Ga Etan Hains

John Mullins

A Categorical Model of Array Domains

Keywords: parallel programming functional languages distributed arrays denotational semantics concrete data structures programmation parall ele langages fonctionnels tableaux r epartis s emantique d enotationnelle structures parallel programming functional languages distributed arrays denotational semantics concrete data structures, Contents 1 Introduction 2 Concrete data structures 2 Generalised concrete data structures : : Array structures 4 A CCC of array domains 4, 1 Composition pairs of arrays 4, 3 Exponential domains: array transformations :

We apply the theory of generalised concrete data structures (or gCDSs) to construct a cartesian closed category of concrete array structures with explicit data layout. The technical novelty is the array gCDS preserved by exponentiation whose isomorphisms relate higher-order objects to their local parts. This work is part of our search o f semantic foundations for data-parallel functional programming.

Introduction

Concrete data structures (CDSs) 3] and their abstract counterparts concrete domains 5] occur in the semantic study of sequential functions, deterministic parallel algorithms and other semantic notions. These structures allows the construction of several Cartesian closed categories (CCCs), standard models for typed functional languages.

In this report we apply Brookes and Geva's theory of generalised CDSs (or gCDSs) 1] a n d construct a CCC of domains whose objects are the sets of states of array structures whose cells, values and events are labelled by network addresses called indices. The construction is such that communication along the network's edges is represented by the enabling relation of gCDSs. The present model has the advantage of ensuring consistently complete domains.

This construction is intended as a model for data-parallel objects and is part of an exploration of possible foundations for the notion of network address (or data placement, or task allocation) in data-parallel functional languages. Its target application is the description of such languages' parallel primitives in an \internal" way.

Concrete data structures

We will write the isomorphism relation as . The space of continuous functions from A to B (ordered pointwise) is written A ! B or sometimes A ! B].

The discrete case

This subsection summarises basic notions about concrete data structures. We borrow the presentation from 1] but rst specialise it to classical (discrete) CDSs whose cells are not ordered. The CDSs were used by Berry and Curien to explore semantic models of sequential computation. Brookes and Geva h a ve de ned generalised CDS (or gCDS) and parallel algorithms over them. Our purpose is to apply the gCDSs but we rst present CDSs to illustrate the theory in its simpler form.

A concrete data structure or CDS is a tuple (C V E `) where C is a countable set of cells.

V is a countable set of values. E C V is a set of events. A n e v ent (c v) is often written cv. , the enabling relation is de ned between nite sets of events and cells. The enabling relation induces a precedence relation on cells: c c 0 i 9y v:y f cvg c0 . This enabling relation must be well-founded.

A cell c is called initial if it is enabled by the empty set of events (this is sometimes written `c).

A cell c is said to be lled in a set of events y if 9v:cv2 y. W e write F(y) for the set of cells lled in y. I f y `c, then y is said to be an enabling of c and c is said to have an enabling in any superset y 0 of y, written y `y0 c. Let E(y) be the set of cells enabled in y, and call A(y) = E(y) ; F(y) the set of cells accessible from y. L e t M M 0 Ndenote CDSs from now on.

A state of M is a set of events x E M which is functional and safe:

cv 1 c v 2 2 x) v 1 = v 2 . c 2 F(x)) 9 y x: y `x c 1
The second property (safety) is the requirement t h a t e a c h of the state's cells should have a p r o o f in it: a derivation through `(or more accurately,) starting with initial cells as axioms. De ne D(M) to be the poset of states of CDS M, ordered by set inclusion.

The following examples give a glimpse of how concrete structures can be applied to the description of typed functional languages (see Curien's book 3] for a complete exposition of both the theory and its application). Let Bool = (fBg fT Fg fBT BFg `) where B is initial. Then D(Bool) i s f fBTg fBFgg and represents the at domain of boolean values. The CDS Nat = (fNg N fNnjn 2 Ng `) where N is initial has states D(Nat) = f fN0g fN1g : : : g and represents the at domain of naturals. The following structure

(fS B Ng fL R g V Bool V Nat fSL SRg E Bool E Nat `)
where the enablings are `S, SL`B, a n d SR`N, has a state domain which encodes the sum of Bool and Nat (end of example).

The following is a simple structure which will be used later.

Vnat = (N f g fn j n 2 Ng `) w h e r e `0 and fk g `(k + 1) :

Its domain of states is isomorphic to the vertical ordering of the natural numbers with a point a t in nity. It illustrates how the enabling relation de nes a concept of trace (in fact it plays the role of trace index in the Brookes-Geva theory of parallel algorithms). Our de nition of array structures extends this meaning to a context where enablings may correspond either to local computation or to communications. The posets obtained as the states of CDSs are called concrete domains (or CDs) and have the following properties.

Proposition 1 (Brookes and Geva 1]) CDs are (c onsistently complete) Scott domains where ? is the empty set, lowest upper bounds are given by unions and the compacts are the nite states. Recall from the theory of Scott domains (c.f. 4]) that when D E are consistently complete domains then so is D ! E]. Moreover if D and E have so-called e ective presentations, then so does D ! E]. These are necessary properties for the constitution of a CCC and its use as a computational model, but in the present case they are not su cient. Berry and Curien have shown that none of the continuous, stable or sequential function space constructions preserve CDSs. In other words D(M) ! D (N)] is a consistently complete domain but is not isomorphic to a concrete domain.

The same holds for the domains of stable or sequential functions. As a result they successfully explored a category of CDs whose arrows are sequential algorithms. It turns out that our de nition of array structures is not suitable for this \sequential" theory, a r r a y structures being inherently parallel (non-deterministic in the terminology of 3]). And since our target application is the description of data-parallel languages, we apply instead the theory of genralised concrete data structures which w e n o w summarise.

Generalised concrete data structures

A generalised CDS is equipped with a partial order on its cells and must satisfy the following additional properties: its set of events and its enabling relation must be upwards-closed with respect to cell ordering. Namely

1. cv 2 E c c 0) c 0 v 2 E 2. y `c c c 0) y `c0 .
As before the precedence relation on cells must be well-founded. A new requirement in the generalised de nition is that states over the gCDS must be upwards-closed with respect to cell ordering: cv 2 x c c 0) c 0 v 2 x Any CDS is a gCDS with discrete order on its cells. The domains built from gCDS states are called generalised concrete domains (gCD) and satisfy proposition 1.

The following is Brookes and Geva's construction of a CCC of gCDS's and continuous functions called gCDScont 1]. Its objects are the gCDS and the arrows are the continuous functions between corresponding gCDs. Let c:i denote a pair (c i) where i is an integer tag and extend this notation to sets of cells, events etc. The product M 1 M 2 = (C V E `) o f t wo gCDSs M i = (C i i V i E i `i) is de ned by a p o i n twise construction on pairs. Su xes of the form :k applied to a set are understood to distribute onto its elements.

C = C 1 :1 C 2 :2 c:i c 0 :i 0 if and only if c i c 0 and i = i 0 . V = V 1 V 2 E = E 1 :1 E 2 :2 y:i`c:i if and only if y `i c.
Proposition 2 (Brookes and Geva 1]) The product preserves gCDSs and is a categorical product in gCDScont with the following pairing and projections:

hx 1 x 2 i = x 1 :1 x 2 :2 i (x) = fcv j c:i v 2 xg: D(M 1) D (M 2) is isomorphic to D(M 1 M 2).
Let two gCDSs M M 0 be given and let us call them temporarily the source structure and the target structure. The exponential gCDS

M ! M 0 = (C V E `)
is de ned as follows C = D f i n (M) C M 0 , where D f i n (M) is the set of nite states of M ordered by inclusion. We will write xc 0 as an abbreviation for (x c 0). A cell in the exponential is built from a nite state in the source structure and a cell in the target structure. = M 0 . The former are ordered by inclusion and the latter retain their order relation.

V = V M 0 . A v alue of the exponential is a value of the target structure. E = fxc 0 v 0 2 C V j c 0 v 0 2 E M 0 g. Strictly speaking, an event in the exponential structure is a pair (xc 0 v 0). But viewing it instead as the pair (x c 0 v 0) highlights its intended meaning. It associates an event c 0 v 0 of the target structure to a nite state x in the source structure. In other words it is a nitary piece of a map from states to states.

f x j c 0 j v 0 j j 1 j lg xc 0 if and only if fc 0 j v 0 j j 1 j lg M0 c 0 and x j x for all j. A cell of the exponential xc 0 is enabled by a s e t o f e v ents exactly when the source-states parts of those events are subsets of x and the target-events parts enable c 0 .

The exponential preserves gCDSs.

Proposition 3 (Brookes and Geva 1]) An e x p onential domain is isomorphic to its space o f continuous functions ordered p ointwise,

D(M ! N) D(M) ! D (N)]

so that continuous functions between the two gCDS M and N are e quivalent to states of D(M ! N).

The isomorphism and its inverse are given by: a 2 D (M ! N) 7 ! z 2 D (M): fc 0 v 0 j 9 x z:xc 0 v 0 2 ag

(1) f 2 D(M) ! D (N)] 7 ! fxc 0 v 0 2 E j c 0 v 0 2 f(x)g (2)
The two isomorphisms allows us to interchange continuous functions and states of the exponential structure. Moreover, application and curry cation satisfy both halves of the de nition of an exponentiation in gCDScont 7].

Corollary 1 gCDScont is a CCC.

As a side remark about the relationship of gCDSs to CDS, the above exponentiation does not preserve discreteness of CDSs. In general, when M M 0 are discrete, D f i n (M) carries its non-trivial cell order () i n to the ordering of (M ! M 0)'s cells. For this reason the theory of gCDS is not actually an extension of the theory of CDS the objects are extensions but the morphisms are not: the closure by continuous functions generates a CCC from generalised concrete domains but not from (discrete) concrete domains.

Array structures

Given a CDS whose states will be our singleton arrays (or scalars), we construct an array C D S by replicating the cells over the nodes or indices of a graph. This graph indirectly de nes the enabling relation as explained below. Array indices thus represent adresses in a static (\physical") multiprocessor network.

In the remainder we assume the existence of a xed countable directed graph (I L) whose nodes { 2 I will be called indices and whose edges l = ({ |) 2 L will be called channels or links.

Let M = (C 0 0 V 0 E 0 `0) be a given gCDS. We n o w de ne M the array data structure or array structure over M and show that it is a gCDS. The components of M = (C V E `) a r e de ned as follows. C = I C 0 is countable because both I and C 0 are. A cell ({ c) o r ~{c in the array structure is said to be located at (location) {. Cells are ordered locally: {c |c 0 if and only if { = | and c 0 c 0 . V = V 0 is countable by h ypothesis. E = I E 0 the possible events are the localisations of possible scalar events. The type of E is correct since E 0 C 0 V 0 and so E I C 0 V 0 = C V .

The enabling relation `is between P f i n (I E 0) and I C 0 . There are two t ypes of enablings, local or through a link:

{ f{c 1 v 1 : : : {c k v k g `{c when fc 1 v 1 : : : c k v k g 0 c. { f|c 1 v 1 : : : |c k v k g `{c when (| ~{) 2 L and fc 1 v 1 : : : c k v k g 0 c.

The rst type of enabling allows M to recover a copy of the enabling relation of M at any location { e v ents located at a common site enable non-initial cells at the same site according to `0. The second condition de nes the expansion of states to new locations a cell located at { is enabled by a set of events located at a neighbouring index of |. As a result, `0-initial cells remain initial \everywhere" in M .

Because M is a gCDS, it follows that E and `are upwards closed with respect to . The following property of the enabling relation must also be satis ed to make M a gCDS.

Lemma 1 is well-founded.

Proof: By considering both types of enablings in `we nd that, |c 0 ~{c only if c 0 0 c. Therefore a descending chain {1 c 1 {2 c 2 : : :corresponds to a descending chain in M: c 1 0 c 2 0 : : : . But since M is a gCDS, its 0 is well-founded and such c hains must be nite. As a result the set D(M) o f s t a t e s o f a n a r r a y structure is a concrete domain and, by proposition 1, a consistently complete Scott domain. We will call it an array domain and its states will be called arrays over M.

Two last remarks about M . Because a cell can be enabled either locally or remotely, enablings are not unique even when they were so in M. Also, because the cells of t 2 D (M) m a y h a ve been enabled remotely, the set t{ = t \ (f{g C 0 V 0) is not in general a state of D(M).

Up to now w e know that D(M) is a Scott domain for inclusion. It can be veri ed that the compacts of D(M) are the nite arrays.

A CCC of array domains

We n o w p r o ve that array structures form a category with a terminal object, nite products and exponentiations.

Composition and terminal object

Let M 1 M 2 M 3 be CDSs. Then the identity transformations on D(M i) are continuous transformations (with respect to). If f 2 D(M 1) ! D (M 2)] and g 2 D(M 2) ! D (M 3)] then g f 2 D(M 1) ! D (M 3)]. We m a y therefore de ne the category ADScont with array data structures M as objects, continuous transformations between their array domains D(M) a s m o rphisms, function composition as composition and identity transformations as identity morphisms. This is no surprise as ADScont is a subcategory of gCDScont .

Let Null be the CDS () whose only state is . The array structure Null is also () and therefore the only element o f D(Null) = D(Null) is the empty state. As a result there is a unique continuous function 2 D(M) ! D (Null)] and so Null is a terminal object in ADScont.

Product: pairs of arrays

The product of array structures is a special case of the product of CDSs (de ned in subsection 2.2). A pair of arrays corresponds by geometrical superposition to an array of pairs. Let M k = (I C k V k I E k `k) f o r k = 1 2 b e t wo array structures over M k = (C k V k E k `k). The array product structure M 1 M 2 = (I V E `) is determined by the de nition of product. I = (I C 1):1 (I C 2):2 V = V 1 V 2 E = (I E 1):1 (I E 2):2 f {l e l :k l g l `{c:k if and only if 8l: k l = k and f{ l e l g l `k {c. In other words the two enabling relations are superimposed without interaction. The array construction preserves nite products because there is a natural correspondence between arrays of pairs and pairs of arrays.

Lemma 2 The structures (M 1 M 2) and M 1 M 2 are isomorphic (i.e. their state domains are).

Proof: Consider a state x of (M 1 M 2) and de ne split M1 M2 x = (x 1 x 2) where x i = fe j e:i 2 xg Clearly x 1 and x 2 a r e s e t s o f e v ents in M 1 and M 2 respectively. It is straightforward to verify that both are functional (because x is), that all their events have enablings (by de nition of the product enabling) and that they are upwards-closed for the cell order (componentwise in M 1 M 2). As a result x i is a state of M i . The inverse of split M1 M2 is merge M1 M2 , it reconstructs x: merge(x 1 x 2) = x 1 :1 x 2 :2:

The correspondence is bijective and preserves unions. Since the product is a categorical product in gCDScont , and since it preserves array domains, it is also a categorical product in ADScont.

Exponential domains: array transformations

Here we show that the exponential operator preserves array structures, thus completing the proof that our category is cartesian closed.

Proposition 4 For M N generalised c oncrete structures, (M ! N) and (M ! N) are i s omorphic.

Proof: By applying the de nitions of exponential and array structures, we will verify that both gCDS have the same cells, events and enablings. To d o t h i s l e t u s c o n s i d e r a t ypical structure (C V E `) o f (M ! N). We will give subscripts to the various sets involved according to the type of structure to which they belong. For example, C N will denote the cells of N.

First of all, the cells are the same up to a permutation of their parts.

C = D f i n (M) C N = D f i n (M) I C N I D f i n (M) C N = I C M !N = C (M !N)
The cell orderings are equal up to the same permutation. =

N = id I N id I N = i d I M !N = (M !N)
The values are the same.

V = V N = V N = V M !N = V (M !N)
We n o w use the following compact forms of the de nitions of event sets

E M !N = D f i n (M) E N E M = I E M
to verify the equivalence of events, using the same permutation of parts as before.

E M !N = D f i n (M) E N = D f i n (M) I E N I D f i n (M) E N = I E M !N = E (M !N)
Recall now the de nitions of activations for the exponential and array structures (here L 0 is the identity graph on I):

fx j e j j j = 1 : : : n g `M!N xc i fe j j j = 1 : : : n g Ǹ c and 8j: x j x: and f|e j j j = 1 : : : n g `M {c i fe j j j = 1 : : : n g M c and (| ~{) 2 L L 0

Now w e v erify that the enablings are the same, up to the permutation used for cells and events.

`M !N = f(fx j |e j g j x {c) j f |e j g j `N ~{c and 8j: x j xg = f(fx j |e j g j x {c) j f e j g j `N c and (| ~{) 2 L L 0 and 8j: x j xg f(f|x j e j g j ~{xc) j f e j g j `N c and 8j: x j xg and (| ~{) 2 L L 0 g = f(f|x j e j g j ~{xc) j f x j e j g j `M !N c and (| ~{) 2 L L 0 g = f(f|x j e j g j ~{xc) j f |x j e j g j `(M !N) {xcg = `(M !N)

The isomorphism and its inverse are implicit in the above transformations. They simply interchange the role of indices and other parts of the structure. We will call them localisation and globalisation: loc : D(M ! N) ! D ((M ! N)) loc a = f{xe j x{e 2 ag glob : D((M ! N)) ! D (M ! N) glob t = fx{e j{xe 2 tg Both are continous transformations. In concrete terms, loc takes a continuous array transform and decomposes it into an array of scalar functionals. The inverse operation is to take the array of functionals and to return the transformation which applies every element of it to an argument array. W e can now state that Corollary 2 ADScont is a CCC. Proof: ADScont is closed for (the terminal object and) the product and exponentiation of its enclosing category gCDScont . Moreover, in gCDScont application and curry cation satisfy the axioms for being a CCC.

Conclusion

We h a ve constructed a CCC of array structures which share a xed index space, thus introducing the notion of physical placement i n to a functional setting. The semantics of several data-parallel functional languages like Crystal 2], Alpha 6, 8] and PEI 9] is based on data-elds or arrays. We hope that our future investigation can relate their semantics to considerations of communication and lead to higher-order versions of such languages. The rst step in that direction will be to apply the category of array domains to the de nition of a lambda-calculus.

Acknowledgements: G.H. would like to thank Gil Utard for his comments on this work. We thank Luc Boug e and David Cachera for proofreading the manuscript.

author supported by a visiting position of ENS-Lyon and a grant b y F CAR-GRIAO (Q u ebec). On leave from University of Ottawa.

x Second author supported by a visiting position of CNRS-CRIN and a grant b y N S E R C (Canada).