
HAL Id: hal-02102046
https://hal-lara.archives-ouvertes.fr/hal-02102046

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Categorical Model of Array Domains
Gaetan Hains, John Mullins

To cite this version:
Gaetan Hains, John Mullins. A Categorical Model of Array Domains. [Research Report] LIP RR-
1994-43, Laboratoire de l’informatique du parallélisme. 1994, 2+9p. �hal-02102046�

https://hal-lara.archives-ouvertes.fr/hal-02102046
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

A Categorical Model of Array Domains

Ga�etan Hains and John Mullins D�ecembre ����

Research Report No �����

Ecole Normale Supérieure de Lyon

Adresse électronique : lip@lip.ens−lyon.fr
Téléphone : (+33) 72.72.80.00 Télécopieur : (+33) 72.72.80.80

46 Allée d’Italie, 69364 Lyon Cedex 07, France

A Categorical Model of Array Domains

Ga�etan Hains and John Mullins

D�ecembre ����

Abstract

We apply the theory of generalised concrete data structures �or gCDSs� to construct
a cartesian closed category of concrete array structures with explicit data layout� The
technical novelty is the array gCDS preserved by exponentiation whose isomorphisms
relate higher�order objects to their local parts� This work is part of our search of
semantic foundations for data�parallel functional programming�

Keywords� parallel programming� functional languages� distributed arrays� denotational seman�
tics� concrete data structures�

R�esum�e

Nous construisons une cat�egorie cart�esienne ferm�ee de structures de donn�ees concr�etes
explicitement r�eparties� Les principaux isomorphismes font correspondre tout objet �a
ses parties locales� Ce travail s�inscrit dans notre recherche de fondements s�emantiques
pour la programmation fonctionnelle data�parall�ele�

Mots�cl�es� programmation parall�ele � langages fonctionnels� tableaux r�epartis� s�emantique d�eno�
tationnelle� structures concr�etes

A Categorical Model of Array Domains

Ga�etan Hains�y and John Mullinszx

December ��� ����

Abstract

We apply the theory of generalised concrete data structures �or gCDSs� to construct a
cartesian closed category of concrete array structures with explicit data layout� The technical
novelty is the array gCDS preserved by exponentiation whose isomorphisms relate higher�order
objects to their local parts� This work is part of our search of semantic foundations for data�
parallel functional programming�

Keywords� parallel programming� functional languages� distributed arrays� denotational
semantics� concrete data structures�

Contents

� Introduction �

� Concrete data structures �

��� The discrete case �
��� Generalised concrete data structures �

� Array structures �

� A CCC of array domains �

��� Composition and terminal object �
��� Product	 pairs of arrays �

��� Exponential domains	 array transformations �

� Conclusion �

�LIP� ENS Lyon� �� All�ee d�Italie� F������ Lyon C�edex �	� France
 On leave from Universit�e de Montr�eal

yFirst author supported by a visiting position of ENS�Lyon and a grant by FCAR�GRIAO �Qu�ebec�

zCNRS�CRIN� B
atiment LORIA� B
P
 ���� F������� Vandoeuvre�les�Nancy C�edex� France
 On leave from Uni�

versity of Ottawa

xSecond author supported by a visiting position of CNRS�CRIN and a grant by NSERC �Canada�

� Introduction

Concrete data structures �CDSs� �	
 and their abstract counterparts concrete domains ��
 occur in
the semantic study of sequential functions� deterministic parallel algorithms and other semantic
notions� These structures allows the construction of several Cartesian closed categories �CCCs��
standard models for typed functional languages�

In this report we apply Brookes and Geva�s theory of generalised CDSs �or gCDSs� �

 and
construct a CCC of domains whose objects are the sets of states of array structures whose cells�
values and events are labelled by network addresses called indices� The construction is such that
communication along the network�s edges is represented by the enabling relation of gCDSs� The
present model has the advantage of ensuring consistently complete domains�

This construction is intended as a model for data�parallel objects and is part of an exploration
of possible foundations for the notion of network address �or data placement� or task allocation�
in data�parallel functional languages� Its target application is the description of such languages�
parallel primitives in an �internal� way�

� Concrete data structures

We will write the isomorphism relation as �� The space of continuous functions from A to B

�ordered pointwise� is written A� B or sometimes �A� B
�

��� The discrete case

This subsection summarises basic notions about concrete data structures� We borrow the pre�
sentation from �

 but �rst specialise it to classical �discrete� CDSs whose cells are not ordered�
The CDSs were used by Berry and Curien to explore semantic models of sequential computation�
Brookes and Geva have de�ned generalised CDS �or gCDS� and parallel algorithms over them� Our
purpose is to apply the gCDSs but we �rst present CDSs to illustrate the theory in its simpler form�

A concrete data structure or CDS is a tuple �C� V�E��� where

� C is a countable set of cells�

� V is a countable set of values�

� E � C � V is a set of events� An event �c� v� is often written cv�

� �� the enabling relation is de�ned between �nite sets of events and cells� The enabling relation
induces a precedence relation on cells� c � c� i� �y� v� y � fcvg � c�� This enabling relation
must be well�founded�

A cell c is called initial if it is enabled by the empty set of events �this is sometimes written � c��
A cell c is said to be �lled in a set of events y if �v� cv 	 y� We write F �y� for the set of cells �lled
in y� If y � c� then y is said to be an enabling of c and c is said to have an enabling in any superset
y� of y� written y �y� c� Let E�y� be the set of cells enabled in y� and call A�y� � E�y�
 F �y� the
set of cells accessible from y� Let M�M �� N denote CDSs from now on�

A state of M is a set of events x � EM which is functional and safe�

� cv�� cv� 	 x � v� � v��

� c 	 F �x� � �y � x� y �x c

The second property �safety� is the requirement that each of the state�s cells should have a proof
in it� a derivation through � �or more accurately� �� starting with initial cells as axioms� De�ne
D�M� to be the poset of states of CDS M � ordered by set inclusion�

The following examples give a glimpse of how concrete structures can be applied to the de�
scription of typed functional languages �see Curien�s book �	
 for a complete exposition of both
the theory and its application�� Let Bool � �fBg� fT� Fg� fBT�BFg��� where B is initial� Then
D�Bool� is f
� fBTg� fBFgg and represents the �at domain of boolean values� The CDS Nat �
�fNg� N� fNn jn 	 Ng��� where N is initial has states D�Nat� � f
� fN�g� fN
g� � � �g and repre�
sents the �at domain of naturals� The following structure

�fS�B�Ng� fL�Rg� VBool � VNat� fSL� SRg� EBool �ENat���

where the enablings are � S� SL � B� and SR � N � has a state domain which encodes the sum of
Bool and Nat �end of example��

The following is a simple structure which will be used later�

Vnat � �N� f�g� fn � jn 	 Ng��� where � � and fk�g � �k�
��

Its domain of states is isomorphic to the vertical ordering of the natural numbers with a point at
in�nity� It illustrates how the enabling relation de�nes a concept of trace �in fact it plays the role of
trace index in the Brookes�Geva theory of parallel algorithms�� Our de�nition of array structures
extends this meaning to a context where enablings may correspond either to local computation or
to communications�

The posets obtained as the states of CDSs are called concrete domains �or CDs� and have the
following properties�

Proposition � �Brookes and Geva ���� CDs are �consistently complete� Scott domains where
� is the empty set� lowest upper bounds are given by unions and the compacts are the �nite states�

Recall from the theory of Scott domains �c�f� ��
� that when D�E are consistently complete domains
then so is �D� E
� Moreover if D and E have so�called e�ective presentations� then so does �D �
E
� These are necessary properties for the constitution of a CCC and its use as a computational
model� but in the present case they are not su�cient� Berry and Curien have shown that none of
the continuous� stable or sequential function space constructions preserve CDSs� In other words
�D�M�� D�N�
 is a consistently complete domain but is not isomorphic to a concrete domain�

The same holds for the domains of stable or sequential functions� As a result they successfully
explored a category of CDs whose arrows are sequential algorithms� It turns out that our de�nition
of array structures is not suitable for this �sequential� theory� array structures being inherently
parallel �non�deterministic in the terminology of �	
�� And since our target application is the
description of data�parallel languages� we apply instead the theory of genralised concrete data
structures which we now summarise�

��� Generalised concrete data structures

A generalised CDS is equipped with a partial order � on its cells and must satisfy the following
additional properties� its set of events and its enabling relation must be upwards�closed with respect
to cell ordering� Namely

� cv 	 E� c � c� � c�v 	 E

�

�� y � c� c � c� � y � c��

As before the precedence relation on cells must be well�founded� A new requirement in the gener�
alised de�nition is that states over the gCDS must be upwards�closed with respect to cell ordering�

cv 	 x� c � c� � c�v 	 x

Any CDS is a gCDS with discrete order on its cells� The domains built from gCDS states are called
generalised concrete domains �gCD� and satisfy proposition
�

The following is Brookes and Geva�s construction of a CCC of gCDS�s and continuous functions
called gCDScont �

� Its objects are the gCDS and the arrows are the continuous functions between
corresponding gCDs�

Let c�i denote a pair �c� i� where i is an integer tag and extend this notation to sets of cells�
events etc� The product M��M� � �C��� V�E��� of two gCDSs Mi � �Ci��i� Vi� Ei��i� is de�ned
by a pointwise construction on pairs� Su�xes of the form �k applied to a set are understood to
distribute onto its elements�

� C � C��
 � C���

� c�i � c��i� if and only if c �i c
� and i � i��

� V � V� � V�

� E � E��
�E���

� y�i � c�i if and only if y �i c�

Proposition � �Brookes and Geva ���� The product preserves gCDSs and is a categorical prod�
uct in gCDScont with the following pairing and projections�

hx�� x�i � x��
 � x���
�i�x� � fcv j c�i v 	 xg�

D�M���D�M�� is isomorphic to D�M� �M���

Let two gCDSsM�M � be given and let us call them temporarily the source structure and the target
structure� The exponential gCDS

M �M � � �C��� V� E���

is de�ned as follows

� C � Dfin�M��CM � � where Dfin�M� is the set of �nite states of M ordered by inclusion� We
will write xc� as an abbreviation for �x� c��� A cell in the exponential is built from a �nite
state in the source structure and a cell in the target structure�

� � � ���M � � The former are ordered by inclusion and the latter retain their order relation�

� V � VM �� A value of the exponential is a value of the target structure�

� E � fxc�v� 	 C � V j c�v� 	 EM �g� Strictly speaking� an event in the exponential structure is
a pair �xc�� v��� But viewing it instead as the pair �x� c�v�� highlights its intended meaning� It
associates an event c�v� of the target structure to a �nite state x in the source structure� In
other words it is a �nitary piece of a map from states to states�

	

� fxjc
�

jv
�

j j
 � j � lg � xc� if and only if fc�jv
�

j j
 � j � lg �M � c� and xj � x for all j� A cell
of the exponential xc� is enabled by a set of events exactly when the source�states parts of
those events are subsets of x and the target�events parts enable c��

The exponential preserves gCDSs�

Proposition 	 �Brookes and Geva ���� An exponential domain is isomorphic to its space of
continuous functions ordered pointwise�

D�M � N� � �D�M�� D�N�
�

so that continuous functions between the two gCDSM and N are equivalent to states of D�M � N��
The isomorphism and its inverse are given by�

a 	 D�M � N� �� �z 	 D�M�� fc�v� j �x � z� xc�v� 	 ag �
�

f 	 �D�M�� D�N�
 �� fxc�v� 	 E j c�v� 	 f�x�g ���

The two isomorphisms allows us to interchange continuous functions and states of the exponen�
tial structure� Moreover� application and curry�cation satisfy both halves of the de�nition of an
exponentiation in gCDScont ��
�

Corollary � gCDScont is a CCC�

As a side remark about the relationship of gCDSs to CDS� the above exponentiation does not
preserve discreteness of CDSs� In general� when M�M � are discrete� Dfin�M� carries its non�trivial
cell order ��� into the ordering of �M � M ���s cells� For this reason the theory of gCDS is not
actually an extension of the theory of CDS� the objects are extensions but the morphisms are not�
the closure by continuous functions generates a CCC from generalised concrete domains but not
from �discrete� concrete domains�

� Array structures

Given a CDS whose states will be our singleton arrays �or scalars�� we construct an array CDS
by replicating the cells over the nodes or indices of a graph� This graph indirectly de�nes the
enabling relation as explained below� Array indices thus represent adresses in a static ��physical��
multiprocessor network�

In the remainder we assume the existence of a �xed countable directed graph �I� L� whose nodes
�� 	 I will be called indices and whose edges l � ������� 	 L will be called channels or links�

Let M � �C����� V�� E����� be a given gCDS� We now de�ne M� the array data structure or
array structure over M and show that it is a gCDS� The components of M� � �C��� V�E��� are
de�ned as follows�

� C � I � C� is countable because both I and C� are� A cell ���� c� or ��c in the array structure
is said to be located at �location� ��� Cells are ordered locally� ��c � ��c� if and only if �� � �� and
c �� c

��

� V � V� is countable by hypothesis�

� E � I �E� the possible events are the localisations of possible scalar events� The type of E
is correct since E� � C� � V� and so E � I � C� � V� � C � V �

�

� The enabling relation � is between Pfin�I�E�� and I�C�� There are two types of enablings�
local or through a link�

 f��c�v�� � � � ���ckvkg ���c when fc�v�� � � � � ckvkg �� c�

 f��c�v�� � � � ���ckvkg ���c when ������� 	 L and fc�v�� � � � � ckvkg �� c�

The �rst type of enabling allows M� to recover a copy of the enabling relation ofM at any location
��� events located at a common site enable non�initial cells at the same site according to ��� The
second condition de�nes the expansion of states to new locations� a cell located at �� is enabled
by a set of events located at a neighbouring index of ��� As a result� ���initial cells remain initial
�everywhere� in M��

Because M is a gCDS� it follows that E and � are upwards closed with respect to �� The
following property of the enabling relation must also be satis�ed to make M� a gCDS�

Lemma � � is well�founded�

Proof� By considering both types of enablings in � we �nd that� ��c� ���c only if c� �� c� Therefore
a descending chain ���c� � ���c� � � � � corresponds to a descending chain in M � c� �� c� �� � � ��
But since M is a gCDS� its �� is well�founded and such chains must be �nite� �
As a result the set D�M�� of states of an array structure is a concrete domain and� by proposition

� a consistently complete Scott domain� We will call it an array domain and its states will be
called arrays over M �

Two last remarks aboutM�� Because a cell can be enabled either locally or remotely� enablings
are not unique even when they were so in M � Also� because the cells of t 	 D�M�� may have been
enabled remotely� the set t�� � t � �f��g � C� � V�� is not in general a state of D�M��

Up to now we know that D�M�� is a Scott domain for inclusion� It can be veri�ed that the
compacts of D�M�� are the �nite arrays�

� A CCC of array domains

We now prove that array structures form a category with a terminal object� �nite products and
exponentiations�

��� Composition and terminal object

Let M��M��M� be CDSs� Then the identity transformations on D�M�

i � are continuous trans�
formations �with respect to ��� If f 	 �D�M�

� � � D�M�

� �
 and g 	 �D�M�

� � � D�M�

� �
 then
g � f 	 �D�M�

� � � D�M�

� �
� We may therefore de�ne the category ADScont with array data
structuresM� as objects� continuous transformations between their array domains D�M�� as mor�
phisms� function composition as composition and identity transformations as identity morphisms�
This is no surprise as ADScont is a subcategory of gCDScont �

Let Null be the CDS �
�
�
�
� whose only state is
� The array structure Null� is also
�
�
�
�
� and therefore the only element of D�Null�� � D�Null� is the empty state� As a result
there is a unique continuous function
 	 �D�M�� � D�Null�
 and so Null� is a terminal object
in ADScont�

�

��� Product� pairs of arrays

The product of array structures is a special case of the product of CDSs �de�ned in subsection
����� A pair of arrays corresponds by geometrical superposition to an array of pairs� Let M�

k �
�I �Ck� Vk� I �Ek��k

�� for k �
� � be two array structures over Mk � �Ck� Vk� Ek��k�� The array
product structure M�

� �M�

� � �I� V� E��� is determined by the de�nition of product�

� I � �I � C���
� �I � C����

� V � V� � V�

� E � �I �E���
 � �I � E����

� f��lel�klgl � ��c�k if and only if �l� kl � k and f��lelgl �k ��c� In other words the two enabling
relations are superimposed without interaction�

The array construction preserves �nite products because there is a natural correspondence between
arrays of pairs and pairs of arrays�

Lemma � The structures �M� �M��
�
and M�

� �M�
� are isomorphic �i�e� their state domains

are��

Proof� Consider a state x of �M� �M��
�
and de�ne

splitM��M�

x � �x�� x�� where xi � fe j e�i 	 xg

Clearly x� and x� are sets of events inM�
� andM�

� respectively� It is straightforward to verify that
both are functional �because x is�� that all their events have enablings �by de�nition of the product
enabling� and that they are upwards�closed for the cell order �componentwise in M�

� �M�
��� As

a result xi is a state of Mi
�� The inverse of splitM��M�

is mergeM��M�
� it reconstructs x�

merge�x�� x�� � x��
 � x����

The correspondence is bijective and preserves unions� �
Since the product is a categorical product in gCDScont � and since it preserves array domains� it
is also a categorical product in ADScont�

��� Exponential domains� array transformations

Here we show that the exponential operator preserves array structures� thus completing the proof
that our category is cartesian closed�

Proposition � For M�N generalised concrete structures� �M� � N�� and �M� � N�
�

are iso�
morphic�

Proof� By applying the de�nitions of exponential and array structures� we will verify that both
gCDS have the same cells� events and enablings� To do this let us consider a typical structure
�C��� V�E��� of �M� � N��� We will give subscripts to the various sets involved according to
the type of structure to which they belong� For example� CN will denote the cells of N �

First of all� the cells are the same up to a permutation of their parts�

C � Dfin�M��� CN� � Dfin�M��� I � CN

� I �Dfin�M
��� CN � I � CM�

�N � C
�M�

�N��

�

The cell orderings are equal up to the same permutation�

� � � � �N��� �idI� �N

� idI� � � �N� idI� �M�
�N���M�

�N�
�

The values are the same�

V � VN� � VN � VM�
�N � V

�M�
�N�

�

We now use the following compact forms of the de�nitions of event sets

EM�N � Dfin�M�� EN

EM� � I � EM

to verify the equivalence of events� using the same permutation of parts as before�

EM�
�N� � Dfin�M

���EN�

� Dfin�M
��� I � EN

� I � Dfin�M
��� EN

� I � EM�
�N � E

�M�
�N�

�

Recall now the de�nitions of activations for the exponential and array structures �here L� is the
identity graph on I��

fxjej j j �
� � � �ng �M�N xc

i� fej j j �
� � � �ng �N c

and
�j� xj � x�

and
f��ej j j �
� � � �ng �M� ��c

i� fej j j �
� � � �ng �M c

and
������� 	 L � L�

Now we verify that the enablings are the same� up to the permutation used for cells and events�

�M�
�N� � f�fxj��ejgj� x��c� j f��ejgj �N� ��c and �j� xj � xg

� f�fxj��ejgj� x��c� j fejgj �N c and ������� 	 L � L� and �j� xj � xg
� f�f��xjejgj���xc� j fejgj �N c and �j� xj � xg and ������� 	 L � L�g
� f�f��xjejgj���xc� j fxjejgj �M�

�N c and ������� 	 L � L�g
� f�f��xjejgj���xc� j f��xjejgj ��M�

�N�
� ��xcg

� �
�M�

�N�
�

�

The isomorphism and its inverse are implicit in the above transformations� They simply in�
terchange the role of indices and other parts of the structure� We will call them localisation and
globalisation�

loc � D�M� � N��� D��M� � N�
�

�
loca � f��xe j x��e 	 ag

glob � D��M� � N�
�

�� D�M� � N��
glob t � fx��e j��xe 	 tg

�

Both are continous transformations� In concrete terms� loc takes a continuous array transform
and decomposes it into an array of scalar functionals� The inverse operation is to take the array
of functionals and to return the transformation which applies every element of it to an argument
array� We can now state that

Corollary � ADScont is a CCC�

Proof� ADScont is closed for �the terminal object and� the product and exponentiation of its
enclosing category gCDScont � Moreover� in gCDScont application and curry�cation satisfy the
axioms for being a CCC� �

� Conclusion

We have constructed a CCC of array structures which share a �xed index space� thus introducing
the notion of physical placement into a functional setting� The semantics of several data�parallel
functional languages like Crystal ��
� Alpha ��� �
 and PEI ��
 is based on data��elds or arrays� We
hope that our future investigation can relate their semantics to considerations of communication
and lead to higher�order versions of such languages� The �rst step in that direction will be to apply
the category of array domains to the de�nition of a lambda�calculus�

Acknowledgements� G�H� would like to thank Gil Utard for his comments on this work� We
thank Luc Boug�e and David Cachera for proofreading the manuscript�

References

�

 S� Brookes and S� Geva� Continuous functions and parallel algorithms on concrete data struc�
tures� In MFPS��	� L�N�C�S� Springer�
��
�

��
 M� Chen� Y��Il Choo� and J� Li� Crystal� Theory and pragmatics of generating e�cient parallel
code� In B� K� Szymanski� editor� Parallel Functional Languages and Compilers� chapter ��
ACM Press�
��
�

�	
 P��L� Curien� Categorical Combinators� Sequential Algorithms and Functional Programming�
Birkh�auser� Boston� second edition�
��	�

��
 C� A� Gunter and D� S� Scott� Semantic domains� In J� Van Leeuwen� editor� Handbook of
Theoretical Computer Science� North�Holland� MIT�Press�
����

��
 G� Kahn and G� Plotkin� Domaines concrets� Rapport 		�� INRIA�LABORIA�
����

��
 C� Mauras� Alpha � un langage �equationnel pour la conception et la programmation d�architec�
tures parall�eles synchrones� Th�ese de l�Universit�e de Rennes
� IFSIC� D�ecembre
����

��
 B� C� Pierce� Basic Category Theory for Computer Scientists� MIT Press�
��
�

��
 H� Le Verge� Reduction operators in ALPHA� In D� Etiemble and J��C� Syre� editors� PARLE�
�
� number ��� in Lecture Notes in Computer Science� Paris� France� June
���� Springer�

��
 E� Violard and G��R� Perrin� PEI� A language and its re�nement calculus for parallel program�
ming� Parallel Computing�
��
���

���

��� October
����

�

