Philippe Audebaud
email: paudebau@lip.ens-lyon.fr

Explicit Substitutions for the Lambda-Mu Calculus

Keywords: Rewrite systems, Lambda-Mu Calculus R esum e Syst emes de R ecriture, Lambda-Mu Calcul

We present a con uent rewrite system which e x t e n ts a previous calculus of explicit substitutions for the lambda-calculus HaLe89] to Parigot's untyped lambda-mu-calculus Par91]. This extension embeds the lambda-mu-calculus as a sub-theory, and provides the basis for a theoretical framework to study the abstract properties of implementations of functional programming languages enriched with control structures. This study gets also some interesting feedback o n l a m bda-mu-calculus on both the syntactical and semantics levels.

Introduction

The correspondence between proofs and programs plays a major role in Computer Science, because it provides solid mathematical models for the study of functional programming languages. The starting point is the Curry-Howard correspondence for the intuitionistic proofs their contructive nature allows an easy computational interpretation. The resulting programs can be coded into the (pure) lambda-calculus. Therefore, the lambda-calculus appears as the paradigm for the (pure) functional programming languages. A functional program consists in a set of applications of functions to arguments. The replacement of the formal parameters of functions is represented by the beta-reduction within the lambda-calculus. However, the substitution mechanism is not simple, as it is necessary to take i n to account the scope of functions, and to take care of the possible clashes between names. These practical questions are hidden behind the implicit operation of substitution of variables by lambda-terms in the Church's lambda-calculus. Thus, in order to allow modelisation of implementations of the -reductions, it is necessary to explain the substitution process, that is to say, t o m a k e i t explicit. Of course, other approaches are possible: the Combinatory Logic for example, which eliminates bound variables, hence the problem. We c hoose to work in the -calculus itself, to take advantage of the intuitive clarity o f t h e -notation, and of the power that this syntax conveys at the mathematical level as well as the practical one.

In HaLe89], a calculus of explicit substitutions, named env, is proposed. It is a con uent rewrite system, strongly normalizing on the sub-system dealing with the substitution process. This system is an improvement o f A CCL90] and is also based on the crucial distinction between terms and substitutions. The lambda-theory (with lambda-terms coded using de Bruijn's notation) is embedded as a sub-theory into the extended calculus. All these results make t h e env-calculus a nice theoretical framework for the study of the abstract properties of implementations of functional languages: correctness, optimization for example.

At this point, one has at one's disposal a mathematical model taking into account the dynamic aspects of the previous correspondence between intuitionistic proofs and programs. But, for 0 2 statements, classical and intuitionistic provability coincide. Therefore, classical proofs are also candidates for being programs. What is the right c o u n terpart from the point of view of the programming languages? Classical logic appears to be an adequate framework for modeling the imperative features of these programming This research w as partly supported by ESPRIT Basic Research Action \Types for Proofs and Programs" and by the Programme de Recherche Coordonn ees and CNRS GDR \Programmation". 1 languages. The link between classical logic and functional languages has been established few years ago by G r i n i n G r i 9 0], where Felleisen's generic control operator is given the type ::A ! A. T h i s correspondence is however more di cult to establish, in this wider setting. This is explained in Par93], where Parigot advocates the interest of his lambda-mu-calculus in this area, and also the di culties encountered. This calculus is an extension of the -calculus, and shares the same properties of con uence and strong normalization -when this point m a k es sense. It provides the computational interpretation for classical proofs developed in a natural deduction system with multiple conclusions Par91, P ar93]. Actually, \Mu" comes from the introduction of a new kind of variables, introduced precisely for dealing with the labeling of the di erent f o r m ulae on the right side of a judgment. We do not go into full details, but insist on the fact that this system is strongly justi ed from the logical point of view. From our point of view, it can be considered as an serious candidate for studying and perhaps establishing completely the correspondence we are looking for between classical proofs and programs using control structures.

On this basis, we propose a rewrite system env, w h i c h extends the env system HaLe89] for the purpose of providing a system of explicit substitutions for Parigot's -calculus. We get the same properties: con uence and termination for the sub-system dealing with the (more complex) process of substitution. The -calculus is proved being embedded as a sub-theory into the rewrite system. So, we are in position to develop theoretical and practical issues suggested above, but now for the study of functional programming languages extended with control structures this is undertaken in Au94].

Section 2 gives a brief overview of both the -calculus in the de Bruijn setting and env rewrite system. This will help introducing and understanding most of the notations. Section 3 presents Parigot's -calculus. We give only a short description of the calculus, mainly from the computational point of view. A rst translation using de Bruijn's notation is presented. The presentation of the envcalculus is given in section 4. Informal explanations are provided, and the properties of the calculus are established. Section 5 states some simulation results which e n tails the embedding of Parigot's -calculus as a sub-theory of env.

A quick o verview of the env-calculus

We i n troduce the -calculus with de Bruijn's notation. Then a short presentation of Hardin-L evy envcalculus is given, with its main properties.

2.1 Church's -calculus in de Bruijn's notation de Bruijn's idea is to replace each v ariable occurrence by a n i n teger measuring its binding height t o the corresponding . F or example, x:(y:x x) is represented as (2 1), since x has two di erent occurrences, with di erent binding heights. This way, e a c h f r e e v ariable occurring in a term M can be interpreted as a depth in a nite xed stack . This notation provides a mechanical treatment o f -conversion: informally, s u c h terms can be considered as canonical representative of the class of all terms identi ed modulo renaming of the bound variables.

Formally, the set of de Bruijn -terms is de ned by the grammar M ::= n j (M M) j M where n 2 N. In this new setting, the -reduction is described precisely as:

(M N) ! Mf1 Ng
The substitution process Mfn Pg, i n troduced by the reduction step, is de ned inductively by: pfn

P g = 8 < : p-1 if p > n t n 0 (P) if p = n p if p < n (M N)fn P g = (Mfn Pg Nfn Pg) (M)fn P g = Mfn+1 Pg
where the purpose of the operation t m i () is to lift the variable occurrences in order to make t h e m adequate: t m i (P) means that i binders have been crossed currently, and that the context in which M is now e m bedded makes its free variables referenced m-1 units deeper in the stack. This operation is de ned by:

t m i (p) = p+m-1 if p > i+1 p otherwise t m i (M N) = (t m i (M) t m i (N)) t m i (M) = t m
i+1 (M) This is well known, and we do not go into further details. Let us emphasize that this special de nition for the -reduction and substitution should be proved equivalent to the usual ones. See ACCL90, CHL92] for details.

Beta (M N) ! MhN Idi LamTerm (M)hsi ! Mh*(s)i AppTerm (M N)hsi ! (Mhsi Nhsi) Closure Mhsihti ! Mhs ti IdEnv MhIdi ! M RefShift1 nh"i ! n+1 RefShift2 nh" si ! n+1hsi FRefLift1 1h*(s)i ! 1 FRefLift2 1h*(s) ti ! 1hti RRefLift1 n+1h*(s)i ! nhs " i RRefLift2 n+1h*(s) ti ! nhs (" t)i FRefMap 1hM si ! M RRefMap n+1hM si ! nhsi LiftId *(Id) ! Id MapEnv M s t ! Mhti (s t) LiftLift1 *(s) * (t) ! *(s t) LiftLift2 *(s) (*(t) u) ! *(s t) u LiftMap *(s) N t ! MhN ti (s t) ShiftMap " M s ! s ShiftLift1 " * (s) ! s " ShiftLift2 " (*(s) t) ! s (" t) IdL Id s ! s IdR s Id ! s AssEnv (s t) u ! s (t u)
Table 1: The env rewrite system

Hardin-L evy env-calculus

The rewrite system env distinguishes terms and substitutions. T erms are built using de Bruijn's notation. The action of the substitution s on the term M is written Mhsi. The basic idea for understanding the interaction between terms and substitutions is to think about the usual contraction of a -redex. Such a c o n traction creates (or emits) a speci c substitution s: let us write Redex ! Mhsi. Then depending on the structure of M, this action is propagated towards the variable positions where it is absorbed (or received). So the action of s depends on the stack which includes the free variables of M, and the result is de ned on the basis of a particular stack ;, which is only dependent o n s. Therefore, s can be seen as a morphism in that case s : ; ! . Composition is a partial operation on substitutions, written s t, w i t h Idas neutral element for this operation.

Let us introduce some special substitutions. The e ect of the shift substitution " is to increase by one an integer variable, meaning that the free variables of Mh"i are simply located one unit deeper in the stack. As a morphism, it can be considered as " : x ! , for any stack and new variable x.

The lift operator on the substitution s : ; ! provides a new substitution *(s) : ; x ! x , where

x is a new variable. *(s) l e a ves unchanged the top of the stack. So 1h*(s)i rewrites to 1. O n v ariables n+1, that is to say the ones in the stack , the action is merely the same as the action of s. H o wever, we m ust keep in mind that the free variables of the results are pushed one unit deeper in the stack ; x . Thus, n+1h*(s)i rewrites to nhs " i .

The substitution created by the contraction of a redex is still unde ned. Given (x:M N) ! Mhsi, let us try to make s more precise. As a morphism, we h a ve clearly s : ! x . W e c a n e v en see that s extends the identity substitution Id: ! , due to the left hand expression. The substitution s could therefore be written N Id. More generally, given s : ; ! a n d a n y t e r m M whose free variables belong to ;, we de ne the cons M s : ; ! x , w h e r e x is a fresh variable. Its action on variables should be clear: the top variable is replaced by M, and it behaves as s with respect to the other ones.

Last but not least, env allows for free term-variables and substitution-variables, not to be confused with the free variables of a term! Formally, the set env of terms and substitutions is de ned inductively as follows: Terms M ::= X j n j (M M) j M j Mhsi where n 2 N Substitutions s ::= x j Idj " j * (s) j M s j s s where X is a variable for terms, and x a v ariable for substitutions. The env rewrite system is de ned by the rules given in table 1. The rewrite rules have been explained informally above. Let us notice that some rules are \duplicated": su xes 1 2 are appended somewhere. The introduction of the pairs of rules with pattern like (XXX1) and (XXX2) is needed for ensuring the con uence property. Actually, the second one is introduced automatically by K n uth-Bendix completion process. The secondary rules can therefore be ignored at the rst reading.

Since our study follows very closely Hardin-L evy's, the main properties will appear as special cases of the results presented here. Therefore, we d o n o t g i v e them in full details, but rather refer to HaLe89] for a complete presentation of the system and its own main properties.

Terms T ::= x j (T T) j x:T j T 0 Named T 0 ::=]T where x (resp.) ranges over -variables (resp. -variables). As , is a binding operator: free occurrences of the -variable in the (named) term T 0 become bound in T 0 .

Besides the usual notion of reduction , there is a structural notion of reduction a n d w e will also consider a renaming rule , de ned as: (]M 0 N) ! ((]M 0) N= ?])] M 0 ! M 0 =] where the substitution N=x] of the term N for the variable x is well-known, and the substitution N= ?] of the term N for the -variable in the term M consists in replacing recursively each occurrence of a sub-named term]T in M by the sub-named term](T N). Again, we shall admit that these de nitions agree with the usual ones. This fact can be proved, following CHL92] for instance.

In Par91, P ar93] several examples are provided, and interesting properties of the calculus are shown when a type assignment i s i n troduced. Moreover, Gro94] gives an interesting link between this calculus and the former Felleisen's c -calculus.

Our favorite example This example has no special signi cance from the point of view developed in this paper. One may notice, however, that this classical term is strongly related to the intuitionistic term 1 x f:(f x) P ar93]. We i n troduce the terms T (](f](f x)) N) a n d M x f:T. We get:

T (](f](f x)) N) reduction ! (](f](f x))) N= ?] substitution step ! (](f](f x N) N)
de Bruijn coding consists in representing each occurrence of a variable by its distance to the related binder. In our particular case, the set M of -terms, in de Bruijn notation is: Terms T ::= n j (T T) j T j T 0 where n 2 N Named T 0 ::= n]T

We note that this obvious translation erases the distinction between -variables and -variables. For example 2](2 1) is allowed and it can be seen as a de Bruijn term for x x](x), although it is not well formed in the -calculus. However, this is not so important, since -variables can appear only in places such a s]M. A n d w e can easily check for well formed terms informally. F or the purpose of the embedding, we will need a formal treatment (see section 5).

We extend the previously given operations by:

(p]M 0)fn P g = p]M 0 fn+1 Pg t m i (p]M 0) = t m i+1 (p)]t m i+1 (M 0) The and reductions are described precisely as follows:

(M 0 N) ! (M 0 f1 (Ng) p] M 0 ! M 0 f1 pg For the new substitution mechanism involved, we g e t :

pfn (P g = p (M N)fn (P g = (Mfn (Pg Nfn (P g) (M)fn (P g = Mfn+1 (P g (p]M 0)fn (P g = p](M 0 fn+1 (Pg t n+1 0 (P)

) if p = n p]M 0 fn+1 (Pg if p 6 = n
An example Let us consider how this applies to the preceding example, where t n+1

0 (N) N n : T (1](2 2](3 4)) N) -reduction rule ! (1](2 2](3 4)))f1 (Ng substitution rules ! 1]((2 2](3 4))f1 (Ng t 1+1 0 (N)) ! 1](2f1 (Ng (2](3 4))f1 (Ng N 1) ! 1](2 (2](3 4))f2 (Ng N 1) ! 1](2 2]((3 4)f2 (Ng t 2+1 0 (N)) N 1) ! 1](2 2](3 4 N 2) N 1)
4 The env rewrite system In this section, we give the formal presentation of our calculus and state its main properties: con uence of the full system and termination of the subsystem related to substitutions.

The full system

Before presenting the env rewrite system, let us underline the fact that we w anted to preserve t wo features proposed for env, of some particular interest. First, it is presented as a full rewrite system, with a simple polynomial interpretation which easily ensures termination. The con uence property o wes much to the introduction of the special operator lift in presence of -abstractions. Thus, our choices for the new rules and new constructions has been made to keep as much as possible the spirit of the env calculus. Now, some explanations about new term (resp. substitution) constructors, and the rules added in the new calculus. Both and reduction rule create substitutions. However, the one produced by t h e is already present from env. So, we concentrate on the substitution created through a -reduction.

Let us write informally s N= ? . W e consider the action (]M)hsi. The substitution s applies recursively, t h us simultaneously to the sub-term]M and to all its strict sub-named terms. We w ant t o write that (]M)hsi rewrites to](MhsiN), if = , and to]Mhsi otherwise. In a rewrite system, > (]M) N 1 = ?] N p = ?] consists in replacing recursively each occurrence of a sub-term]T of]M by](T N 1 N p). Thus, the intermediate structure should store a list of terms as well. Since an empty list of arguments corresponds to the sole symbol , our solution will consist in extending the set of -terms, with terms of the form L]M (in de Bruijn notation) where L is built as a \list" of terms, say N 1 N p continued with -variable . Let us note L N 1 j j N p j . Such terms will be called sequences. The substitution mechanism extends trivially to sequences by (A j L)hsi Ahsi j Lhsi. Let us consider again the empty sequence case. It is twofold: N= ?] = if 6 = , and N j otherwise. The corresponding rules will be easy to express now. In order to complete the substitution process, it remains to communicate the waiting arguments of the sequences to the term. This is done through the new rule A j L]M ! L](M A). We still have t o n d a c o n venient solution for the creation of the substitution s N= ?] itself. When a -redex is contracted, the -binder vanishes. This is not the case for -redexes, as already noticed: (M 0 N) is reduced into Mhsi for some substitution s. S o w e get s : ! . B u t s should not be identi ed with a lifted substitution, since it depends also on N. Therefore, we m ust propose a new notation. Let us write s N = I d o r s Nh"i = I d if we c hoose to relocate by a n ticipation, the free variables of N. The latter form has been chosen. The general form of this new substitution is M = s : ; ! , where s : ; ! and the free variables of M belong to ; . It remains to give some details about its action on variables. The result must be a sequence, anyway. F ollowing the above explanations, 1hM = s i will rewrite to M j 1hsi and n+1hM = s i to n+1hsi. In accordance with this de nition, 1hN 1 = = N p = s i is reduced to N 1 j j N p j (1hsi). Therefore, (1]T)hN 1 = = N p = s i rewrites into 1](T hN 1 = = N p = s i N 1 N p), as expected. The second rule we retain from the -calculus is , c a l l e d a renaming rule. However, at the light o f the previous analysis, the rule has also the meaning of connecting two \ c hannels" on which sequences of arguments are communicated. In our \enriched" -calculus this reduction rule will substitute, in the usual sense, a -variable by a n y sequence L. Therefore, the reduction L] M ! M L=] is taken into account through the rewrite rule L] M ! MhL Idi.

Mu (M N) ! MhNh"i = I d i Rho L](M) ! MhL Idi SeqApp N j L]M ! L](M N) MuTerm (M)hsi ! Mh*(s)i NamTerm (L]M)hsi ! Lhsi]Mhsi SeqTerm (M j L)hsi ! Mhsi j Lhsi FRefArg 1hM = s i ! M j 1hsi RRefArg n+1hM = s i ! n+1hsi ArgEnv M = s t ! Mhti = (s t) ArgMap M = (L s) ! (M j L) s LiftArg *(s) N = t ! M = (*(s) t) ShiftArg " M = s ! " s
De nition 4 . 1 The set Menv of terms and substitutions is inductively de ned by: Terms M ::= X j n j (M M) j M j M j M]M j (M j M) j Mhsi where n 2 N Substitutions s ::= x j Idj " j * (s) j M s j M = s j s s where X is a variable for terms, and x a variable for substitutions. The full env rewrite system is de ned by the rules given in table 4. New rules are shown in table 2.

The language is an extension of the language env from HaLe89]. It is called Menv although it actually contains more terms than the ones corresponding to terms of the -calculus: terms are coded using integers, with the confusing e ect already pointed out.

An example Let N be any term. We n o t e N + for Nh"i, N ++ for Nh" "i, e t c : : : Only one rule is applicable to your term. We trace the main steps of the rewriting of T :

T (1](2 2](3 4)) N) (Mu) ! (1](2 2](3 4)))hN + = I d i (NamedTerm), where s N + = I d ! 1hN + = I d i](2 2](3 4))hsi (FRefArg) ! N + j 1hId i](2 2](3 4))hsi (IdEnv),(SeqApp),(AppTerm) ! 1](2hsi (2](3 4))hsi N +) (RRefArg),(IdEnv),(MuTerm),(NamedTerm) ! 1](2 2h*(s)i](3 4)h*(s)i N +) (AppTerm),(RRefLift1) ! 1](2 1hs " i](3 4)h*(s)i N +) (FRefArg),(IdEnv),(RefShift1) ! 1](2 N + h"i j 2](3 4)h*(s)i N +) (SeqApp) ! 1](2 2]((3 4)h*(s)i N ++) N +) (AppTerm),(RRefLift1),(RRefArg),(IdL),(RefShift1) ! 1](2 2](3 4 h*(s)i N ++) N +) (RRefLift1),(RRefArg),(IdL),(RefShift1) ! 1](2 2](3 4 N ++) N +)
That's all folks.

The Subst subsystem

We restrict our attention to the sub-rewrite system related to substitutions. The following results imply the con uence property as a corollary.

De nition 4 . 2 Subst is the rewrite system obtained f r om env by removing the reduction rules: Beta, Mu and Rho.

Proposition 4.3 The Subst system is weakly con uent and terminating.

Proof The proof follows closely HaLe89]. For proving weak con uence we made use of the KBsystem, developed at INRIA, in its version implemented in CAML-LIGHT. The proof of termination is based on a polynomial interpretation of terms and substitutions. It is a straightforward adaptation of the interpretation for env given in HaLe89]: to each term/substitution A is associated the pair (f(A) g (A)):

f(n) = 2 n g(n) = 1 f(M M) =f(M) + f(N) g(M N) = g(M) + g(N) + 1 f(M) = f(M) + 2 g(M) = 2 g(M) f(M) = f(M) + 2 g(M) = 2 g(M) ? f(L]M) = f(L) + f(M) + 4 g(L]M) = 2 g(L) + g(M) ? f(M j L)=f(M) + f(L) g(M j L)=g(M) + g(L) + 1 ? f(Mhsi) = f(M)f(s) g(Mhsi) = g(M)(g(s) + 1) f(Id) = 2 g(Id) = 1 f(") = 2 g(") = 1 f(*(s)) = s g(*(s)) = 4 g(s) f(M s) = f(M) + f(s) g(M s) = g(M) + g(s) + 1 f(M = s)= f(M) + f(s) + 4 g(M = s)= g(M) + 2 g(s) ? f(s t) = f(s)f(t) g(s t) = g(s)(g(t) + 1)
where new cases are marked by ?. P airs are ordered under the lexicographic ordering. The set Menv is proved to be well-founded with respect to this relation. The termination property follows.

A sorted system

An alternative approach to de Bruijn coding is well tted to our metamathematical study of the simulation. Considering that integers also code sequences with an one-letter alphabet, we simply introduce a coding consisting in words form with a two letters alphabet, say fl mg. de Bruijn original idea consisted in relating each occurrence of a variable with its distance to its binder. But here, we can cross two sorts of binders. Therefore, the coding will consist in using letter l (resp. m) w h e n -binder (resp. -binder) is crossed. We c hoose arbitrarily the binder-to-variable way for the word code in that case, the rst letter gives the sort of the variable. In every case, words coding variable positions are non empty. This is the heart of our sorted system.

So let us introduce the set W as fl mg?, a n d W + f l mg+. The empty w ord is , and construction of words is allowed through the operation a.w, where a 2 f l mg and w 2 W. W e a l l o w f o r . as an operation of concatenation as well. The set W is partially ordered by the relation u v if there exists x 2 W such that v = w.u this operation is unde ned otherwise.

We de ne Menv as the set of well-formed terms, sequences and substitutions inductively de ned through the sorted system presented in table 3. Terms of sort l (resp. m) are terms, r e s p . sequences, and terms of sort u ! v are substitutions. The set of well formed terms is denoted Mterms .

In this new setting, our previous example

M x f(](f](f x)) N) is coded as M = (m](lm mm](lmm llmm) N)
Since the calculus is embedded in env, the relevant rewrite rules should not have to be precised. Moreover, the following proposition shows Menv is actually closed under the reductions rules introduced in section 4, table 4. Proposition 5.1 Let A 2 Menv . I f A ! B by application of a rewrite rule, then B 2 Menv . Proof It is su cient to observe that the rewrite rules preserve the sort given to A 2 Menv , and to check the case where (A B) is a rule.

When introducing this sorted system, the intention was to keep from Menv only those ground terms which correspond to true -terms. But substitutions may still exist in these ground terms. So De nition 5 . 3 Let M, N 2 M. The simulated r eductions are given by: M Sim ;! N i M (Beta) ;! P and N = snf (P) M Sim ;! N i M (Mu) ;! P and N = snf (P) M Sim ;! N i M (Rho) ;! P and N = s n f (P) We start by the following key lemma. Lemma 5.4 Let u v w 2 W, s M 2 M. W e g e t If u v and w v, t h e n uh* w (s)i S > u-vh* w-v (s) " v i. t w v (M) = snf (Mh* v (" w)i). We prove that these de nitions actually give simulations for the usual reductions.

Theorem 5.5 For any terms M, N 2 Menv and r 2 f g, M r ;! N i M Simr ;! P . Proof The proof follows HaLe89, CHL92]. We x arbitrarily r in the discussion. The key point is the following. Let M : : : (A B) : : : . Assume M > N and M Sim ;! Q. Then N : : : (Afm (Bg) : : :and Q snf (: : : AhBh" m i Idi : : :). But M 2 Mterms , and so (Subst)-redexes can only be created in the subtree where the -redex is contracted. So Q : : : snf (AhBh" m i Idi) : : : . Therefore, given u v w 2 W and M N 2 Menv , w e are left to prove Mfw (Ng = snf (M* w (Nh" m i = I d)). A t this point, the preceding lemma is used.

Conversely, w e w ant n o w to relate rewrite rules corresponding to reductions rules with (simulated) reductions on -terms. The proof is by induction on the pairs (size(M) length(M)) ordered lexically, where size(M) is the size of the abstract syntax tree coding M and length(M) is the maximal length of a Subst ? -reduction starting from M. W e proceed by case on the structure of A. The proof is tedious, and brings no new di culty, compared to CHL92].

Conclusion and further developments

In HaLe89], a con uent rewrite system has been proposed as a theoretical basis for the modelisation of implementations of the -reductions. This work relies on the (pure) -calculus as a paradigm of (pure) functional programming languages. env provides a good theoretical framework to study the abstracts properties of implementations of these languages.

Our starting point has been to extend this result to Parigot's -calculus. This choice is strongly motivated. On the one hand, this calculus has been given a solid logical justi cation, and it captures the computational contents from proofs for a natural deduction system with multiple conclusions, which allows to develop proofs in classical logic. And the -calculus shares the same properties as thecalculus: con uence, and strong normalization when it is a relevant question. On the other hand, the link between classical proofs and the use of control structures in functional languages has been strongly established. Thus, we h a ve considered the -calculus as a good candidate as a paradigm for the functional programming languages extended with control structures: sub parts of Caml and Scheme for example. From that point of view, the extension of Hardin-L evy work to this calculus is a rst step.

In this paper, we proposed a con uent rewrite system (env), containing env and as close as possible to the presentations of the -calculus given in Par91, Par93]. Our results extend those given for env, and allow similarly to consider the -calculus as a sub-theory of env. However, the introduction of a sorted system has shown necessary in order to avoid the confusion between -variables and -variables. In the meantime, this study has brought t o l i g h t some aspects of the -calculus. The rule, called renaming rule, should be actually considered as a full reduction rule. And the syntax forterms enriched in a natural way, with the introduction the sequence structure is closer to the actual speci c substitution introduced by P arigot. Sequences allows the substitution process to be explicited. Moreover, it can be observed that our syntactical treatment meets the technical tools developed in Par93] for the purpose of proving strong normalization property. Therefore, this work seems to o er a better view on the initial -calculus. In Au94], we d e v elop these remarks. Also, according to our initial motivation, we propose di erent e n vironment machines for the implementation of the functional programming languages extended with control structures.

 w.a ! w w.m `M : l w.m `L : m w ` L]M : l u `M : a a 2 f l mg s : u ! v M s : u ! v.a w `M : l w `L : m w `M j L : m s : u ! v a 2 f l mg * a (s) : u.a ! v.a w `M : l s : v ! w v `Mhsi : l u `M : l s : u ! v.m M = s : u ! v.m s : u ! v t : v ! w s t : u ! w

Theorem 5. 6

 6 For any A, B 2 Menv the following diagram holds: Proof It su ces to show, for each (Red) 2 f (Beta) (Mu) (Rho)g, that the corresponding simulated relation Simred ;! satis es the following diagram:

Table 2 :

 2 The additional rewrite rules these two operations will be completely separated. Hence, an intermediate data structure is required, able to store the possible argument N until M possibly recovers it. Towards a convenient solution, we can observe that a -binder never disappears, hence any list of arguments, say N 1 N

p (p 0) may b e passed to places]T occuring in]M. Hence the e ect of the derivation (]M N 1 N p) ?

Table 3 :

 3 Sorted system for env

Parigot's pure -calculusWe brie y present P arigot's calculus, and give a de Bruijn translation for this extension of the usual -calculus. We recall the more usual reductions for this calculus, and their traduction in the de Bruijn setting.The sets of -terms and named terms, is inductively de ned by:

Acknowledgments

Thanks to Christine Paulin and Eduardo Gimenez for their attentive reading. Special thanks to Elena Zucca for her numerous comments and suggestions on a previous version of this paper.

Con uence for env

For the purpose of the proof of con uence, the following parallel reduction B > , also written B, i s introduced on Menv:

s B s s B s 0 t B t 0 s t B s 0 t 0 s B s 0 *(s) B *(s 0) M B M 0 s B s 0 M s B M 0 s 0 M B M 0 s B s 0 M = s B M 0 = s 0 M B M 0 s B s 0 Mhsi B M 0 hs 0 i

The parallel reduction B is strongly con uent. Proof Since B provides a left linear system with no critical pairs. Proposition 4.5 Let A, B, C be elements of Menv. The following diagram holds:

S B S > D Proof When the two steps starting from A make no critical pair, the proposition is straightforward. So, we h a ve to inspect the possible \critical pairs" in a sense adequate with the parallel reduction B. The proof is therefore by case on the derivation A S > C . Let us treat a single example when A (M N)hsi reduces to C (Mhsi Nhsi). Then:

A (M N)hsi B > (M 0 N 0)hs 0 i B: t a k e D (M 0 hs 0 i N 0 hs 0 i).

A (P N)hsi B > P 0 hN 0 Idihs 0 i B: take D P 0 hN 0 hs 0 i s 0 i.

A (P N)hsi B > (P 0 hN 0 h"i = I d i)hs 0 i B: t a k e D P 0 hN 0 hs 0 " i = *(s 0)i.

Theorem 4.6 The env rewrite system is con uent. Proof Remark rst that env S B S env. So, the proof is mainly a diagram chasing problem. See HaLe89, CHL92] for details and further references.

5 Lambda-Mu Calculus as a sub-theory of env

The idea of this section is that our calculus codes too much terms than actually introduced in -calculus.

With the help of a formal system which gives sorts to the ground objects which will considered as wellformed from the point of view of the present s t u d y , w e recover exactly as normal forms the terms of the -calculus. Thus, we obtain simulation results analogous to the one presented in HaLe89].

we m ust concentrate on terms which are in normal form with respect to the subset (Subst) of rewrite rules related to the substitution process. The Subst-normal form of an element A 2 M (or Menv) i s noted snf (A). This notation extends naturally to subsets. The Subst-derivation will be written S > as well. We get Proposition 5.2 Subs-normal forms in Menv are as follows: Terms M ::= l.w j M j m.w]M j (M M) Sequences L ::= m.w j (M j L) Substitutions s ::= M s j L s j t j M = u where t ::= * w (s) " w and u ::= t j M = u where w 2 W . We allow ourselves the convention that Id is erased i n c ompositions. The following abbreviations are used: * a (* w (s)) * w.a (s) and " a " w " a.w . Proof The proof is by structural induction. For a term, we h a ve t o s h o w that it can not contain any substitution: a sub-term with the shape Mhsi. F or a substitution it is su cient to study the case s t, and to discuss on the structure of s. The part played by the sorts for this result is central. Without them, it would have been impossible to avoid normal forms like *(s) M = t , although such a substitution cannot appear through a regular substitution process. With respect to terms, this importance has been already emphasized.

As a corollary, notice that ground terms in Subst-normal form are exactly -terms, as expected.

from now on, we i d e n tify the sets M of -terms and snf (Mterms).

Substitutions in de Bruijn setting

Before the simulation results, we de ne the substitution mechanisms for the subset of well-formed terms, sequences and substitutions. In agreement with our more precise notation, they are translated as Mfw Ng and Mfw (Ng respectively. Let us make precise the de nitions: ufw Pg = 8 < :

(u ; l.w):w if u l.w t w (P) if u = w u if u < v a r w (M N)fw P g = (Mfw P g Nfw P g) (M)fw P g = Mfw.l Pg (u]M)fw P g = u]M fw.m Pg and ufw (P g = u (M N)fw (P g = (Mfw (Pg Nfw (P g) (M)fw (P g = Mfw.l (P g (u]M)fw (P g = p](M fw.m (Pg t w.m (P)) if u = w u]M fw.m (Pg if u 6 = w For the lifting operation, we g e t :

Simulation results

The following de nition gives the simulated reduction for -terms within env.

Beta