�� uniquely identi�es the tree t to which v belongs�

Proof� It is easy to see that for all nodes v � T � path�v� is unique�
Furthermore� it follows from De	nition � that for every segment tree t � T
and each pair of nodes u� v � t� it holds that ancestor�u� � ancestor�v��
Hence� path�ancestor�u�� � path�ancestor�v�� and this can be interpreted
as the name of the segment tree t� �

��� The �hat�

A range tree T for a set of n points is of size s � O�n logd�� n� ���� which
is as large as the total memory available on our CGM�s� p�� Therefore� the
range tree must be partitioned into substructures where each substructure
is of size O�s�p�� To support an e�cient search strategy� some of these
substructures will be stored on a single processor while others will be copied
on to all processors such that each processor stores no more than O��� such
structures�

De�nition � Given a range tree T �

i Let the
hat� H of T denote the subtree of T induced by all nodes v
of T in the top log p levels� i�e� with level�v� � logn � log p�

�

n/p points n/p points n/p points n/p points n/p points n/p points n/p points

log P
levels

d-1 dimensional Range Tree with n points

d-1 dimensional Range Tree with n/2 points

d-1 dimensional Range Tree with n/4 points

n/p points

Hat H in dimension one

Forest F in dimension one

Figure �� The hat of T in dimension �� along with the associated part of F �
for p � ��

ii Let F denote the forest of subtrees of T whose roots are the leaves of
the hat H� i�e� the subtrees induced by all nodes v of T with level�v�
� logn � log p� Note that each element of this forest is a range�tree
on n�p points and has dimension j � ���d� �see Fig� ����

iii For each range tree t in F with root r� let location�t�� i� where i is
the index of the leaf of H corresponding to r� Note that such indexes
are in the range � � � �p� �� Let Fi � ft � F jlocation�t� � ig�

Theorem � The following holds for H and Fi as de�ned above�

i� The hat H has size O�p logd�� p� � O�s�p��

ii� For every i� Fi has size O�s�p��

Proof�

i� Immediate from the fact that the hat is a range�tree with p leaves�
ii� For each i � ���p � ��� Fi consists of a set of range trees of various

dimension �from � to d� of n�p points� By de	nition� the sets Fi are
disjoint and have equal size� yielding jFij � O�s�p�� since the total
data size is O�s��

�

�In the one�dimensional case� where the range tree is just a segment tree� the hat
consists of the top log p levels of the tree and the forest consists of the p subtrees rooted
at level log p�

�

� Constructing a Distributed Range Tree

Our range search algorithm is based on a distributed representation of a
range tree� The size of the range tree data structure for n items is s �
n logd�� n� therefore we will use a p processor coarse grained multicomputer
with O�n logd�� n

p
� memory per processor� i�e� CGM�s� p�� Without lost of

generality� we assume �as in ���� that all coordinates� in each dimension�
are normalized by replacing each of them by their rank in increasing order
�i�e� points are in f�� � � � � ng� and that n � �k�

In the following� our distributed range tree will be stored on a CGM�s� p�
as follows�

� A copy of the hat H will be stored on every processor and used as an
index structure for the forest F �

� Each range tree t in Fi will be stored on processor Pi�

As seen in the previous section� both H and the Fi 	t in a single proces�
sors memory�

In the following we describe a parallel algorithm for constructing the
previously de	ned distributed range tree� As shown in ���� there exists
an optimal sequential algorithm to build a d�dimensional range tree of size
O�n logd�� n�� running in time O�n logd�� n�� This algorithm works in a
bottom�up fashion in which segment trees are built up from their leaves one
dimension after another�

As in sequential� the distributed range tree is constructed in d phases
from phase j � � to phase j � d� At the start of phase j� let Sj be
a set of records representing leaves of segment trees of T in dimension j�
These segment trees must be constructed� More precisely� a record in Sj�
corresponding to a point l from the original point set L� consists of two
vectors� l � fx��l�� � � � � xd�l�g and a label index�l�� This record in Sj is
to become a leaf of the segment tree in T which is uniquely identi	ed by
index�l��

In phase j we 	rst perform the data distribution� Sj will be sorted
such that leaves of segment trees t � T with location�t� � i are routed to
processor Pi� Elements of F can then be sequentially constructed� Since the
roots of the segment trees in F are the leaves of H � it su�ces to perform an
all�to�all broadcast of these roots in order to have all information required
to complete the construction of the segment trees t � H in dimension j�
Then� the set Sj�� is constructed�

��

The algorithm is as follows�

Algorithm Construct

Input� Each processor Pi stores a set Ii of n�p points drawn from L� arbitrarily�
Output� Each processor Pi stores

i� A copy of H�
ii� The set Fi�

� Each processor creates for each element l of Ii an initial record e of S� with
e � �x��l�� ���� xd�l�� and index�e�� nil� Let j � ��

� Globally sort Sj by primary key index and secondary key xj�
� Each processor receives an ordered set of records from Sj representing leaves

of trees t � F which are in dimension j� These trees must now be routed
to the correct location� Each processor Pi divides its set into groups of n�p
consecutive records� computes the global rank of each group and routes the

kth group to processor P
k mod p

� using global sort�
� Each processor Pi constructs sequentially the elements of Fi� Since the roots

of F correspond to the leaves of H� all processors perform an all�to�all broad�
cast of the roots of their Fi�

� Each processor receives O�p logd�� p� roots and constructs its own copy of
segment trees of H in dimension j�

� if j � d then exit�
� Each record z � Sj stored in processor Pi belongs to a segment associated

with a leaf y ofH in dimension j �corresponding to the root of z
s tree t � F ��
In each processor Pi� for all z� walk from y
s parent to the root of y
s segment
tree and for each node u visited create a new element s of Sj�� as follows�
x�s� � x�z� and index�s��path�u��

� j � j � �� Goto step ��

The correctness of Algorithm Construct follows from the sequential con�
struction algorithm in ���� De	nitions � and �� Lemma �� and Theorem ��
Its time complexity is O� s

p
� Tsort�s� p�� where the 	rst term comes from

Steps �� �� � and �� and the second from Steps �� �� and ��
We thus have the following result�

Theorem � A distributed range tree T can be constructed on a CGM�s� p�
in time O� s

p
� Tc�s� p���

This theorem and the weak�CREW BSP sorting algorithm from ���
imply the following�

Corollary � A distributed range tree T can be constructed on a weak�
CREW BSP in a constant number of h�relations �h � ��s�p�� and O�s�p�
local computation time�

��

� Parallel Range Search

As presented in the Introduction� the parallel range search problem consists
of answering the set Q of m � O�n� range queries in parallel� In ���� an
O�logd n� sequential algorithm to solve the single query problem is given�
The sequential algorithm for a query q on a range tree T runs as follows�
Initially� q visits the root of T � When a query visits a node v in dimension j

of T � it compares the query in the jth dimension to the interval associated
with v� There are four cases�

�� If the two segments are equal and j � d then proceed to the next
dimension� and the next node to be visited is the root of descendent�v��

�� If the two segments are equal and j � d then v is the last node on q�s
search path and the segment tree rooted at v should be selected by q
�i�e� all of its leaves are in the range of q��

�� If the two segments overlap �but are not equal�� then the query q
should be split into two queries� q�� which is to visit the left child of
v� and q��� which is to visit the right child of v�

�� If the two segments do not overlap the query q is deleted�

Note that each query q will visit at most O�logn� nodes in each di�
mension of T and O�logd n� nodes will be selected in the 	nal dimension
d�

��� Identifying the results

The parallel algorithm for solving m � O�n� queries takes the same basic
approach� Initially� each processor Pi stores a set Qi of n�p queries drawn
from Q arbitrarily� and a distributed range tree T as described in Section ��
Note that a query is ready to report its result only when it visits a segment
tree in dimension d of a range tree�

Thus� each processor Pi advances its queries through its copy of the
hat H � This set dealt with� some of these queries select segment trees in
dimension d of H � while others need to continue in F � The queries that have
not completed their search paths and the required elements of F are then
evenly balanced such that each processor stores O� s

p
� queries along with

the range trees from F they require� Finally� the queries are sequentially
advanced through elements of F until they select segment trees in dimension
d�

��

In the following algorithm� let �Q denote the queries which have selected
a segment tree in dimension d�

Algorithm Search

Input� Each processor Pi stores a set Qi of n�p queries drawn arbitrarily
from Q and a distributed range tree T �

Output� For each query q � Q� a set of selected segment trees in dimension
d of T and whose leaves correspond to the points of L in q�s domain�
Each such selected segment tree is given by an element of �Q�

� Each processor Pi� advances its queries Qi through the hat H � The
queries which have already selected a segment tree in dimension d of
H are put in �Q� Let �Q denote the remaining queries� which need to
visit a node in F �

� Let �QFj denote those queries wanting to visit a tree t � Fj� Globally�

compute c�j� � j �QFj j��j �Qj�p��
� Make c�j� copies of Fj and distribute them evenly�
� Redistribute �Q evenly so that every query q � �Q is stored on a pro�

cessor that also stores a copy of the element of F which q is visiting�
	 Each processor Pj thus receives a set of queries and performs the se�

quential algorithm to select the appropriate segment trees� and puts
the corresponding queries in �Q� thus completing �Q�

The load balancing phase� implemented in Steps � through � evenly
distributes queries and forests Fi� such that each processor has O��� copies
of each� as proved in ����

Therefore� the correctness of Algorithm Search follows from the sequen�
tial construction algorithm ��� and from ���� The time complexity of Algo�
rithm Search is O� s logn

p
�Tsort�s� p�� where the 	rst term comes from Steps

�� and �� and the second from Steps �� �� and ��

Theorem � Given a set Q of m � O�n� range queries and a distributed
range tree T for a set L of O�n� points in Ed� stored on a CGM�s� p�� Each
element of Q can identify the subset of points from L in its domain� in time
O� s logn

p
� Tc�s� p���

As in the previous section� combining this result with the weak�CREW
BSP sort presented in ��� we get�

��

Corollary � Given a set Q of m � O�n� range queries and a distributed
range tree T for a set L of O�n� points in Ed� stored on a weak�CREW�
BSP� Each element of Q can identify the subset of points from L in its
domain� in a constant number of h�relations �h � ��s�p�� and O� s logn

p
�

local computation time�

��� Reporting the results

In the range search problem� the query speci	es a domain q in Ed� and
the outcome of the search depends on the application� It may be either
the subset Lq of the points of L contained in q �the report mode�� or the
number of such points� or more generally a function

N
l�Lq f�l�� where f�l� is

an element of a commutative semigroup with operation � �the associative�
function mode��

In this section we describe algorithms for both the associative�function
and report modes running in time O� s logn

p
�Tc�s� p�� and O� s logn

p
�Tc�s� p��

k
p
�� respectively� where k is the number of results to be reported�

Algorithm Associative�Function

Input� A distributed range tree T � an associative function f � and a set Q of n
queries�

Output� f�q� for each query q � Q�
� Compute f�v� bottom�up for each node v in dimension d of T as follows�

� Compute f�v� for each node in trees of F in dimension d sequentially�
� All�to�all broadcast the values of f�v� for each root of trees of F in

dimension d�
� Compute f�v� for each node v of the hat H in dimension d�

� Perform Algorithm Search�
� For each q� � �Q� we create the pair �q� f�root of selected segment tree���
� Sort the pairs according to their �rst coordinate q�
� For each block of pairs sharing a common q� compute f over the whole block

�using a segmented partial sum��

Once we have the output of the Algorithm Search� it only remains to
report the leaves of each selected segment tree� In order to do this in a
balanced manner� we weigh the selected segment trees according to their
sizes and redistribute them evenly� using again the load balancing procedure
from ����

Algorithm Report

��

Input� A distributed range tree T and a set Q of n queries�
Output� For each q � Q and each l � L in q
s range� the pair �q� l� is on some

processor�
� Perform Algorithm Search to obtain a set of queries q� � �Qi which have�

each� selected segment trees in dimension d of T �
� Compute for all q � �Q having selected a segment tree t � T � the weight

w�q� � �level�root�t�� � number of leaves of t�
� Sort the elements of �Q by weight�
� Compute the partial sum psw�q� for the element q of �Q with respect to the

weight w���� and let dest�q� � pbpsw�q��
P

�Qw�q�c� Perform a segmented
broadcast with destination dest����

� Make w�q� copies of each query q and add it to �Q� associating with each copy
a path to a leaf of the selected segment tree t� Each such copy corresponds
to a pair �query of Q� point of L in q
s range��

It is clear that algorithms Associative�Function and Report use only
sequential procedures and the load balancing technique from ���� Therefore�

Theorem 	 Given a set Q of m � O�n� range queries and a distributed
range tree T for a set L of O�n� points in Ed� stored on a CGM�s� p�� All
queries can be answered in both the associative�function and report modes in
times O� s logn

p
� Tc�s� p�� and O� s logn

p
� Tc�s� p� �

k
p
�� respectively� where k

is the number of results to be reported�

Again� considering the weak�CREW BSP sort presented in ��� we get�

Corollary � Given a set Q of m � O�n� range queries and a distributed
range tree T for a set L of O�n� points in Ed� stored on a weak�CREW BSP�
Each element of Q can identify the subset of points from L in its domain�
in a constant number of h�relations �h � ��s�p�� and O� s logn

p
� k

p
� internal

computation time�

� Conclusion

In this paper� we de	ned a distributed range tree� the 	rst non�trivial adap�
tation of range trees in the coarse�grained multicomputer model� We use this
data structure to perform batched range search operations� in associative�
function or in report mode� in optimal time� Our algorithms for construct�
ing and searching the distributed range tree are a combination of standard
communication primitives �such as parallel sort� used as a black box� and

��

of standard sequential range tree operations� so that the implementation
on any variety of multicomputer should be relatively easy for a range tree
expert�

Nonetheless� here we should inject a caveat� 	rst� the construction algo�
rithm is not quite optimal� since it uses parallel sort operations on sets of
size n logd�� p� the number of leaves of the range tree� while ideally we would
only wish to sort sets of size at most n� the number of input points� Second�
there are some issues which need to be addressed in applications� in partic�
ular retrieving the answers to the queries in the report mode� However� we
must stress that there currently is no viable alternative to the distributed
range tree when the database is large enough to require a distributed data
structure�

Finally� there are many issues still open� One is that the range tree
is inherently static� a dynamic distributed data structure would be more
powerful� although more di�cult to implement� Another is that answering
queries in batches of size n may be unsatisfactory in some applications�
where n is very large� The question of using parallelism to speed up just
one single query �or a few queries� is also wide open� This is open even in
the much simpler case of segment trees� and would be worth studying�

References

�� The 	fth DIMACS implementation challenge�����������
http� www�cs�amherst�edu ccm challenge��

�� M�G� Andrews and D�T� Lee� Parallel algorithms for convex bipartite
graphs and related problems� In Proc� of Allerton Conference Commu�
nication� Control� and Computing� USA� pages ���!���� �����

�� M� Atallah� F� Dehne� R� Miller� A� Rau�Chaplin� and J�J� Tsay� Mul�
tisearch techniques� parallel data structures on mesh�connected com�
puters� Journal of Parallel and Distributed Computing� ����!��� �����

�� J�L� Bentley� Decomposable searching problems� Information Process�
ing Letters� �����!���� �����

�� G�E� Blelloch and J�J� Little� Parallel solutions to geometric problems
on the scan model of computation� In Proc� International Conference
on Parallel Processing� St�Charles� USA� pages ���!���� �����

��

�� B� Chazelle� Lower bounds for orthogonal range searching� I� The re�
porting case� Journal of the ACM� ���������!���� �����

�� Culler� R� Karp� D� Patterson� A� Sahay� K� Schauser� E� Santos�
R� Subrarnonian� and T� von Eicken� LogP� Towards a realistic model
of parallel computation� In Fifth ACM SIGPLAN Symposium on the
Principles and Practice of Parallel Programming� �����

�� F� Dehne� X� Deng�� P� Dymond� and A�A� Khokar� A randomized
parallel �D convex hull algorithm for coarse grained parallel multicom�
puters� In Proc� of the ACM Sympoisum on Parallel Algorithms and
Architectures� july ����� Santa Barbara� USA� �����

�� F� Dehne� A� Fabri� and C� Kenyon� Scalable and architecture inde�
pendent parallel geometric algorithms with high probability optimal

time� In Proc� of the �th IEEE Symposium on Parallel and Distributed
Processing� October� Dallas� USA� �����

��� F� Dehne and A� Rau�Chaplin� Implementing data structures on a
hypercube multiprocessor and applications in parallel computation ge�
ometry� Journal of Parallel and Distributed Computing� ��������!����
�����

��� X� Deng and N� Gu� Good programming style multiprocessors� In Proc�

of the �th IEEE Symposium on Parallel and Distributed Processing�
October� Dallas� USA� �����

��� A� Fabri F� Dehne and A� Rau�Chaplin� Scalable parallel geometric

algorithms for coarse grained multicomputers� In Proc� of the �th ACM
Symposium on Computational Geometry� pages ���!���� �����

��� A� Fabri and O� Devillers� Scalable algorithms for bichromatic line
segment intersection problems on coarse grained multicomputers� In

Proc� of the �th Workshop on Algorithms and Data Structures� �����

��� A� Ferreira� A� Rau�Chaplin� and S� Ub�eda� Scalable �d convex hull

and triangulation for coarse grained multicomputers� In Proc� of the �th

IEEE Symposium on Parallel and Distributed Processing� San Antonio�
USA �See M� Diallo� Master Thesis� ���� LIP ENS�Lyon� France� for
implementation results�� �����

��

��� T� Goodrich� Communication�e�cient parallel sorting� In Proc� of the

��th annual ACM Symposium on Theory of Computing �STOC�� May
		�	�� Philadephia� USA� �����

��� S�E� Hambausch and A�A� Khokhar� C�� An architecture�independent

model for coarse�grained parallel machines� In Proc� of the �th IEEE
Symposium on Parallel and Distributed Processing� October� Dallas�
USA� �����

��� H� Li and K�C� Sevick� Parallel sorting by overpartitioning� In Proc� of
the ACM Symposium on Parallel Algorithms and Architectures� pages
��!��� �����

��� F�P� Preparata and M�I� Shamos� Range�searching problems� chapter ��
pages ��!��� Springer�Verlag� �����

��� R� Sridhar� S� Iyegar� and S� Rajanarayanan� Range search in parallel
using distributed data structures� Journal of Parallel And Distributed
Computing� �����!��� �����

��� S� Subramanian and R� Ramaswamy� The P�range tree� A new data

structure for range searching in secondary memory� In Proc� of the �th

annual Symposium On Discrete Algorithms� San�Francisco� January�
pages ���!���� �����

��� L� G� Valiant� A bridging model for parallel computation� Communi�
cation of ACM� ���������!���� �����

��� L�G� Valiant� General purpose parallel architecture� J� van Leewen�
North Holland� �����

��

