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Abstract

We apply the theory of generalised concrete data structures �or gCDSs� to construct
a cartesian closed category of concrete array structures with explicit data layout� The
technical novelty is the array gCDS preserved by exponentiation whose isomorphisms
relate higher�order objects to their local parts� This work is part of our search of
semantic foundations for data�parallel functional programming�

Keywords� parallel programming� functional languages� distributed arrays� denotational seman�
tics� concrete data structures�

R�esum�e

Nous construisons une cat�egorie cart�esienne ferm�ee de structures de donn�ees concr�etes
explicitement r�eparties� Les principaux isomorphismes font correspondre tout objet �a
ses parties locales� Ce travail s�inscrit dans notre recherche de fondements s�emantiques
pour la programmation fonctionnelle data�parall�ele�

Mots�cl�es� programmation parall�ele � langages fonctionnels� tableaux r�epartis� s�emantique d�eno�
tationnelle� structures concr�etes
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� Introduction

Concrete data structures �CDSs� �	
 and their abstract counterparts concrete domains ��
 occur in
the semantic study of sequential functions� deterministic parallel algorithms and other semantic
notions� These structures allows the construction of several Cartesian closed categories �CCCs��
standard models for typed functional languages�

In this report we apply Brookes and Geva�s theory of generalised CDSs �or gCDSs� �

 and
construct a CCC of domains whose objects are the sets of states of array structures whose cells�
values and events are labelled by network addresses called indices� The construction is such that
communication along the network�s edges is represented by the enabling relation of gCDSs� The
present model has the advantage of ensuring consistently complete domains�

This construction is intended as a model for data�parallel objects and is part of an exploration
of possible foundations for the notion of network address �or data placement� or task allocation�
in data�parallel functional languages� Its target application is the description of such languages�
parallel primitives in an �internal� way�

� Concrete data structures

We will write the isomorphism relation as �� The space of continuous functions from A to B

�ordered pointwise� is written A� B or sometimes �A� B
�

��� The discrete case

This subsection summarises basic notions about concrete data structures� We borrow the pre�
sentation from �

 but �rst specialise it to classical �discrete� CDSs whose cells are not ordered�
The CDSs were used by Berry and Curien to explore semantic models of sequential computation�
Brookes and Geva have de�ned generalised CDS �or gCDS� and parallel algorithms over them� Our
purpose is to apply the gCDSs but we �rst present CDSs to illustrate the theory in its simpler form�

A concrete data structure or CDS is a tuple �C� V�E��� where

� C is a countable set of cells�

� V is a countable set of values�

� E � C � V is a set of events� An event �c� v� is often written cv�

� �� the enabling relation is de�ned between �nite sets of events and cells� The enabling relation
induces a precedence relation on cells� c � c� i� �y� v� y � fcvg � c�� This enabling relation
must be well�founded�

A cell c is called initial if it is enabled by the empty set of events �this is sometimes written � c��
A cell c is said to be �lled in a set of events y if �v� cv 	 y� We write F �y� for the set of cells �lled
in y� If y � c� then y is said to be an enabling of c and c is said to have an enabling in any superset
y� of y� written y �y� c� Let E�y� be the set of cells enabled in y� and call A�y� � E�y�
 F �y� the
set of cells accessible from y� Let M�M �� N denote CDSs from now on�

A state of M is a set of events x � EM which is functional and safe�

� cv�� cv� 	 x � v� � v��

� c 	 F �x� � �y � x� y �x c






The second property �safety� is the requirement that each of the state�s cells should have a proof
in it� a derivation through � �or more accurately� �� starting with initial cells as axioms� De�ne
D�M� to be the poset of states of CDS M � ordered by set inclusion�

The following examples give a glimpse of how concrete structures can be applied to the de�
scription of typed functional languages �see Curien�s book �	
 for a complete exposition of both
the theory and its application�� Let Bool � �fBg� fT� Fg� fBT�BFg��� where B is initial� Then
D�Bool� is f
� fBTg� fBFgg and represents the �at domain of boolean values� The CDS Nat �
�fNg� N� fNn jn 	 Ng��� where N is initial has states D�Nat� � f
� fN�g� fN
g� � � �g and repre�
sents the �at domain of naturals� The following structure

�fS�B�Ng� fL�Rg� VBool � VNat� fSL� SRg� EBool �ENat���

where the enablings are � S� SL � B� and SR � N � has a state domain which encodes the sum of
Bool and Nat �end of example��

The following is a simple structure which will be used later�

Vnat � �N� f�g� fn � jn 	 Ng��� where � � and fk�g � �k� 
��

Its domain of states is isomorphic to the vertical ordering of the natural numbers with a point at
in�nity� It illustrates how the enabling relation de�nes a concept of trace �in fact it plays the role of
trace index in the Brookes�Geva theory of parallel algorithms�� Our de�nition of array structures
extends this meaning to a context where enablings may correspond either to local computation or
to communications�

The posets obtained as the states of CDSs are called concrete domains �or CDs� and have the
following properties�

Proposition � �Brookes and Geva ���� CDs are �consistently complete� Scott domains where
� is the empty set� lowest upper bounds are given by unions and the compacts are the �nite states�

Recall from the theory of Scott domains �c�f� ��
� that when D�E are consistently complete domains
then so is �D� E
� Moreover if D and E have so�called e�ective presentations� then so does �D �
E
� These are necessary properties for the constitution of a CCC and its use as a computational
model� but in the present case they are not su�cient� Berry and Curien have shown that none of
the continuous� stable or sequential function space constructions preserve CDSs� In other words
�D�M�� D�N�
 is a consistently complete domain but is not isomorphic to a concrete domain�

The same holds for the domains of stable or sequential functions� As a result they successfully
explored a category of CDs whose arrows are sequential algorithms� It turns out that our de�nition
of array structures is not suitable for this �sequential� theory� array structures being inherently
parallel �non�deterministic in the terminology of �	
�� And since our target application is the
description of data�parallel languages� we apply instead the theory of genralised concrete data
structures which we now summarise�

��� Generalised concrete data structures

A generalised CDS is equipped with a partial order � on its cells and must satisfy the following
additional properties� its set of events and its enabling relation must be upwards�closed with respect
to cell ordering� Namely


� cv 	 E� c � c� � c�v 	 E

�



�� y � c� c � c� � y � c��

As before the precedence relation on cells must be well�founded� A new requirement in the gener�
alised de�nition is that states over the gCDS must be upwards�closed with respect to cell ordering�

cv 	 x� c � c� � c�v 	 x

Any CDS is a gCDS with discrete order on its cells� The domains built from gCDS states are called
generalised concrete domains �gCD� and satisfy proposition 
�

The following is Brookes and Geva�s construction of a CCC of gCDS�s and continuous functions
called gCDScont �

� Its objects are the gCDS and the arrows are the continuous functions between
corresponding gCDs�

Let c�i denote a pair �c� i� where i is an integer tag and extend this notation to sets of cells�
events etc� The product M��M� � �C��� V�E��� of two gCDSs Mi � �Ci��i� Vi� Ei��i� is de�ned
by a pointwise construction on pairs� Su�xes of the form �k applied to a set are understood to
distribute onto its elements�

� C � C��
 � C���

� c�i � c��i� if and only if c �i c
� and i � i��

� V � V� � V�

� E � E��
�E���

� y�i � c�i if and only if y �i c�

Proposition � �Brookes and Geva ���� The product preserves gCDSs and is a categorical prod�
uct in gCDScont with the following pairing and projections�

hx�� x�i � x��
 � x���
�i�x� � fcv j c�i v 	 xg�

D�M���D�M�� is isomorphic to D�M� �M���

Let two gCDSsM�M � be given and let us call them temporarily the source structure and the target
structure� The exponential gCDS

M �M � � �C��� V� E���

is de�ned as follows

� C � Dfin�M��CM � � where Dfin�M� is the set of �nite states of M ordered by inclusion� We
will write xc� as an abbreviation for �x� c��� A cell in the exponential is built from a �nite
state in the source structure and a cell in the target structure�

� � � ���M � � The former are ordered by inclusion and the latter retain their order relation�

� V � VM �� A value of the exponential is a value of the target structure�

� E � fxc�v� 	 C � V j c�v� 	 EM �g� Strictly speaking� an event in the exponential structure is
a pair �xc�� v��� But viewing it instead as the pair �x� c�v�� highlights its intended meaning� It
associates an event c�v� of the target structure to a �nite state x in the source structure� In
other words it is a �nitary piece of a map from states to states�

	



� fxjc
�

jv
�

j j 
 � j � lg � xc� if and only if fc�jv
�

j j 
 � j � lg �M � c� and xj � x for all j� A cell
of the exponential xc� is enabled by a set of events exactly when the source�states parts of
those events are subsets of x and the target�events parts enable c��

The exponential preserves gCDSs�

Proposition 	 �Brookes and Geva ���� An exponential domain is isomorphic to its space of
continuous functions ordered pointwise�

D�M � N� � �D�M�� D�N�
�

so that continuous functions between the two gCDSM and N are equivalent to states of D�M � N��
The isomorphism and its inverse are given by�

a 	 D�M � N� �� �z 	 D�M�� fc�v� j �x � z� xc�v� 	 ag �
�

f 	 �D�M�� D�N�
 �� fxc�v� 	 E j c�v� 	 f�x�g ���

The two isomorphisms allows us to interchange continuous functions and states of the exponen�
tial structure� Moreover� application and curry�cation satisfy both halves of the de�nition of an
exponentiation in gCDScont ��
�

Corollary � gCDScont is a CCC�

As a side remark about the relationship of gCDSs to CDS� the above exponentiation does not
preserve discreteness of CDSs� In general� when M�M � are discrete� Dfin�M� carries its non�trivial
cell order ��� into the ordering of �M � M ���s cells� For this reason the theory of gCDS is not
actually an extension of the theory of CDS� the objects are extensions but the morphisms are not�
the closure by continuous functions generates a CCC from generalised concrete domains but not
from �discrete� concrete domains�

� Array structures

Given a CDS whose states will be our singleton arrays �or scalars�� we construct an array CDS
by replicating the cells over the nodes or indices of a graph� This graph indirectly de�nes the
enabling relation as explained below� Array indices thus represent adresses in a static ��physical��
multiprocessor network�

In the remainder we assume the existence of a �xed countable directed graph �I� L� whose nodes
�� 	 I will be called indices and whose edges l � ������� 	 L will be called channels or links�

Let M � �C����� V�� E����� be a given gCDS� We now de�ne M� the array data structure or
array structure over M and show that it is a gCDS� The components of M� � �C��� V�E��� are
de�ned as follows�

� C � I � C� is countable because both I and C� are� A cell ���� c� or ��c in the array structure
is said to be located at �location� ��� Cells are ordered locally� ��c � ��c� if and only if �� � �� and
c �� c

��

� V � V� is countable by hypothesis�

� E � I �E� the possible events are the localisations of possible scalar events� The type of E
is correct since E� � C� � V� and so E � I � C� � V� � C � V �

�



� The enabling relation � is between Pfin�I�E�� and I�C�� There are two types of enablings�
local or through a link�


 f��c�v�� � � � ���ckvkg ���c when fc�v�� � � � � ckvkg �� c�


 f��c�v�� � � � ���ckvkg ���c when ������� 	 L and fc�v�� � � � � ckvkg �� c�

The �rst type of enabling allows M� to recover a copy of the enabling relation ofM at any location
��� events located at a common site enable non�initial cells at the same site according to ��� The
second condition de�nes the expansion of states to new locations� a cell located at �� is enabled
by a set of events located at a neighbouring index of ��� As a result� ���initial cells remain initial
�everywhere� in M��

Because M is a gCDS� it follows that E and � are upwards closed with respect to �� The
following property of the enabling relation must also be satis�ed to make M� a gCDS�

Lemma � � is well�founded�

Proof� By considering both types of enablings in � we �nd that� ��c� ���c only if c� �� c� Therefore
a descending chain ���c� � ���c� � � � � corresponds to a descending chain in M � c� �� c� �� � � ��
But since M is a gCDS� its �� is well�founded and such chains must be �nite� �
As a result the set D�M�� of states of an array structure is a concrete domain and� by proposition

� a consistently complete Scott domain� We will call it an array domain and its states will be
called arrays over M �

Two last remarks aboutM�� Because a cell can be enabled either locally or remotely� enablings
are not unique even when they were so in M � Also� because the cells of t 	 D�M�� may have been
enabled remotely� the set t�� � t � �f��g � C� � V�� is not in general a state of D�M��

Up to now we know that D�M�� is a Scott domain for inclusion� It can be veri�ed that the
compacts of D�M�� are the �nite arrays�

� A CCC of array domains

We now prove that array structures form a category with a terminal object� �nite products and
exponentiations�

��� Composition and terminal object

Let M��M��M� be CDSs� Then the identity transformations on D�M�

i � are continuous trans�
formations �with respect to ��� If f 	 �D�M�

� � � D�M�

� �
 and g 	 �D�M�

� � � D�M�

� �
 then
g � f 	 �D�M�

� � � D�M�

� �
� We may therefore de�ne the category ADScont with array data
structuresM� as objects� continuous transformations between their array domains D�M�� as mor�
phisms� function composition as composition and identity transformations as identity morphisms�
This is no surprise as ADScont is a subcategory of gCDScont �

Let Null be the CDS �
� 
� 
� 
� whose only state is 
� The array structure Null� is also
�
� 
� 
� 
� and therefore the only element of D�Null�� � D�Null� is the empty state� As a result
there is a unique continuous function 
 	 �D�M�� � D�Null�
 and so Null� is a terminal object
in ADScont�

�



��� Product� pairs of arrays

The product of array structures is a special case of the product of CDSs �de�ned in subsection
����� A pair of arrays corresponds by geometrical superposition to an array of pairs� Let M�

k �
�I �Ck� Vk� I �Ek��k

�� for k � 
� � be two array structures over Mk � �Ck� Vk� Ek��k�� The array
product structure M�

� �M�

� � �I� V� E��� is determined by the de�nition of product�

� I � �I � C���
� �I � C����

� V � V� � V�

� E � �I �E���
 � �I � E����

� f��lel�klgl � ��c�k if and only if �l� kl � k and f��lelgl �k ��c� In other words the two enabling
relations are superimposed without interaction�

The array construction preserves �nite products because there is a natural correspondence between
arrays of pairs and pairs of arrays�

Lemma � The structures �M� �M��
�
and M�

� �M�
� are isomorphic �i�e� their state domains

are��

Proof� Consider a state x of �M� �M��
�
and de�ne

splitM��M�

x � �x�� x�� where xi � fe j e�i 	 xg

Clearly x� and x� are sets of events inM�
� andM�

� respectively� It is straightforward to verify that
both are functional �because x is�� that all their events have enablings �by de�nition of the product
enabling� and that they are upwards�closed for the cell order �componentwise in M�

� �M�
��� As

a result xi is a state of Mi
�� The inverse of splitM��M�

is mergeM��M�
� it reconstructs x�

merge�x�� x�� � x��
 � x����

The correspondence is bijective and preserves unions� �
Since the product is a categorical product in gCDScont � and since it preserves array domains� it
is also a categorical product in ADScont�

��� Exponential domains� array transformations

Here we show that the exponential operator preserves array structures� thus completing the proof
that our category is cartesian closed�

Proposition � For M�N generalised concrete structures� �M� � N�� and �M� � N�
�

are iso�
morphic�

Proof� By applying the de�nitions of exponential and array structures� we will verify that both
gCDS have the same cells� events and enablings� To do this let us consider a typical structure
�C��� V�E��� of �M� � N��� We will give subscripts to the various sets involved according to
the type of structure to which they belong� For example� CN will denote the cells of N �

First of all� the cells are the same up to a permutation of their parts�

C � Dfin�M��� CN� � Dfin�M��� I � CN

� I �Dfin�M
��� CN � I � CM�

�N � C
�M�

�N��

�



The cell orderings are equal up to the same permutation�

� � � � �N��� �idI� �N

� idI� � � �N� idI� �M�
�N���M�

�N�
�

The values are the same�

V � VN� � VN � VM�
�N � V

�M�
�N�

�

We now use the following compact forms of the de�nitions of event sets

EM�N � Dfin�M�� EN

EM� � I � EM

to verify the equivalence of events� using the same permutation of parts as before�

EM�
�N� � Dfin�M

���EN�

� Dfin�M
��� I � EN

� I � Dfin�M
��� EN

� I � EM�
�N � E

�M�
�N�

�

Recall now the de�nitions of activations for the exponential and array structures �here L� is the
identity graph on I��

fxjej j j � 
� � � �ng �M�N xc

i� fej j j � 
� � � �ng �N c

and
�j� xj � x�

and
f��ej j j � 
� � � �ng �M� ��c

i� fej j j � 
� � � �ng �M c

and
������� 	 L � L�

Now we verify that the enablings are the same� up to the permutation used for cells and events�

�M�
�N� � f�fxj��ejgj� x��c� j f��ejgj �N� ��c and �j� xj � xg

� f�fxj��ejgj� x��c� j fejgj �N c and ������� 	 L � L� and �j� xj � xg
� f�f��xjejgj���xc� j fejgj �N c and �j� xj � xg and ������� 	 L � L�g
� f�f��xjejgj���xc� j fxjejgj �M�

�N c and ������� 	 L � L�g
� f�f��xjejgj���xc� j f��xjejgj ��M�

�N�
� ��xcg

� �
�M�

�N�
�

�

The isomorphism and its inverse are implicit in the above transformations� They simply in�
terchange the role of indices and other parts of the structure� We will call them localisation and
globalisation�

loc � D�M� � N��� D��M� � N�
�

�
loca � f��xe j x��e 	 ag

glob � D��M� � N�
�

�� D�M� � N��
glob t � fx��e j��xe 	 tg

�



Both are continous transformations� In concrete terms� loc takes a continuous array transform
and decomposes it into an array of scalar functionals� The inverse operation is to take the array
of functionals and to return the transformation which applies every element of it to an argument
array� We can now state that

Corollary � ADScont is a CCC�

Proof� ADScont is closed for �the terminal object and� the product and exponentiation of its
enclosing category gCDScont � Moreover� in gCDScont application and curry�cation satisfy the
axioms for being a CCC� �

� Conclusion

We have constructed a CCC of array structures which share a �xed index space� thus introducing
the notion of physical placement into a functional setting� The semantics of several data�parallel
functional languages like Crystal ��
� Alpha ��� �
 and PEI ��
 is based on data��elds or arrays� We
hope that our future investigation can relate their semantics to considerations of communication
and lead to higher�order versions of such languages� The �rst step in that direction will be to apply
the category of array domains to the de�nition of a lambda�calculus�

Acknowledgements� G�H� would like to thank Gil Utard for his comments on this work� We
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