Afonso Ferreira

Claire Kenyon

Andrew Rau

Chaplin St Ephane Ub

Andrew Rau-Chaplin

d-Dimensional Range Search on Multicomputers

Keywords: Multidimensional search, Parallel algorithm, Distributed data structures, Coarse grained multicomputers R esum e Recherche multidimensionnelle, Algorithme parall ele, Struc-

Given a set L of n points in the d-dimensional Cartesian space E d , and a query specifying a domain q in E d , the Range Search problem consists in identifying the subset R(q) of the points of L contained in q.

The Range Tree data-structure represents a particularly good balance between storage space and search time. The structure requires O(n log d;1 n) space and construction time, but supports an O(log d n) time search algorithm.

In this paper, we describe a set of e cient scalable algorithms for the construction and manipulation of a distributed analog to the sequential range tree data structure. We then show h o w t o perform O(n) independent range searches on a distributed range tree, in parallel. These parallel construction and search algorithms are both optimal in the Coarse Grained Multicomputer model (also referred to as the weak-CREW BSP model), in the sense that their running times are the sequential time divided by the number of processors, plus a constant n umber of parallel communication rounds (i.e., h-relations in BSP context).

Introduction

The range tree is a fundamental data structure for multi-dimensional point sets, and as such, is central in a wide range of geometric and database applications 18]. The design and implementation of e cient parallel versions of this important data structure is one of the primary goals of this year's DIMACS Implementation Challenge 1]. In this paper, we describe the rst non-trivial adaptation of range trees in the parallel distributed memory setting.

Our approach is to describe a set of e cient scalable algorithms for the construction and manipulation of a distributed analog to the sequential range tree data structure 4]. We then show h o w to perform O(n) independent range searches on a distributed range tree T, in parallel. Note that the path of an individual search will trace in T is not known ahead of time, and must instead be determined \on-line". That is, only when a search q u e r y is at a node of T can it determine which node or nodes of T it should visit next. Also note that the paths of the search queries can overlap arbitrarily, Part of this work was completed while the authors were visiting each other in Lyon and in Halifax. Support from the respective Institutions is acknowledged.

y Partially supported by the HCM MAP project of the EC. z Partially supported by the Natural Sciences and Engineering Research Council (Canada).

x Partially supported by the EC project NATHAN.

such that any time any n o d e o f T may be visited by an arbitrary number of search queries.

The Model

Recently, there has been much i n terest in \realistic" parallel models (e.g. BSP, LogP, C 3 , CGM) that can better predict the performance of parallel algorithms on existing, typically coarse or medium grained, parallel computers 21, 7 , 1) local memory each, connected via some arbitrary interconnection network or a shared memory. The term \coarse grained" refers to the fact that the size of each local memory will typically be \considerably larger" than O(1). We will assume s p p as was assumed in 12], which is clearly true for all existing parallel machines. All algorithms consist of alternating local computation with global communications operations (Supersteps).

In this model, all global communications are performed by a small set of standard communications operations -Segmented broadcast, Segmented gather, All-to-All broadcast, Personalized All-to-All broadcast, Partial sum and Sort, which a r e t ypically e ciently realized in hardware. If a parallel machine does not provide these operations they can be implemented in terms of a constant n umber of sorting operations 12]. Moreover, recently Goodrich 15] h a s s h o wn that, given p < n 1; 1 c (c 1), sorting O(n) elements distributed evenly over p processors in the BSP (or LogP) model can be achieved in O(log n= log(h + 1))c o m m unication rounds and O(n log n=p) local computation time, for h = (n p), i.e. with optimal local computation and O(1) h-relations, when n p p. Therefore, using this sort, the communication operations of the CGM(s p) can be realized in the BSP (or LogP) models in a constant n umber of h-relations, where h = (s p). Hence, in the remainder, any of the above global communication operations on the CGM(s p) will be denoted T c (s p).

Finding an optimal algorithm in the CGM model is equivalent to minimizing the number of global communication rounds as well as the local computation time. I t h a s b e e n s h o wn that minimizing the number of supersteps also results in improved portability across di erent parallel architectures 21, 2 2] .

The Multidimensional Range Search Problem

Consider a collection L of n records, where each record l has a value key(l) and is identi ed by an ordered d-tuple (x 1 (l) : : : x d (l)) 2 E d , the d-dimensional Cartesian space. In the orthogonal range search problem, the query speci es a domain q in E d , and the outcome of the search, depending on the application, may be either the subset R(q) of the points of L contained in q, or the number of such p o i n ts, or more generally a function N l2R(q) f(l), where f(l) is an element o f a c o m m utative semigroup with operation . The former version of this problem is called the report mode while the latter version is called the associative-function mode. F or lower bounds see 6].

There are many sequential data-structures and algorithms for range searching, each o ering a di erent trade-o between storage and time complexity. These structures include k-D trees, multidimensional trees, Super-B trees, range trees, and layered range trees.

Multidimensional binary trees, commonly known as k-D trees are an optimal space solution, requiring (dn) space, but having a discouraging worst-case search performance of O(dn

Our Results

Given a set L of n points in d-dimensional Cartesian space, we show h o w t o construct on a CGM(s p) a distributed range tree T in time O(s p + T c (s)), where s = n log d;1 n is the size of the sequential data structure. We then show h o w T can be used to answer a given set Q of m = O(n) range queries in time O(s log n p + T c (s p)) and O(s log n p + T c (s p) + k p), for the associativefunction 1 and report modes respectively, w h e r e k is the number of results to be reported.

These parallel construction and search algorithms are both optimal, in the sense that their running times are the sequential time divided by the number of processors, plus a constant n umber of parallel communication rounds (i.e., h-relations with h = (s=p)).

Our solution is, in part, based on the Multisearch paradigm rst introduced in 10] and later used to solve a v ariety of problems 12, 10, 3, 2]. It represents a signi cant a d v ancement o ver the multisearch method described in 12] in that the lower dimensional substructures pointed to by e a c h n o d e of T is of non-constant size and queries that must visit several neighbours o f a n o d e o f T can do so by \splitting" into several subqueries.

In very broad terms, our techniques for solving the range search problem are a judicious combination of the following ideas: Partition T into pieces (of di ering shapes and dimensions), some of which are processed sequentially, while others are processed in parallel.

Create multiple copies of those pieces of T for which too many searches need access, and distribute the copies to processors, each of which is responsible for advancing a manageable subset of the \congested" searches. It should be noted that the straightforward strategy of making multiple copies of T, and using one copy for each n p group of queries, does not work. This is due to the fact that it would not only take t o o much time to create the p copies, but there is not enough space to store all of these copies of T.

Implement searches using multiple queries by, when necessary, making copies of those queries visiting a node v of T who require access to more than a single neighbour of v. Some of these queries are advanced sequentially, while others are advanced in parallel. Of course, the parameters needed to e ciently perform these partitioning, duplication and mapping strategies cannot be precomputed, since the full search paths are computed on-line. Therefore, these parameters must also be determined on-line, as the searches advance through T. The above description is necessarily an over simpli cation, only a careful look at the details can reveal the exact interplay b e t ween the above ideas, as well as the exact nature of each of them.

The organization of the paper is as follows. Section 2 describes the classical range tree and our distribution scheme on p processors. A coarse grained parallel algorithm to build this distributed data structure is described in Section 3. Section 4 gives a coarse grained parallel algorithm to solve n queries in parallel with the distributed range tree.

On Range Trees

In this section we rst de ne the segment tree and range tree data structures to be used in the remainder. Then, we de ne a labeling of the nodes of the range tree, in order to be able to store it e ciently in a distributed memory setting. Finally, w e de ne the \hat" of such a structure, which i s fundamental to our partitioning strategy.

2.1 Recall of Basic De nitions L e t a (1 n) segment tree 4] be a complete rooted binary tree with n leaves.

Each node is associated with a segment. The segments associated to the leaves are 1::2 , 2::3 ,: : : , (n ; 1)::n and n n] (the last segment is reduced to a point). Each i n ternal node is associated with the segment formed by the union of the two segments associated to its children. Thus, the segment associated with the root is 1::n].

As presented in 18], the range tree structure is a generalization of the segment tree. Let each element o f L be a point l = (x 1 (l) x 2 (l) : : : x d (l)), j = d, and L j = L. Finally, a segment tree is said to be in dimension i if the segments associated to its leaves are obtained by a projection of a subset of L onto dimension i.

De nition 1 The j-dimensional range tree T for a set L j is recursively de ned as follows.

Figure 1: The segment tree structure for (1,8).

i A primary segment tree T in dimension d ; j + 1 corresponding to the set fx d;j+1 (l)jl 2 L j g. F or each node v of T , let W(v) denote the set of points such that x d;j+1 (l) lies in the interval associated with v.

De ne the (j ; 1)-dimensional set L j;1 (v) = f(x d;j+2 (l) ::: x d (l))jp 2 W(v)g. ii Each node v of T has a pointer to a range tree for L j;1 (v) which is called d e s c endent(v). F or each node w in the primary segment tree o f descendent(v), we de ne ancestor(w) = v.

Labeling

To each n o d e v of the range tree, we associate a unique label denoted path(v) which enables us to refer to nodes and to subtrees of T, which is de ned as follows.

De nition 2 For any node v o f a r ange tree we de ne the following indices.

i Level(v) is the length of the shortest path from v to a leaf (or ii Let F denote the forest of subtrees of T whose roots are t h e l e aves of the hat H, i.e. the subtrees induced b y a l l n o des v of T with level(v) log n ; log p. Note that each element of this fore s t i s a r ange-tree on n=p points and has dimension j 2 1::d] (see F i g . 3)2 . iii For each range tree t in F with root r, l e t l o cation(t)= i, w h e r e i is the index of the leaf of H corresponding to r. Note that such indexes are i n t h e r ange 0 : : : p ; 1. L et F i = ft 2 Fjlocation(t) = ig.

0 if v is a leaf). ii Index(v) = -0 if v is the root of T -Index(ancestor(v)) if v is a root of any segment tree except T -2 Index(parent(v)) if v is a left child in a segment tree. -2 Index(parent(v))+1 if v is a right child in a segment tree. (see Fig. 2) iii Path-index(v) = hindex(v),level(v)i iv Path(v) = -p ath-index(v) if v is a node of T -hpath-index(v),
Theorem 1 The following holds for H and F i as de ned a b ove.

i) The hat H has size O(p log d;1 p) = O(s=p).

ii) For every i, F i has size O(s=p).

Proof: i) Immediate from the fact that the hat is a range-tree with p leaves. ii) For each i 2 0::p ; 1], F i consists of a set of range trees of various dimension (from 1 to d) o f n=p points. By de nition, the sets F i are disjoint and have equal size, yielding jF i j = O(s=p), since the total data size is O(s).

3 Constructing a Distributed Range Tree

Our range search algorithm is based on a distributed representation of a range tree. The size of the range tree data structure for n items is s = n log d;1 n, therefore we w i l l u s e a p processor coarse grained multicomputer with O(n log d;1 n p) memory per processor, i.e. CGM(s p). Without lost of generality, w e assume (as in 18]) that all coordinates, in each dimension, are normalized by replacing each o f t h e m b y their rank in increasing order (i.e. points are in f1 : : : n g) and that n = 2 k . In the following, our distributed range tree will be stored on a CGM(s p) as follows.

A copy of the hat H will be stored on every processor and used as an index structure for the forest F. Each range tree t in F i will be stored on processor P i .

As seen in the previous section, both H and the F i t in a single processors memory.

In the following we describe a parallel algorithm for constructing the previously de ned distributed range tree. As shown in 18], there exists an optimal sequential algorithm to build a d-dimensional range tree of size O(n log d;1 n), running in time O(n log d;1 n). This algorithm works in a bottom-up fashion in which segment trees are built up from their leaves one dimension after another.

As in sequential, the distributed range tree is constructed in d phases from phase j = 1 to phase j = d. At the start of phase j, let S j be a set of records representing leaves of segment trees of T in dimension j. These segment trees must be constructed. More precisely, a record in S j , corresponding to a point l from the original point s e t L, consists of two vectors: l = fx 1 (l) : : : x d (l)g and a label index(l). This record in S j is to become a leaf of the segment tree in T which is uniquely identi ed by index(l).

In phase j we rst perform the data distribution: S j will be sorted such that leaves of segment trees t 2 T with location(t) = i are routed to processor P i . Elements of F can then be sequentially constructed. Since the roots of the segment trees in F are the leaves of H, it su ces to perform an all-to-all broadcast of these roots in order to have all information required to complete the construction of the segment trees t 2 H in dimension j. Then, the set S j+1 is constructed.

The algorithm is as follows.

Algorithm Construct

Input: Each processor P i stores a set I i of n=p points drawn from L, arbitrarily. Output: Each processor P i stores i) A copy o f H ii) The set F i . 0 Each processor creates for each element l of I i an initial record e of S 1 with e = (x 1 (l) : : : x d (l)) and index(e)= nil. Let j 1. 1 Globally sort S j by p r i m a r y k ey index and secondary key x j . 2 Each processor receives an ordered set of records from S j representing leaves of trees t 2 F which are in dimension j. These trees must now be routed to the correct location. Each processor P i divides its set into groups of n=p consecutive records, computes the global rank of each group and routes the k th group to processor P k mod p , using global sort. [START_REF] Andrews | Parallel algorithms for convex bipartite graphs and related problems[END_REF] Each processor P i constructs sequentially the elements of F i . Since the roots of F correspond to the leaves of H, all processors perform an all-to-all broadcast of the roots of their F i . [START_REF] Atallah | Multisearch t e c hniques: parallel data structures on mesh-connected computers[END_REF] Each processor receives O(p log d;1 p) roots and constructs its own copy o f segment trees of H in dimension j. 5 if j = d then exit.

6 Each record z 2 S j stored in processor P i belongs to a segment associated with a leaf y of H in dimension j (corresponding to the root of z's tree t 2 F).

In each processor P i , for all z, w alk from y's parent to the root of y's segment tree and for each n o d e u visited create a new element s of S j+1 as follows:

x(s) = x(z) and index(s)=path(u). The correctness of Algorithm Construct follows from the sequential construction algorithm in 18], De nitions 1 and 3, Lemma 1, and Theorem 1. Its time complexity i s O (s p + T sort (s p)) where the rst term comes from Steps 0, 3, 4 and 6, and the second from Steps 1, 2, and 3.

We t h us have the following result.

Theorem 2 A distributed r ange tree T can be c onstructed on a CGM(s p) in time O(s p + T c (s p)).

This theorem and the weak-CREW BSP sorting algorithm from 15] imply the following.

Corollary 1 A distributed r ange tree T can be c onstructed o n a w e ak-CREW BSP in a constant number of h-relations (h = (s=p)) a n d O(s=p) local computation time.

Parallel Range Search

As presented in the Introduction, the parallel range search problem consists of answering the set Q of m = O(n) range queries in parallel. [START_REF] Li | Parallel sorting by o verpartitioning[END_REF], an O(log d n) sequential algorithm to solve the single query problem is given. The sequential algorithm for a query q on a range tree T runs as follows. Initially, q visits the root of T. When a query visits a node v in dimension j of T, it compares the query in the j th dimension to the interval associated with v. There are four cases.

1. If the two segments are equal and j < d then proceed to the next dimension, and the next node to be visited is the root of descendent(v).

2. If the two segments are equal and j = d then v is the last node on q's search path and the segment tree rooted at v should be selected by q (i.e, all of its leaves are in the range of q). 3. If the two segments overlap (but are not equal), then the query q should be split into two queries: q 0 , which is to visit the left child of v, a n d q 00 , which is to visit the right c hild of v. 4. If the two segments do not overlap the query q is deleted.

Note that each query q will visit at most O(log n) nodes in each dimension of T and O(log d n) nodes will be selected in the nal dimension d.

Identifying the results

The parallel algorithm for solving m = O(n) queries takes the same basic approach. Initially, each processor P i stores a set Q i of n=p queries drawn from Q arbitrarily, and a distributed range tree T as described in Section 3.

Note that a query is ready to report its result only when it visits a segment tree in dimension d of a range tree.

Thus, each processor P i advances its queries through its copy o f t h e hat H. This set dealt with, some of these queries select segment trees in dimension d of H, while others need to continue in F. The queries that have not completed their search paths and the required elements of F are then evenly balanced such that each processor stores O(s p) queries along with the range trees from F they require. Finally, the queries are sequentially advanced through elements of F until they select segment trees in dimension d.

In the following algorithm, let Q denote the queries which h a ve selected a segment tree in dimension d.

Algorithm Search Input: Each processor P i stores a set Q i of n=p queries drawn arbitrarily from Q and a distributed range tree T.

Output: For each query q 2 Q, a set of selected segment trees in dimension d of T and whose leaves correspond to the points of L in q's domain. Each such selected segment tree is given by an element o f Q. 0 Each processor P i , a d v ances its queries Q i through the hat H. The queries which h a ve already selected a segment tree in dimension d of H are put in Q. L e t Q denote the remaining queries, which need to visit a node in F.

1 Let QFj denote those queries wanting to visit a tree t 2 F j . Globally, compute c(j) = j QFj j=(j Qj=p). 2 Make c(j) copies of F j and distribute them evenly. 3 Redistribute Q evenly so that every query q 2 Q is stored on a processor that also stores a copy of the element o f F which q is visiting.

4 Each processor P j thus receives a set of queries and performs the sequential algorithm to select the appropriate segment trees, and puts the corresponding queries in Q, t h us completing Q.

The load balancing phase, implemented in Steps 1 through 3 evenly distributes queries and forests F i , s u c h that each processor has O(1) copies of each, as proved in 12].

Therefore, the correctness of Algorithm Search follows from the sequential construction algorithm 18] and from 12] As in the previous section, combining this result with the weak-CREW BSP sort presented in 15] w e get: Corollary 2 Given a set Q of m = O(n) range queries and a distributed range tree T for a set L of O(n) points in E d , s t o r ed o n a w e ak-CREW, BSP. Each element of Q can identify the subset of points from L in its domain, in a constant number of h-relations (h = (s=p)) and O(s log n p) local computation time.

Reporting the results

In the range search problem, the query speci es a domain q in E d , a n d the outcome of the search depends on the application. It may be either the subset L q of the points of L contained in q (the report mode), or the number of such points, or more generally a function N l2L q f(l), where f(l) i s an element of a commutative semigroup with operation (the associativefunction mode).

In this section we describe algorithms for both the associative-function and report modes running in time O(s log n p +T c (s p)) and O(s log n p +T c (s p)+ k p), respectively, where k is the number of results to be reported.

Algorithm Associative-Function

Input: A distributed range tree T , an associative function f, and a set Q of n queries.

Output: f(q) for each query q 2 Q.

0 Compute f(v) bottom-up for each n o d e v in dimension d of T as follows:

-Compute f(v) for each node in trees of F in dimension d sequentially.

-All-to-all broadcast the values of f(v) for each root of trees of F in dimension d.

-Compute f(v) for each n o d e v of the hat H in dimension d. 1 Perform Algorithm Search.

2 For each q 0 2 Q, w e create the pair (q f(root of selected segment t r e e)) .

3 Sort the pairs according to their rst coordinate q. [START_REF] Atallah | Multisearch t e c hniques: parallel data structures on mesh-connected computers[END_REF] For each b l o c k of pairs sharing a common q, compute f over the whole block (using a segmented partial sum).

Once we h a ve the output of the Algorithm Search, it only remains to report the leaves of each selected segment tree. In order to do this in a balanced manner, we w eigh the selected segment trees according to their sizes and redistribute them evenly, using again the load balancing procedure from 12].

Algorithm Report

Input: A distributed range tree T and a set Q of n queries.

Output: For each q 2 Q and each l 2 L in q's range, the pair (q l) is on some processor. 0 Perform Algorithm Search to obtain a set of queries q 0 2 Q i which h a ve, each, selected segment trees in dimension d of T .

1 Compute for all q 2 Q having selected a segment tree t 2 T , the weight w(q) = 2 level(root(t)) = n umb e r o f l e a ves of t. 2 Sort the elements of Q by w eight. [START_REF] Andrews | Parallel algorithms for convex bipartite graphs and related problems[END_REF] Compute the partial sum psw(q) for the element q of Q with respect to the weight w(:), and let dest(q) = pbpsw(q)= P Q w(q)c. P erform a segmented broadcast with destination dest(:). 4 Make w(q) c o p i e s o f e a c h query q and add it to Q, associating with each copy a path to a leaf of the selected segment tree t. Each s u c h c o p y corresponds to a pair (query of Q point o f L in q's range).

It is clear that algorithms

Conclusion

In this paper, we de ned a distributed range tree, the rst non-trivial adaptation of range trees in the coarse-grained multicomputer model. We use this data structure to perform batched range search operations, in associativefunction or in report mode, in optimal time. Our algorithms for constructing and searching the distributed range tree are a combination of standard communication primitives (such as parallel sort, used as a black b o x) and of standard sequential range tree operations, so the implementation on any v ariety o f m ulticomputer should be relatively easy for a range tree expert.

Nonetheless, here we should inject a caveat: rst, the construction algorithm is not quite optimal, since it uses parallel sort operations on sets of size n log d;1 p, the number of leaves of the range tree, while ideally we w ould only wish to sort sets of size at most n, the number of input points. Second, there are some issues which need to be addressed in applications, in particular retrieving the answers to the queries in the report mode. However, we must stress that there currently is no viable alternative to the distributed range tree when the database is large enough to require a distributed data structure.

Finally, there are many issues still open. One is that the range tree is inherently static a dynamic distributed data structure would be more powerful, although more di cult to implement. Another is that answering queries in batches of size n may be unsatisfactory in some applications, where n is very large. The question of using parallelism to speed up just one single query (or a few queries) is also wide open. This is open even in the much simpler case of segment trees, and would be worth studying.

Figure 3 :

 3 Figure 3: The hat of T in dimension 1, along with the associated part of F, for p = 8 .

 . The time complexity of Algorithm Search i s O (s log n p + T sort (s p)) where the rst term comes from Steps 0, and 4, and the second from Steps 1, 2, and 3. Theorem 3 Given a set Q of m = O(n) range queries and a distributed range tree T for a set L of O(n) points in E d , stored on a CGM(s p). Each element of Q can identify the subset of points from L in its domain, in time O(s log n p + T c (s p)).

 Associative-Function and Report use only sequential procedures and the load balancing technique from 12]. Therefore, Theorem 4 Given a set Q of m = O(n) range queries and a distributed range tree T for a set L of O(n) points in E d , stored o n a C G M (s p). All queries can be a n s w e r ed i n b oth the associative-function and report modes in times O(s log n p + T c (s p)) a n d O (s log n p + T c (s p) + k p), respectively, where k is the number of results to be r eported. Again, considering the weak-CREW BSP sort presented in 15] w e g e t : Corollary 3 Given a set Q of m = O(n) range queries and a distributed range tree T for a set L of O(n) points in E d , s t o r ed o n a w e ak-CREW BSP. Each element of Q can identify the subset of points from L in its domain, in a constant number of h-relations (h = (s=p)) a n d O(s log n p + k p) internal computation time.

 6 , 1 2] . In Valiant's BSP model, each c o m m unication round consists of routing a single arbitrary h-relation (i.e. each processor send and receives O(h) data). Slackness in the numb e r o f p r o c e s s o r s i s used to optimally simulate PRAM algorithms on distributed memory multicomputers. However, as Valiant p o i n ts out, one may w ant to design \implementations of the BSP model that incorporate features for communications, computation or sychronization that are clearly additional to the ones in the de nition" 21].In this paper, we use the Coarse Grained Multicomputer model

(CGM(s p)), also sometimes referred to as the weak-CREW BSP model 15]. This model has been used (explicitly or implicitly) in parallel algorithm design for variety of problems 12, 1 5 , 8 , 1 1 , 17, 9, 14] and has led to parallel codes exhibiting good timing results 12, 9 , 1 4]. It consists of a set of p processors P 0 to P p;1 with O(s p

 path(ancestor(v))i, otherwise.

			Forest F in dimension one			d-1 dimensional Range Tree with n points
							d-1 dimensional Range Tree with n/2 points
			Hat H in dimension one				
							d-1 dimensional Range Tree with n/4 points
	log P							
	levels							
	n/p points	n/p points	n/p points	n/p points	n/p points	n/p points	n/p points	n/p points

In the special case of associative functions with inverses, this problem can be solved using weighted dominantcounting 12]

In the one-dimensional case, where the range tree is just a segment tree, the hat consists of the top log p levels of the tree and the forest consists of the p subtrees rooted at level log p.

Dimension i Dimension i-1

Dimension i+1 Lemma 1 For every segment tree t 2 F and all nodes v 2 t, path(ancestor(v)) uniquely identi es the tree t to which v belongs.

Proof: It is easy to see that for all nodes v 2 T, path(v) is unique. Furthermore, it follows from De nition 1 that for every segment tree t 2 T and each pair of nodes u v 2 t, it holds that ancestor(u) = ancestor(v).

Hence, path(ancestor(u)) = path(ancestor(v)) and this can be interpreted as the name of the segment tree t.

The \hat"

A range tree T for a set of n points is of size s = O(n log d;1 n) 1 8], which is as large as the total memory available on our CGM(s p). Therefore, the range tree must be partitioned into substructures where each substructure is of size O(s=p). To support an e cient search strategy, some of these substructures will be stored on a single processor while others will be copied on to all processors such that each processor stores no more than O(1) such structures.

De nition 3 Given a range tree T, i Let the \hat" H of T denote the subtree o f T induced b y a l l n o des v of T in the top log p levels, i.e. with level(v) log n ; log p.