
HAL Id: hal-02102044
https://hal-lara.archives-ouvertes.fr/hal-02102044

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Explicit Substitutions for the Lambda-Mu-Calculus.
Philippe Audebaud

To cite this version:
Philippe Audebaud. Explicit Substitutions for the Lambda-Mu-Calculus.. [Research Report] LIp
RR-1994-26, Laboratoire de l’informatique du parallélisme. 1994, 2+14p. �hal-02102044�

https://hal-lara.archives-ouvertes.fr/hal-02102044
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

Explicit Substitutions for the

Lambda�Mu Calculus

Philippe Audebaud October ����

Research Report No �����

Ecole Normale Supérieure de Lyon

Adresse électronique : lip@lip.ens−lyon.fr
Téléphone : (+33) 72.72.80.00 Télécopieur : (+33) 72.72.80.80

46 Allée d’Italie, 69364 Lyon Cedex 07, France

Explicit Substitutions for the Lambda�Mu Calculus

Philippe Audebaud

October ����

Abstract

We present a con�uent rewrite system which extents a previous calculus of explicit substitu�
tions for the lambda�calculus �HaLe��� to Parigot�s untyped lambda�mu�calculus �Par����
This extension embeds the lambda�mu�calculus as a sub�theory	 and provides the basis for a
theoretical framework to study the abstract properties of implementations of functional pro�
gramming languages enriched with control structures� This study gets also some interesting
feedback on lambda�mu�calculus on both the syntactical and semantics levels�

Keywords� Rewrite systems	 Lambda�Mu Calculus

R�esum�e

Nous proposons un syst
eme de r�ecriture con�uent qui �etend un pr�ec�edent syst
eme avec substi�
tutions explicites pour le lambda�calcul �HaLe��� au lambda�mu�calcul non typ�e de Parigot
�Par���� Cette extension contient le lambda�mu�calcul comme sous�th�eorie	 et fournit une
cadre th�eorique de base pour l��etude des propri�et�es abstraites des implantations des lan�
gages fonctionnels �etendus avec des structures de contr�ole� Cette �etude fournit �egalement un
�eclairage nouveau sur le lambda�mu�calcul
a la fois au plan syntaxique et s�emantique�

Mots�cl�es� Syst
emes de R�ecriture	 Lambda�Mu Calcul

Explicit Substitutions for the Lambda�Mu Calculus �

Philippe Audebaud

Ecole Normale Sup�erieure de Lyon

LIP�IMAG� URA CNRS ���	

�� All�ee d
Italie� ����� Lyon cedex ��� France

e�mail paudebau�lip�ens�lyon�fr

September �� ����

Abstract

We present a con�uent rewrite system which extents a previous calculus of explicit substitutions
for the ��calculus �HaLe��� to Parigot�s untyped ���calculus �Par���� This extension embeds the
���calculus as a sub�theory	 and provides the basis for a theoretical framework to study the abstract
properties of implementations of functional programming languages enriched with control structures�
This study gets also some interesting feedback on ���calculus on both the syntactical and semantics
levels�

� Introduction

The correspondence between proofs and programs plays a major role in Computer Science	 because it
provides solid mathematical models for the study of functional programming languages� The starting
point is the Curry�Howard correspondence for the intuitionistic proofs their contructive nature allows an
easy computational interpretation� The resulting programs can be coded into the �pure� lambda�calculus�
Therefore	 the lambda�calculus appears as the paradigm for the �pure� functional programming languages�
A functional program consists in a set of applications of functions to arguments� The replacement of the
formal parameters of functions is represented by the beta�reduction within the lambda�calculus� However	
the substitution mechanism is not simple	 as it is necessary to take into account the scope of functions	
and to take care of the possible clashes between names� These practical questions are hidden behind the
implicit operation of substitution of variables by lambda�terms in the Church�s lambda�calculus� Thus	
in order to allow modelisation of implementations of the ��reductions	 it is necessary to explain the
substitution process	 that is to say	 to make it explicit� Of course	 other approaches are possible� the
Combinatory Logic for example	 which eliminates bound variables	 hence the problem� We choose to
work in the ��calculus itself	 to take advantage of the intuitive clarity of the ��notation	 and of the power
that this syntax conveys at the mathematical level as well as the practical one�

In �HaLe���	 a calculus of explicit substitutions	 named ��env	 is proposed� It is a con�uent rewrite
system	 strongly normalizing on the sub�system dealing with the substitution process� This system is an
improvement of �ACCL��� and is also based on the crucial distinction between terms and substitutions�
The lambda�theory �with lambda�terms coded using de Bruijn�s notation� is embedded as a sub�theory
into the extended calculus� All these results make the ��env�calculus a nice theoretical framework for
the study of the abstract properties of implementations of functional languages� correctness	 optimization
for example�

At this point	 one has at one�s disposal a mathematical model taking into account the dynamic aspects
of the previous correspondence between intuitionistic proofs and programs� But	 for ��

� statements	
classical and intuitionistic provability coincide� Therefore	 classical proofs are also candidates for being
programs� What is the right counterpart from the point of view of the programming languages� Classical
logic appears to be an adequate framework for modeling the imperative features of these programming

�This research was partly supported by ESPRIT Basic Research Action �Types for Proofs and Programs� and by the

Programme de Recherche Coordonn�ees and CNRS GDR �Programmation��

�

languages� The link between classical logic and functional languages has been established few years
ago by Gri�n in �Gri���	 where Felleisen�s generic control operator is given the type ��A � A� This
correspondence is however more di�cult to establish	 in this wider setting� This is explained in �Par���	
where Parigot advocates the interest of his lambda�mu�calculus in this area	 and also the di�culties
encountered� This calculus is an extension of the ��calculus	 and shares the same properties of con�uence
and strong normalization � when this point makes sense� It provides the computational interpretation
for classical proofs developed in a natural deduction system with multiple conclusions �Par��	 Par����
Actually	 �Mu� comes from the introduction of a new kind of variables	 introduced precisely for dealing
with the labeling of the di�erent formulae on the right side of a judgment� We do not go into full details	
but insist on the fact that this system is strongly justi�ed from the logical point of view� From our point
of view	 it can be considered as an serious candidate for studying and perhaps establishing completely
the correspondence we are looking for between classical proofs and programs using control structures�

On this basis	 we propose a rewrite system ��env	 which extends the �env system �HaLe��� for
the purpose of providing a system of explicit substitutions for Parigot�s ���calculus� We get the same
properties� con�uence and termination for the sub�system dealing with the �more complex� process of
substitution� The ���calculus is proved being embedded as a sub�theory into the rewrite system� So	
we are in position to develop theoretical and practical issues suggested above	 but now for the study of
functional programming languages extended with control structures this is undertaken in �Au����

Section � gives a brief overview of both the ��calculus in the de Bruijn setting and �env rewrite
system� This will help introducing and understanding most of the notations� Section � presents Parigot�s
���calculus� We give only a short description of the calculus	 mainly from the computational point
of view� A �rst translation using de Bruijn�s notation is presented� The presentation of the ��env�
calculus is given in section �� Informal explanations are provided	 and the properties of the calculus are
established� Section � states some simulation results which entails the embedding of Parigot�s ���calculus
as a sub�theory of ��env�

� A quick overview of the �env�calculus

We introduce the ��calculus with de Bruijn�s notation� Then a short presentation of Hardin�L�evy �env�
calculus is given	 with its main properties�

��� Church�s ��calculus in de Bruijn�s notation

de Bruijn�s idea is to replace each variable occurrence by an integer measuring its binding height to
the corresponding �� For example	 �x���y�x x� is represented as ���� ��	 since x has two di�erent
occurrences	 with di�erent binding heights� This way	 each free variable occurring in a term M can be
interpreted as a depth in a �nite �xed stack ��

This notation provides a mechanical treatment of ��conversion� informally	 such terms can be con�
sidered as canonical representative of the class of all terms identi�ed modulo renaming of the bound
variables�

Formally	 the set � of de Bruijn ��terms is de�ned by the grammar M ��� n j �M M � j �M where
n � N� In this new setting	 the ��reduction is described precisely as�

� ��M N � � Mf� � Ng

The substitution process Mfn � Pg	 introduced by the reduction step	 is de�ned inductively by�

pfn � Pg �

��
�

p�� if p � n

tn
�
�P � if p � n

p if p � n

�M N �fn � Pg � �Mfn � Pg Nfn � Pg�
��M �fn � Pg � �Mfn�� � Pg

where the purpose of the operation tm
i

��� is to lift the variable occurrences in order to make them
adequate� tm

i
�P � means that i binders have been crossed currently	 and that the context in which M is

�

now embedded makes its free variables referenced m�� units deeper in the stack� This operation is de�ned
by�

tm
i
�p� �

�
p�m�� if p � i��

p otherwise
tm
i
�M N � � �tm

i
�M � tm

i
�N ��

tm
i
��M � � �tm

i��
�M �

This is well known	 and we do not go into further details� Let us emphasize that this special de�nition
for the ��reduction and substitution should be proved equivalent to the usual ones� See �ACCL��	 CHL���
for details�

Beta ��M N � � M hN � Idi
LamTerm ��M �hsi � �M h��s�i
AppTerm �M N �hsi � �M hsi N hsi�
Closure M hsihti � M hs � ti
IdEnv M hIdi � M
RefShift� nh�i � n��

RefShift� nh� � si � n��hsi
FRefLift� �h��s�i � �

FRefLift� �h��s� � ti � �hti
RRefLift� n��h��s�i � nhs � �i
RRefLift� n��h��s� � ti � nhs � �� � t�i
FRefMap �hM � si � M
RRefMap n��hM � si � nhsi
LiftId ��Id� � Id
MapEnv M � s � t � M hti � �s � t�
LiftLift� ��s� � ��t� � ��s � t�
LiftLift� ��s� � ���t� � u� � ��s � t� � u
LiftMap ��s� �N � t � M hN � ti � �s � t�
ShiftMap � �M � s � s
ShiftLift� � � ��s� � s � �
ShiftLift� � � ���s� � t� � s � �� � t�
IdL Id � s � s
IdR s � Id � s
AssEnv �s � t� � u � s � �t � u�

Table �� The �env rewrite system

��� Hardin�L�evy �env�calculus

The rewrite system �env distinguishes terms and substitutions� Terms are built using de Bruijn�s
notation� The action of the substitution s on the term M is written M hsi� The basic idea for under�
standing the interaction between terms and substitutions is to think about the usual contraction of a
��redex� Such a contraction creates �or emits� a speci�c substitution s� let us write Redex � M hsi�
Then depending on the structure of M 	 this action is propagated towards the variable positions where it
is absorbed �or received�� So the action of s depends on the stack � which includes the free variables of
M 	 and the result is de�ned on the basis of a particular stack �	 which is only dependent on s� Therefore	
s can be seen as a morphism in that case s � � � �� Composition is a partial operation on substitutions	
written s � t	 with Id as neutral element for this operation�

Let us introduce some special substitutions� The e�ect of the shift substitution � is to increase by
one an integer variable	 meaning that the free variables of M h�i are simply located one unit deeper in
the stack� As a morphism	 it can be considered as � � �� x� �	 for any stack � and new variable x�

The lift operator on the substitution s � � � � provides a new substitution ��s� � �� x� �� x	 where
x is a new variable� ��s� leaves unchanged the top of the stack� So �h��s�i rewrites to �� On variables

�

n��	 that is to say the ones in the stack �	 the action is merely the same as the action of s� However	
we must keep in mind that the free variables of the results are pushed one unit deeper in the stack �� x�
Thus	 n��h��s�i rewrites to nhs � �i�

The substitution created by the contraction of a redex is still unde�ned� Given ��x�M N � � M hsi	
let us try to make s more precise� As a morphism	 we have clearly s � � � �� x� We can even see that
s extends the identity substitution Id � � � �	 due to the left hand expression� The substitution s
could therefore be written N � Id� More generally	 given s � � � � and any term M whose free variables
belong to �	 we de�ne the cons M � s � � � �� x	 where x is a fresh variable� Its action on variables
should be clear� the top variable is replaced by M 	 and it behaves as s with respect to the other ones�

Last but not least	 �env allows for free term�variables and substitution�variables	 not to be confused
with the free variables of a term

Formally	 the set �env of terms and substitutions is de�ned inductively as follows�

Terms M ��� X j n j �M M � j �M j M hsi where n � N
Substitutions s ��� x j Id j � j ��s� j M � s j s � s

where X is a variable for terms	 and x a variable for substitutions�
The �env rewrite system is de�ned by the rules given in table �� The rewrite rules have been explained

informally above� Let us notice that some rules are �duplicated�� su�xes �� � are appended somewhere�
The introduction of the pairs of rules with pattern like �XXX�� and �XXX�� is needed for ensuring the
con�uence property� Actually	 the second one is introduced automatically by Knuth�Bendix completion
process� The secondary rules can therefore be ignored at the �rst reading�

Since our study follows very closely Hardin�L�evy�s	 the main properties will appear as special cases
of the results presented here� Therefore	 we do not give them in full details	 but rather refer to �HaLe���
for a complete presentation of the system and its own main properties�

� Parigot�s pure ���calculus

We brie�y present Parigot�s calculus	 and give a de Bruijn translation for this extension of the usual
��calculus� We recall the more usual reductions for this calculus	 and their traduction in the de Bruijn
setting�

The sets of ���terms and named terms	 is inductively de�ned by�

Terms T ��� x j �T T � j �x�T j ��T �

Named T � ��� ���T

where x �resp� �� ranges over ��variables �resp� ��variables�� As �	 � is a binding operator� free
occurrences of the ��variable � in the �named� term T � become bound in ��T ��

Besides the usual notion of reduction �	 there is a structural notion of reduction � and we will also
consider a renaming rule �	 de�ned as�

� ������M � N � � ������M ���N�����
� �	���M � � M ��	���

where the substitution �N�x� of the term N for the variable x is well�known	 and the substitution �N����
of the term N for the ��variable � in the term M consists in replacing recursively each occurrence of a
sub�named term ���T in M by the sub�named term ����T N �� Again	 we shall admit that these de�nitions
agree with the usual ones� This fact can be proved	 following �CHL��� for instance�

In �Par��	 Par��� several examples are provided	 and interesting properties of the calculus are shown
when a type assignment is introduced� Moreover	 �Gro��� gives an interesting link between this calculus
and the former Felleisen�s �c�calculus�

Our favorite example This example has no special signi�cance from the point of view developed
in this paper� One may notice	 however	 that this classical term is strongly related to the intuitionistic
term � � �x�f��f x� �Par���� We introduce the terms T � �������f �	����f x�� N � and M � �x�f�T �
We get�

T � �������f �	����f x�� N � � reduction
� �������f �	����f x����N���� substitution step
� �������f �	����f x N � N �

�

de Bruijn coding consists in representing each occurrence of a variable by its distance to the related
binder� In our particular case	 the set �M of ���terms	 in de Bruijn notation is�

Terms T ��� n j �T T � j �T j �T � where n � N
Named T � ��� �n�T

We note that this obvious translation erases the distinction between ��variables and ��variables� For
example ������� �� is allowed and it can be seen as a de Bruijn term for �x���x��x ��	 although it is
not well formed in the ���calculus� However	 this is not so important	 since ��variables can appear only
in places such as ���M � And we can easily check for well formed terms informally� For the purpose of the
embedding	 we will need a formal treatment �see section ���

We extend the previously given operations by�

���p�M ��fn � Pg � ��p�M �fn��� Pg
tm
i
���p�M �� � ��tm

i��
�p��tm

i��
�M ��

The � and � reductions are described precisely as follows�

� ��M � N � � ��M �f� 	 Ng�
� �p��M � � M �f� � pg

For the new substitution mechanism involved	 we get�

pfn 	 Pg � p

�M N �fn 	 Pg � �Mfn 	 Pg Nfn 	 Pg�
��M �fn 	 Pg � �Mfn�� 	 Pg

���p�M ��fn 	 Pg �

�
��p��M �fn�� 	 Pg tn��

�
�P �� if p � n

��p�M �fn�� 	 Pg if p
� n

An example Let us consider how this applies to the preceding example	 where tn��
�

�N � � N n �

T � ������� ������ ��� N � ��reduction rule
� ������� ������ ����f� 	 Ng substitution rules
� ������� ������ ���f� 	 Ng t���

�
�N ��

� ������f� 	 Ng ������� ���f� 	 Ng N ��
� ������ ������� ���f� 	 Ng N ��
� ������ ������� ��f� 	 Ng t���

�
�N �� N � �

� ������ ������ � N � � N ��

� The ��env rewrite system

In this section	 we give the formal presentation of our calculus and state its main properties� con�uence
of the full system and termination of the subsystem related to substitutions�

��� The full system

Before presenting the ��env rewrite system	 let us underline the fact that we wanted to preserve two
features proposed for �env	 of some particular interest� First	 it is presented as a full rewrite system	
with a simple polynomial interpretation which easily ensures termination� The con�uence property owes
much to the introduction of the special operator lift in presence of ��abstractions� Thus	 our choices for
the new rules and new constructions has been made to keep as much as possible the spirit of the �env

calculus�

Now	 some explanations about new term �resp� substitution� constructors	 and the rules added in the
new calculus� Both � and � reduction rule create substitutions� However	 the one produced by the � is
already present from �env� So	 we concentrate on the substitution created through a ��reduction�

Let us write informally s � N���� We consider the action ����M �hsi� The substitution s applies
recursively	 thus simultaneously to the sub�term ���M and to all its strict sub�named terms� We want to
write that ����M �hsi rewrites to ����M hsiN �	 if � � �	 and to ���M hsi otherwise� In a rewrite system	

�

Mu ��M N � � �M hN h�i � Idi
Rho �L���M � � M hL � Idi
SeqApp �N j L�M � �L��M N �
MuTerm ��M �hsi � �M h��s�i
NamTerm ��L�M �hsi � �Lhsi�M hsi
SeqTerm �M j L�hsi � M hsi j Lhsi
FRefArg �hM � si � M j �hsi
RRefArg n��hM � si � n��hsi
ArgEnv M � s � t � M hti � �s � t�
ArgMap M � �L � s� � �M j L� � s
LiftArg ��s� �N � t � M � ���s� � t�
ShiftArg � �M � s � � � s

Table �� The additional rewrite rules

these two operations will be completely separated� Hence	 an intermediate data structure is required	
able to store the possible argument N until M possibly recovers it� Towards a convenient solution	 we
can observe that a ��binder never disappears	 hence any list of arguments	 say N� � � �Np �p � �� may be
passed to places ���T occuring in ���M � Hence the e�ect of the derivation

������M N� � � �Np�
��

� ������M ��N��
��� � � � �Np�

���

consists in replacing recursively each occurrence of a sub�term ���T of ���M by ����T N� � � �Np�� Thus	
the intermediate structure should store a list of terms as well� Since an empty list of arguments corre�
sponds to the sole symbol �	 our solution will consist in extending the set of ���terms	 with terms of the
form ��L�M �in de Bruijn notation� where L is built as a �list� of terms	 say N� � � �Np continued with
��variable �� Let us note L � N� j � � � j Np j �� Such terms will be called sequences� The substitution
mechanism extends trivially to sequences by �A j L�hsi � Ahsi j Lhsi� Let us consider again the empty
sequence case� It is twofold� ��N���� � � if �
� �	 and N j � otherwise� The corresponding rules will
be easy to express now� In order to complete the substitution process	 it remains to communicate the
waiting arguments of the sequences to the term� This is done through the new rule �A j L�M � �L��M A��

We still have to �nd a convenient solution for the creation of the substitution s � �N���� itself� When
a ��redex is contracted	 the ��binder vanishes� This is not the case for ��redexes	 as already noticed�
���M � N � is reduced into ��M hsi for some substitution s� So we get s � �� � � �� �� But s should
not be identi�ed with a lifted substitution	 since it depends also on N � Therefore	 we must propose a
new notation� Let us write s � N � Id or s � N h�i � Id if we choose to relocate by anticipation	
the free variables of N � The latter form has been chosen� The general form of this new substitution is
M � s � �� � � �� �	 where s � �� � � �� � and the free variables of M belong to �� �� It remains to
give some details about its action on variables� The result must be a sequence	 anyway� Following the
above explanations	 �hM � si will rewrite to M j �hsi and n��hM � si to n��hsi� In accordance with this
de�nition	 �hN� � � � � � Np � si is reduced to N� j � � � j Np j ��hsi�� Therefore	 ����T �hN� � � � � � Np � si
rewrites into ����T hN� � � � � � Np � si N� � � � Np�	 as expected�

The second rule we retain from the ���calculus is �	 called a renaming rule� However	 at the light of
the previous analysis	 the � rule has also the meaning of connecting two �channels� on which sequences
of arguments are communicated� In our �enriched� ���calculus this reduction rule will substitute	 in the
usual sense	 a ��variable � by any sequence L� Therefore	 the reduction �L���M � M �L��� is taken
into account through the rewrite rule �L��M �M hL � Idi�

De�nition ��� The set �Menv of terms and substitutions is inductively de�ned by�

Terms M ��� X j n j �M M � j �M j �M j �M �M j �M jM � j M hsi where n � N
Substitutions s ��� x j Id j � j ��s� j M � s j M � s j s � s

where X is a variable for terms� and x a variable for substitutions� The full ��env rewrite system is
de�ned by the rules given in table �� New rules are shown in table ��

!

The language is an extension of the language �env from �HaLe���� It is called �Menv although it
actually contains more terms than the ones corresponding to terms of the ���calculus� terms are coded
using integers	 with the confusing e�ect already pointed out�

An example Let N be any term� We note N� for N h�i	 N�� for N h� � �i	 etc� � �Only one rule is
applicable to your term� We trace the main steps of the rewriting of T �

T � ������� ������ ��� N � �Mu�
� ������� ������ ����hN� � Idi �NamedTerm�	 where s � N� � Id
� ���hN� � Idi��� ������ ���hsi �FRefArg�
� ��N� j �hIdi��� ������ ���hsi �IdEnv�	�SeqApp�	�AppTerm�
� ������hsi ������� ���hsi N�� �RRefArg�	�IdEnv�	�MuTerm�	�NamedTerm�
� ������ ���h��s�i��� ��h��s�i N�� �AppTerm�	�RRefLift��
� ������ ���hs � �i��� ��h��s�i N�� �FRefArg�	�IdEnv�	�RefShift��
� ������ ��N�h�i j ���� ��h��s�i N�� �SeqApp�
� ������ ������� ��h��s�i N��� N�� �AppTerm�	�RRefLift��	�RRefArg�	�IdL�	�RefShift��
� ������ ������ �h��s�i N��� N�� �RRefLift��	�RRefArg�	�IdL�	�RefShift��
� ������ ������ � N��� N�� That�s all folks�

��� The Subst subsystem

We restrict our attention to the sub�rewrite system related to substitutions� The following results imply
the con�uence property as a corollary�

De�nition ��� Subst is the rewrite system obtained from ��env by removing the reduction rules� Beta�
Mu and Rho�

Proposition ��	 The Subst system is weakly con�uent and terminating�

Proof The proof follows closely �HaLe���� For proving weak con�uence we made use of the KB system	
developed at INRIA	 in its version implemented in CAML�LIGHT� The proof of termination is based
on a polynomial interpretation of terms and substitutions� It is a straightforward adaptation of the
interpretation for �env given in �HaLe���� to each term"substitutionA is associated the pair �f�A�� g�A���

f�n� � �n g�n� � �
f�M M � � f�M � # f�N � g�M N � � g�M � # g�N � # �
f��M � � f�M � # � g��M � � �g�M �
f��M � � f�M � # � g��M � � �g�M �

f��L�M � � f�L� # f�M � # � g��L�M � � �g�L� # g�M �

f�M j L�� f�M � # f�L� g�M j L�� g�M � # g�L� # �

f�M hsi� � f�M �f�s� g�M hsi� � g�M ��g�s� # ��
f�Id� � � g�Id� � �
f��� � � g��� � �
f���s�� � s g���s�� � �g�s�
f�M � s� � f�M � # f�s� g�M � s� � g�M � # g�s� # �
f�M � s�� f�M � # f�s� # � g�M � s�� g�M � # �g�s�

f�s � t� � f�s�f�t� g�s � t� � g�s��g�t� # ��

where new cases are marked by
� Pairs are ordered under the lexicographic ordering� The set �Menv

is proved to be well�founded with respect to this relation� The termination property follows� �

$

��� Con�uence for ��env

For the purpose of the proof of con�uence	 the following parallel reduction
B

� 	 also written B	 is
introduced on �Menv�

M BM

M BM � N B N �

�M N � B �M � N ��

M BM �

�M B �M �

M BM � L B L�

�L�M B �L��M �

M BM � L B L�

M j L BM � j L�

M BM �

�M B �M �

s B s

s B s� t B t�

s � t B s� � t�
s B s�

��s� B ��s��

M BM � s B s�

M � s BM � � s�
M BM � s B s�

M � s BM � � s�
M BM � s B s�

M hsi BM �hs�i

N B N � L B L� M BM �

�N j L�M B �L���M � N ��

M BM � N B N �

��M N � BM �hN � � Idi

M BM � N B N �

��M N � B �M �hN �h�i � Idi

M BM � L B L�

�L��M BM �hL� � Idi

Lemma ��� The parallel reduction B is strongly con�uent�

Proof Since B provides a left linear system with no critical pairs� �

Proposition ��
 Let A� B� C be elements of �Menv� The following diagram holds�

A
B

� B
������S

�

�������

S�

C ������
S� B S�

� ������� D

Proof When the two steps starting from A make no critical pair	 the proposition is straightforward� So	
we have to inspect the possible �critical pairs� in a sense adequate with the parallel reduction B� The

proof is therefore by case on the derivation A
S
� C� Let us treat a single example when A � �M N �hsi

reduces to C � �M hsi N hsi�� Then�

 A � �M N �hsi
B

� �M � N ��hs�i � B� take D � �M �hs�i N �hs�i��

 A � ��P N �hsi
B

� P �hN � � Idihs�i � B� take D � P �hN �hs�i � s�i�

 A � ��P N �hsi
B

� ��P �hN �h�i � Idi�hs�i � B� take D � �P �hN �hs� � �i � ��s��i�

�

Theorem ��� The ��env rewrite system is con�uent�

Proof Remark �rst that ��env � S� B S� � ��env� So	 the proof is mainly a diagram chasing
problem� See �HaLe��	 CHL��� for details and further references� �

� Lambda�Mu Calculus as a sub�theory of ��env

The idea of this section is that our calculus codes too much terms than actually introduced in ���calculus�
With the help of a formal system which gives sorts to the ground objects which will considered as well�
formed from the point of view of the present study	 we recover exactly as normal forms the terms of the
���calculus� Thus	 we obtain simulation results analogous to the one presented in �HaLe����

�

a�u � w a � fl� mg

w � a�u � a Id � w � w

w�l �M � l

w � �M � l

a � fl� mg

�a � w�a � w

w�m �M � l w�m � L � m

w � ��L�M � l

u �M � a a � fl� mg s � u � v

M � s � u � v�a

w �M � l w � L � m

w � M j L � m

s � u � v a � fl� mg

�a �s� � u�a � v�a

w �M � l s � v � w

v �M hsi � l

u �M � l s � u � v�m

M � s � u � v�m

s � u � v t � v � w

s � t � u � w

Table �� Sorted system for ��env�

	�� A sorted system

An alternative approach to de Bruijn coding is well �tted to our metamathematical study of the simula�
tion� Considering that integers also code sequences with an one�letter alphabet	 we simply introduce a
coding consisting in words form with a two letters alphabet	 say fl�mg� de Bruijn original idea consisted
in relating each occurrence of a variable with its distance to its binder� But here	 we can cross two sorts
of binders� Therefore	 the coding will consist in using letter l �resp� m� when ��binder �resp� ��binder� is
crossed� We choose arbitrarily the binder�to�variable way for the word code in that case	 the �rst letter
gives the sort of the variable� In every case	 words coding variable positions are non empty� This is the
heart of our sorted system�

So let us introduce the set W as fl� mg
	 and W� � fl� mg#� The empty word is �	 and construction
of words is allowed through the operation a�w	 where a � fl� mg and w � W� We allow for � as an
operation of concatenation as well� The set W is partially ordered by the relation u � v if there exists
x �W such that v � w�u this operation is unde�ned otherwise�

We de�ne �Menv� as the set of well�formed terms	 sequences and substitutions inductively de�ned
through the sorted system presented in table �� Terms of sort l �resp� m� are terms	 resp� sequences	
and terms of sort u � v are substitutions� The set of well formed terms is denoted �Mterms��

In this new setting	 our previous example

M � �x�f�������f �	����f x�� N �

is coded as
M � �����m��lm ��mm��lmm llmm� N �

Since the calculus is embedded in ��env	 the relevant rewrite rules should not have to be precised�
Moreover	 the following proposition shows �Menv� is actually closed under the reductions rules intro�
duced in section �	 table ��

Proposition
�� Let A � �Menv�� If A� B by application of a rewrite rule� then B � �Menv��

Proof It is su�cient to observe that the rewrite rules preserve the sort given to A � �Menv�	 and to
check the case where �A�B� is a rule� �

When introducing this sorted system	 the intention was to keep from �Menv only those ground
terms which correspond to true ���terms� But substitutions may still exist in these ground terms� So

�

we must concentrate on terms which are in normal form with respect to the subset �Subst� of rewrite
rules related to the substitution process� The Subst�normal form of an element A � �M �or �Menv�� is

noted snf �A	� This notation extends naturally to subsets� The Subst�derivation will be written
S
�

as well� We get

Proposition
�� Subs�normal forms in �Menv� are as follows�

Terms M ��� l�w j �M j ��m�w�M j �M M �
Sequences L ��� m�w j �M j L�
Substitutions s ��� M � s j L � s j t j M � u
where t ��� �w �s� � �w

and u ��� t j M � u

where w � W� We allow ourselves the convention that Id is erased in compositions� The following
abbreviations are used� �a��w �s�� � �w�a �s� and �a � �w � �a�w �

Proof The proof is by structural induction� For a term	 we have to show that it can not contain any
substitution� a sub�term with the shape M hsi� For a substitution it is su�cient to study the case s � t	
and to discuss on the structure of s� The part played by the sorts for this result is central� Without
them	 it would have been impossible to avoid normal forms like ��s��M � t	 although such a substitution
cannot appear through a regular substitution process� With respect to terms	 this importance has been
already emphasized� �

As a corollary	 notice that ground terms in Subst�normal form are exactly ���terms	 as expected�
from now on	 we identify the sets �M of ���terms and snf ��Mterms�	�

	�� Substitutions in de Bruijn setting

Before the simulation results	 we de�ne the substitution mechanisms for the subset of well�formed terms	
sequences and substitutions� In agreement with our more precise notation	 they are translated as Mfw �
Ng and Mfw 	 Ng respectively� Let us make precise the de�nitions�

ufw � Pg �

��
�

�u � l�w��w if u � l�w

tw� �P � if u � w

u if u � varw
�M N �fw � Pg � �Mfw � Pg Nfw � Pg�
��M �fw � Pg � �Mfw�l � Pg

���u�M �fw � Pg � ��u�Mfw�m� Pg

and
ufw 	 Pg � u

�M N �fw 	 Pg � �Mfw 	 Pg Nfw 	 Pg�
��M �fw 	 Pg � �Mfw�l 	 Pg

���u�M �fw 	 Pg �

�
��p��Mfw�m	 Pg tw�m� �P �� if u � w

��u�Mfw�m	 Pg if u
� w

For the lifting operation	 we get�

tw
v
�u� �

�
u�w if u � v

u otherwise
tw
v
�M N � � �tw

v
�M � tw

v
�N ��

tw
v
��M � � �tw

v�l
�M �

tw
v
���u�M � � ��tw

v�m
�u��tw

v�m
�M �

	�� Simulation results

The following de�nition gives the simulated reduction for ���terms within ��env�

��

De�nition
�	 Let M � N � �M� The simulated reductions are given by�

� M
Sim�
�� N i
 M

�Beta�
�� P and N � snf �P �

� M
Sim�
�� N i
 M

�Mu�
�� P and N � snf �P �

� M
Sim�
�� N i
 M

�Rho�
�� P and N � snf �P �

We start by the following key lemma�

Lemma
�� Let u� v� w �W� s�M � �M� We get

 If u � v and w � v� then uh�w �s�i
S�

� u�vh�w�v �s� � �v i�

 tw
v
�M � � snf �M h�v ��w�i��

We prove that these de�nitions actually give simulations for the usual reductions�

Theorem
�
 For any terms M � N � �Menv� and r � f�� �� �g� M
r
�� N i
 M

Simr
�� P �

Proof The proof follows �HaLe��	 CHL���� We �x arbitrarily r � � in the discussion� The key point

is the following� Let M � � � � ��A B� � � �� Assume M
�
� N and M

Sim�
�� Q� Then N � � � ���Afm 	

Bg� � � � and Q � snf �� � ��AhBh�m i � Idi � � �	� But M � �Mterms�	 and so �Subst��redexes can only be
created in the subtree where the ��redex is contracted� So Q � � � �snf ��AhBh�m i � Idi	 � � �� Therefore	
given u� v� w �W and M�N � �Menv�	 we are left to prove Mfw 	 Ng � snf �M�w�N h�mi � Id�	� At
this point	 the preceding lemma is used�

�

Conversely	 we want now to relate rewrite rules corresponding to reductions rules with �simulated�
reductions on ���terms�

Theorem
�� For any A� B � �Menv� the following diagram holds�

A
��env�

� B

S�

� �

S�

snf �A� �����
���

�

� ������ snf �B�

Proof It su�ces to show	 for each �Red� � f�Beta�� �Mu�� �Rho�g	 that the corresponding simulated

relation
Simred
�� satis�es the following diagram�

A
�Red�

� B

S�

� �

S�

snf �A	 ��� ��
Simred�

� ������ snf �B	

The proof is by induction on the pairs �size�M �� length�M �� ordered lexically	 where size�M � is the
size of the abstract syntax tree coding M and length�M � is the maximal length of a Subst��reduction
starting from M � We proceed by case on the structure of A� The proof is tedious	 and brings no new
di�culty	 compared to �CHL���� �

��

� Conclusion and further developments

In �HaLe���	 a con�uent rewrite system has been proposed as a theoretical basis for the modelisation of
implementations of the ��reductions� This work relies on the �pure� ��calculus as a paradigm of �pure�
functional programming languages� �env provides a good theoretical framework to study the abstracts
properties of implementations of these languages�

Our starting point has been to extend this result to Parigot�s ���calculus� This choice is strongly
motivated� On the one hand	 this calculus has been given a solid logical justi�cation	 and it captures
the computational contents from proofs for a natural deduction system with multiple conclusions	 which
allows to develop proofs in classical logic� And the ���calculus shares the same properties as the ��
calculus� con�uence	 and strong normalization when it is a relevant question� On the other hand	 the
link between classical proofs and the use of control structures in functional languages has been strongly
established� Thus	 we have considered the ���calculus as a good candidate as a paradigm for the functional
programming languages extended with control structures� sub parts of Caml and Scheme for example�
From that point of view	 the extension of Hardin�L�evy work to this calculus is a �rst step�

In this paper	 we proposed a con�uent rewrite system ���env�	 containing �env and as close as
possible to the presentations of the ���calculus given in �Par��	 Par���� Our results extend those given
for �env	 and allow similarly to consider the ���calculus as a sub�theory of ��env� However	 the
introduction of a sorted system has shown necessary in order to avoid the confusion between ��variables
and ��variables� In the meantime	 this study has brought to light some aspects of the ���calculus� The �
rule	 called renaming rule	 should be actually considered as a full reduction rule� And the syntax for ���
terms enriched in a natural way	 with the introduction the sequence structure is closer to the actual speci�c
substitution introduced by Parigot� Sequences allows the substitution process to be explicited� Moreover	
it can be observed that our syntactical treatment meets the technical tools developed in �Par��� for the
purpose of proving strong normalization property� Therefore	 this work seems to o�er a better view on
the initial ���calculus� In �Au���	 we develop these remarks� Also	 according to our initial motivation	 we
propose di�erent environment machines for the implementation of the functional programming languages
extended with control structures�

Acknowledgments

Thanks to Christine Paulin and Eduardo Gimenez for their attentive reading� Special thanks to Elena
Zucca for her numerous comments and suggestions on a previous version of this paper�

References

�ACCL��� M� Abadi	 L� Cardelli	 P��L� Curien	 J��J� L�evy	 Explicit Substitutions� ACM conference on
Principles of Programming Languages	 San Francisco	 �����

�Au��� P� Audebaud	 Environment machines for functional languages extended with control structures�
ENS�Lyon Research Report in preparation�

�CHL��� P��L� Curien	 T� Hardin	 J��J� L�evy	 Con�uence properties of weak and strong calculi of explicit
substitutions� INRIA Research Report �����

�Gri��� T� Gri�n	 Y formulae�as�types notion of control 	 Proceedings of POPL	 �����

�Gro��� Ph� de Groote	 On the relation between the ���calculus and the syntactic theory of sequen�
tial control � In F� Pfenning ed	 Proceedings of �th International Conference	 LPAR���	 Kiev
�Ukraine�� LNAI ���

�HaLe��� T� Hardin	 J��J� L�evy	 A con�uent calculus of substitutions	 France�Japan Arti�cial Intelligence
and Computer Science Symposium	 Izu	 �����

�Par��� M� Parigot	 ���calculus� an algorithmic interpretation of Classical Natural Deduction� Proc�
International Conference on Logic Programming and Automated Reasoning	 St Petersburg
�Russia� ����� Springer�Verlag LNCS ���	 pp ��������

��

�Par��� M� Parigot	 Strong normalization for the second order classical natural deduction� In Proceed�
ings of the eight annual IEEE symposium on Logic in Computer Science	 LICS����

�Par��� M� Parigot	 Classical Proofs as Programs� In G� Gotlod	 A� Leitsch and D� Mundici eds�	
Proceedings of the third Kurt G%odel Colloquium KGC���� LNCS �		�

��

Beta ��M N � � M hN � Idi
Mu ��M N � � �M hN h�i � Idi
Rho �L���M � � M hL � Idi
SeqApp �N j L�M � �L��M N �
LamTerm ��M �hsi � �M h��s�i
MuTerm ��M �hsi � �M h��s�i
AppTerm �M N �hsi � �M hsi N hsi�
NamTerm ��L�M �hsi � �Lhsi�M hsi
SeqTerm �M j L�hsi � M hsi j Lhsi
Closure M hsihti � M hs � ti
IdEnv M hIdi � M
RefShift� nh�i � n��

RefShift� nh� � si � n��hsi
FRefLift� �h��s�i � �

FRefLift� �h��s� � ti � �hti
RRefLift� n��h��s�i � nhs � �i
RRefLift� n��h��s� � ti � nhs � �� � t�i
FRefMap �hM � si � M
RRefMap n��hM � si � nhsi
FRefArg �hM � si � M j �hsi
RRefArg n��hM � si � n��hsi
LiftId ��Id� � Id
MapEnv M � s � t � M hti � �s � t�
ArgEnv M � s � t � M hti � �s � t�
ArgMap M � �L � s� � �M j L� � s
LiftLift� ��s� � ��t� � ��s � t�
LiftLift� ��s� � ���t� � u� � ��s � t� � u
LiftMap ��s� �M � t � M hti � �s � t�
LiftArg ��s� �M � t � M � ���s� � t�
ShiftMap � �M � s � s
ShiftArg � �M � s � � � s
ShiftLift� � � ��s� � s � �
ShiftLift� � � ���s� � t� � s � �� � t�
IdL Id � s � s
IdR s � Id � s
AssEnv �s � t� � u � s � �t � u�

Table �� The full ��env rewrite system

��

