Jean-Christophe Filliâtre
email: jean-christophe.filliatre@ens-lyon.fr

Jean-Christophe Filli

Proof of Imperative Programs in Type Theory

Keywords: Program validation, Hoare logic, Realizability, T ype Theory Validation de programmes, Logique de Hoare, R ealisabilit e, Th eorie des Types

Proofs of correctness of imperative programs are traditionally done in rst order frameworks derived from Hoare logic 8]. On the other hand, correctness proofs of purely functional programs are almost always done in higher order logics. In particular, the realizability 10] allow to extract correct functional programs from constructive proofs of existential formulae. In this paper, we establish a relation between these two approaches and show h o w proofs in Hoare logic can be interpreted in type theory, yielding a translation of imperative programs into functional ones. Starting from this idea, we p r o p o s e a n i n terpretation of correctness formulae in type theory for a programming language mixing imperative and functional features. One consequence is a good and natural solution to the problems of procedures and side-e ects in expressions.

Introduction

After having remained unexploited for a long time, the formalism known as Hoare logic has nally ended up in formal speci cation languages, like Z 7] or VDM 9], and more recently in real implementations of formal software validation methods, like the KIV project 15] or the B method 1]. The programming languages handled by such methods are imperative a n d the underlying logic appears to be mainly a rst-order predicate calculus, usually based on a set theoretical framework.

Type theory is rather used to deal with correctness proof of purely functional programs, because of the deep relation between typing and natural deduction | the so-called Curry-Howard isomorphism (see 6] for a good introduction to type theory). Moreover, the computational content of proofs in type theory, expressed by the notion of realizability, is naturally written as a functional program.

Actually, w e can establish some connections between traditional Hoare logic and the notion of realizability. This relation naturally introduces a functional translation of imperative programs, which is not like the one given by a traditional denotational semantics, but which yields programs rather close to the one we w ould have written ourselves. Based on those ideas, we propose a new interpretation of the correctness formula in type theory, with corresponding deduction rules \ a la Hoare". With such a n i n terpretation, it is easy to extend the programming language with functional features, and in particular with procedures and functions, which had never been easily handled by traditional Hoare logic.

This article is organized as follows. In the rst section, we q u i c kly describe the two main approaches to program validation i.e. Hoare logic on one hand and realizability on the other hand. Then we show h o w they actually relate and what we can learn out of this relation. In the second section, we propose an interpretation of the correctness formula in type theory and we give a corresponding set of deduction rules which is correct and complete. In the third section, we extend the programming language with functional features, giving a rst way t o reason about procedures and functions. In the fourth section, we g i v e a better way to handle procedures and functions in structured programs and this allow the treatment of recursive functions. Finally, w e compare our approach o f s o f t ware validation to the traditional ones and we discuss about the remaining work to get a real environment for program validation based on the Calculus of Inductive Constructions as speci cation language and on the Coq Proof Assistant as prover.

Hoare Logic and Realizability

In this section, we shall compare the two traditional approaches of program validation for both imperative and functional programs. The relation that comes out of this comparison will be the starting point of a new proposition for expressing the correctness of programs.

1.1 Imperative programs and Hoare logic.

In the traditional approach to showing the total correctness of imperative program, the formal semantics of a program p is de ned as a relation between p and two s t o r e s and , which states that the evaluation of p on the store will terminate, with the resulting store as . Let us denote this relationship < p > ! . There are many w ays to de ne this relation, depending on the programming language. Here, for simplicity of presentation, let us consider the imperative language with syntax: C ::= skip j x := I j C C j if B then C else C j while B do C done where I stands for an integer expression and B for a boolean expression. Since we are interested in total correctness of programs, the while construct is annotated by a measure , which can be supposed here to be a natural number. The usual semantics of such a programming language is easy to de ne and can be found in several places (e.g. see 2]).

Then, the formal semantics of programs having been given, it is possible to de ne the notion of total correctness. P and Q being predicates on the stores, the total correctness formula fPg p fQg means \the evaluation of the program p on any store satisfying P terminates and the resulting store satis es Q". Since the programming language is deterministic, there is at most one execution of a program and thus the total correctness formula may b e written as:

8 :P()) 9 :<p >! ^Q()
To a c hieve the goal of verifying software, we m ust be able to check the validity o f s u c h correctness formulae. But such propositions are not easy to handle, since their de nitions involve a semantic relation. Hoare logic solves this problem by i n troducing inference rules | the so-called Hoare rules | based on the syntax of programs. The rules corresponding to our language are given in gure 1. They are not only proved to be sound but also complete, assuming that we are able to establish the validity of propositions appearing in the consequence rule. Then we h a ve no longer to reason about the semantic relation, but only about predicates on the stores. fPg skip fPg fP ^b = true ^ = zg t fP ^ < z g fPg while b do t done fP ^b = falseg (Loop P) P) P 1 fP 1 g t fQ 1 g Q 1) Q fPg t fQg (Consequence P)

Figure 1: Hoare rules 1.2 Functional programs and realizability.

Things are easier in purely functional programming languages. Indeed, programs are now -terms, that are mathematical objects on which it is easy to reason and to compute. As a consequence, the semantic relation is now de ned in terms of reduction (i.e. equality) of the program itself and the correctness formula becomes 8x:P(x)) 9 y:y= p(x)^Q(y). Usually, we prefer to use a postcondition on both input and output, that is 8x:P(x)) 9 y:y= p(x) ^Q(x y) There are nowadays several implementations of theorem provers based on -calculi, in which such f o r m ulae can be formally proved, such as HOL, LEGO, Nuprl, etc. One of them is the system Coq 3], a Proof Assistant f o r t h e C a l c u l u s o f I n d u c t i v e Constructions 4, 14] (CIC for short).

Conversely, let be a constructive proof of a proposition S 8 x:P(x)) 9 y:Q(x y).

The notion of realizability 10] associates a program to that proof, which is its computational content. In that case, it is a program p computing the output y from the input x, a n d therefore may be viewed as the proof of correctness of p. There are several ways of computing the realizer | the underlying program | and in the case of the CIC, this process is called extraction 13]. We shall denote the extracted program by E(). We shall write ; `P when P is provable under the assumptions ;, and ; `P p] when the realizer is p.

Then, proving that a particular functional program p satis es the speci cation S consists in constructing a proof of S such that E() = p i.e. a proof of `S p]. Actually, i t is possible to automatically construct some parts of using p, in such a w ay that there only remain some logical goals, called the proof obligations. This methodology has been implemented i n t h e Coq Proof Assistant and is called the Program tactic it is described in 12].

How do they relate ?

Even though the rst approach deals with imperative programs and the second with functional ones, they may be related. Indeed, let us interpret the total correctness formula fPg p fQg for an imperative program p, as the proposition P(x) 9 y:Q(y) in the CIC, where x and y are tuples representing respectively the initial and the nal stores of p. T h e n the Hoare rules given in gure 1 are valid for this interpretation. As a consequence, any proof of fPg p fQg in Hoare logic gives a proof in the CIC of the proposition P(x) 9 y:Q(y). And then the natural question is: what is E() ?

With our interpretation of the total correctness formula, E() is a functional term taking the input x of the program p and returning the output y: i t i s a functional translation of the imperative program p. Let us take a small example and see how i t w orks.

Example 1 Let us consider the program p (y := y x x := x ; 1) and the total correctness formula fPg p fQg where P (x = 2 ^y = 2) and Q (x = 1 ^y = 4) . I t c an be derived using Hoare rules as follows, using the intermediate predicate R (x = 2 ^y = 4) 1 fx = 2 ^y x = 4 g y := y x fRg fPg y := y x fRg 2 fx; 1 = 1 ^y = 4 g x := x ; 1 fQg fRg x := x ; 1 fQg fPg p fQg where 1 is the proposition 8(x y):x = 2 ^y = 2) x = 2 ^y x = 4 and 2 the proposition 8(x y):x = 2 ^y = 4) x ; 1 = 1 ^y = 4 .

Let us translate it into a constructive proof of P(x y) 9 (x 0 y 0):Q(x 0 y 0). The logic rules are given in appendix, gure 4. The only rules we need h e r e a r e i n t r oduction and elimination of 9, which are the following: ; `L(t) ; 9 x:L(x) t] (9-intro) ; 9 x:L(x) t] ; L (x) `P e] x = 2 ; P ; `P let x = t in e] (9-elim) Thus the previous deduction gives the proof P(x y) `R(x y x) P(x y) 9 (x 0 y 0):R(x 0 y 0) (x y x)] P(x y) R (x 1 y 1) `Q(x 1 ; 1 y 1) P(x y) R (x 1 y 1) 9 (x 0 y 0):Q(x 0 y 0) (x 1 ;1 y 1)] P(x y) 9 (x 0 y 0):Q(x 0 y 0) let (x 1 y 1) = (x y x) in (x 1 ; 1 y 1)] So we get a program computing the new values of x and y which is p(x y) = let x 1 y 1 = x y x in x 1 ;1 y 1 .

2

This example highlights two features. First, the extracted program is exactly the one we would have written \by hand", in the sense that it takes the values of the store necessary for the computation (x and y) and returns the values of the store modi ed by the computation (x 0 and y 0 , a s x ;1 and y x). So it is closer to the mathematical meaning of p than usual representations in denotational semantics as store t r ansformers that take the whole store and return the whole store, even when only few variables are read or written.

Secondly, i t i s m uch simpler to prove the correctness formula P(x y) 9 (x 0 y 0):Q(x 0 y 0) by giving the functional term f let x 1 y 1 = x y x in x 1 ; 1 y 1 and trying to construct of proof such that E() = f. Using the Program tactic, it remains to prove only one proof obligation:

x = 2 ^y = 2) x ; 1 = 1 ^y x = 4 Actually, it is exactly the computation of weakest preconditions in Hoare logic.

Weakest preconditions. Given a program p and a postcondition Q, there exists a proposition wp(p)(Q), called the weakest precondition of p with respect to Q, s u c h t h a t fPg p fQg holds if and only if P) wp(p)(Q) holds. In particular, we h a ve fwp(p)(Q)g p fQg.

In the general case, the proposition wp(p)(Q) is not computable | this is a consequence of G odel's incompleteness theorem. But it becomes computable for the fragment without loops. For instance, in example 1, we h a ve t h a t wp(p)(Q) = x ; 1 = 1 ^y x = 4 .

Since proving the correctness formula is proving that the precondition implies the weakest precondition, we h a ve t o p r o ve t h a t x = 2 ^y = 2) x ; 1 = 1 ^y x = 4 .

Auxiliary variables. It is often necessary to relate the values of variables at di erent moments of execution, typically before and after a sequence of instructions, and the solution is to use auxiliary variables. These are logical variables, distinct from the variables of the program (i.e. of the store), which are implicitly universally quanti ed in the correctness formulae.

For instance, when writing a speci cation of the factorial function one could write something like fg p fy = x!g, but the trivial program x := 1 y := 1 will realize this speci cation. So one should write a correctness formula like fx = x 0 g p fy = x 0 !g where x 0 is an auxiliary variable whose role is to relate the nal value of y with the initial value of x.

Notice that auxiliary variables are fresh variables not appearing in the program, which are implicitly u n i v ersally quanti ed. We shall illustrate the use of auxiliary variables in the example of the next paragraph.

Loops and recursion. Since we are interested in total correctness, we h a ve t o f a c e t h e problem of the proof of termination of programs. In both formalisms, this proof is related to a w ell-founded order relation. In the case of imperative programs, the proof of termination is done by giving a quantity (which can be sometimes automatically determined) that strictly decreases for a well-founded order relation. Most often, this order is the usual order relation on natural numbers. In higher-order logics, and in particular in the CIC, we can de ne new order relations and prove that they are well-founded. Then we can prove propositions by well-founded inductions i.e. applying an induction principle of the kind 8P:(8x:(8y:y<x) P(y))) P(x))) 8 x:P(x)

(1) To understand the relationship between loops in Hoare logic and recursion, let us prove the validity of the Hoare rule for loops when the correctness formula is interpreted by P(x) 9y:Q(y).

We assume that the premise of (Loop P) is true i.e. P(x) b (x) = true (x) = z 9 y:(P(y) ^ (y) < z)

(2) and we h a ve t o p r o ve that P(x) 9 y:(P(y) ^b(y) = false). To establish that fact, let us prove the strongest property 8 0 : (0), where (0) 8x: (x) = 0 ^P(x)) 9 y:(P(y) ^b(y) = false) by w ell-founded induction on 0 and the result will follow b y an instantiation of 0 by (x). A proof by w ell-founded induction corresponds to the rule with realizer

; f: 8x 1 :x 1 < x) Q(x 1) `Q(x) e]
; `Q(x) let rec f x = e in f x] Therefore we h a ve to establish that f : IH (x) = 0 P (x) 9 y:(P(y) ^b(y) = false) w h e r e IH 8 1 : 1 < 0) 8 x: (x) = 1) P(x)) 9 y:(P(y) ^b(y) = false) At this step, we reason by case on the value of b(x), which corresponds to the rule ; b= true `Q e 1] ; b= false `Q e 2]

; `Q if b then e 1 else e 2]

The case of the right premise (b(x) = false) is easy: we j u s t h a ve to take y = x. In the other case (b(x) = true) w e use the hypothesis (2) with z = 0 and we g e t a n x 1 such t h a t P(x 1) ^ (x 1) < 0 holds. Then we can apply the induction hypothesis IHon 1 = (x 1) and x = x 1 and the result holds. 2

Putting all together, the realizer associated to the derivation of fPg while b do t done fPb = falseg is the program

let rec f x = if b then let x 1 = e(x) in f x 1 else x in f x
where e(x) is the realizer associated to the derivation of fP ^b = true^ = zg t fP ^ < z g i.e. to the body of the loop. Notice that this recursive function expresses an unfolding of the loop which is traditionally written as the following equivalence:

while b do t done if b then (t while b do t done) else skip

Let us illustrate this relationship between loops and recursion on an example.

Example 2 Let us consider the factorial function. We choose the following implementation p y := 1 while x > 0 do y := y x x := x ; 1 done and we wish to prove the following correctness formula S fx = x 0 ^x 0g p fy = x 0 !g

The derivation of the correctness proof is quite lengthy and so we present it in a sequential manner, omitting the trivial steps: constructive proof in the CIC of the proposition x = x 0 ^x 0 9 (x 0 y 0):y 0 = x 0 !. L et be that proof. Then, after having reduced some let in constructs, we get E()(x y) = let rec f (x y) = if x > 0 then f (x ; 1 y x) else (x y) in f (x 1) We can see that E() is a function computing the new values of x and y from their initial values, very close to the usual way to write the factorial function (except that, in that case, we have an extra a r gument y and an extra r esult x). 2

Program correctness in Type Theory

Following the ideas developed in the previous section, we w ould like to mix features from Hoare style and type theoretic frameworks to get an improved methodology for showing correctness of imperative programs. We k eep the same small imperative language for the moment.

As we explained before, our main purpose is the possibility to express the correctness formula in the same logical language as speci cations, and not only in a meta-level logical language as it is usually done. Then, the correctness formula being a proposition fully expressible in the logic, we c a n prove it as we want, using the full expressiveness and power of higher order. Of course, we shall also give a methodology similar to the Hoare deduction rules to automate a large part of correctness proofs.

Before-after predicates. Firstly, a n o b vious requirement is the ability to use beforeafter predicates in postconditions, i.e. to speak of the values of variables before and after the computation. Indeed, in the classical correctness formulae, we can only speak of the values after the computation, and this restriction implies a huge use of auxiliary variables, as we illustrated in the previous section. For instance, the speci cation languages of VDM and Z both provide a way to refer to the old values of objects. Let V be the set of the variables of the store. Let V 0 be a copy o f V that belongs to a distinct syntactic class say, for instance, that the variables of V 0 are written with a ' and those of V are not. Then, a precondition is a predicate over the variables of V and a postcondition is a predicate over the variables of V and V 0 . The variables of V 0 represent t h e values of the variables after the computation. For instance, the speci cation of the factorial function will become fg p fy 0 = x!g.

Correctness formulae expressed in type theory. We explained that we prefer a correctness formula that we can fully express in our logical framework, in such a w ay that we can handle it and prove i t a s w e w ant. So, instead of having a semantic (mathematical) de nition of the proposition \the program p evaluated on the initial store terminates on the store ", w e will prefer to express it directly a s a c omputation. To a c hieve this goal, we consider a functional translation of the imperative program p, that is a function taking the input of the program and returning its output. But instead of taking and returning a whole store, as in denotational semantics, we will consider a functional program which takes only the values which are necessary for the computation and returns the minimal nite set of values (possibly) assigned by the program.

Such a functional translation for the small imperative programs we are considering here is easy to de ne. It is a particular case of more general ways to translate imperative programs into functional ones. we mean by this functional translation. Let p be a program and X p = var(p) the set of its variables. Then a functional translation of p is a functional term p of type int Xp ! int Xp , where int Xp is the space of functions from X p to int. p is assumed to have the same semantics as p i.e. for all stores and , o f t ype int V , w e h a ve < p > ! () 8y:

(y) = (p(jXp)(y) if y 2 X p (y) if y = 2 X p
where jXp is the restriction of to the domain X p . I f X is a set of variables including X p we denote by p X the canonical extension of p to a function of type int X ! int X (i.e. such that p X (f

)(x) = f(x) i f x = 2 X p and p X (f)(x) = p(f jXp)(x) otherwise).
Now, let us de ne the correctness formula. A precondition is a predicate P over some variables of V and a postcondition is a predicate Q over some variables of V and some variables of V 0 . Then let X be the union of all these variables | taken in V | and of the variables of var(p). Let A be the set of auxiliary variables appearing in both P and Q. T h e n the interpretation of the correctness formula fPg p fQg is de ned as fPg p fQg]] def = P(X)) 9 X 0 :X 0 = p X (X) ^Q(X X 0)

where X and X 0 a r e s e t s o f v ariables of type int in this formula, but considered as functions of type int Xp in the equality X 0 = p X (X) in order to simplify the notation. Notice that the variables of X and A are free in this proposition. Note: It is possible to de ne this interpretation using p instead of p X , expressing this way the fact that some variables of V 0 in Q are actually not modi ed by p, but we c hose this formulation here in an attempt to simplify the presentation.

Proof system. We n o w g i v e a proof system for the new notion of correctness formulae.

This system, called F, is given in gure 2. We write `F fPg p fQg when the correctness formula fPg p fQg is derivable using F. These rules need some comments. The rules for fQ(X X)g skip fQ(X X 0)g (Skip F) fQ(X X x t])g x := t fQg (Assign F) fP(X)g t 1 fR(X X)g fR(X i X)g t 2 fQ(X i X 0)g fP(X)g t 1 t 2 fQ(X X 0)g

(Composition F)
fP(X) ^b = trueg t 1 fQ(X X 0)g fP(X) ^b = falseg t 2 fQ(X X 0)g fP(X)g if b then t 1 else t 2 fQ(X X 0)g

(Conditional F)
fQ(X i X) ^b = trueg t fQ(X i X 0) ^ X X 0] < g fQ(X X)g while b do t done fQ(X X 0) ^b X X 0] = falseg (Loop F) P) P 1 fP 1 (X)g t fQ 1 (X X 0)g Q 1) Q fP(X)g t fQ(X X 0)g (Consequence F)

Figure 2: new deduction rules (to establish `F fPg p fQg) skip, assignment, conditional and consequence are somewhat similar to the traditional ones and are easy to understand. In the rule for composition, some fresh auxiliary variables X i are introduced in the right premise. They represent t h e v alues of the variables before the evaluation of the sequence t 1 t 2 , whereas X in the right premise would have refered to the values before the evaluation of t 2 i.e. in the intermediate state of the sequence. Similarly, the auxiliary variables X i in the rule for loop represent the values of the variables before the evaluation of the whole loop, while X and X 0 in the premise refer to the values before and after one evaluation of the body t of the loop.

As for the traditional deduction system of Hoare rules, we h a ve the following results.

Proposition 1 (Soundness) The proof system F is sound, i.e. `F fPg p fQg) fPg p fQg]] is true Proof outline. The proof is straightforward. For each deduction rule, we h a ve to prove that the conclusion is a consequence of the premises. The only subtle case is for the loop, where we h a ve to apply a well-founded induction principle.

2

Proposition 2 (Completeness) The proof system F is complete, i.e. fPg p fQg]] is true) `F fPg p fQg Proof outline. The proof is quite standard, following traditional ones as in 2]. We rst introduce a notion of weakest precondition such t h a t fPg p fQg holds if and only if P) wp(p)(Q) holds. Here, the weakest precondition is directly de ned as wp(p)(Q) def = 9X 0 :X 0 = p X (X) ^Q(X X 0)

Then it is only necessary to prove t h a t `F fwp(p)(Q)g p fQg and the result will follow using the consequence rule. To establish this fact, we p r o ve some properties of the weakest precondition.

Proposition 3 The weakest precondition satis es the following properties:

(1) wp(skip

)(Q(X X 0)) , Q(X X) (2) wp(x := t)(Q(X X 0)) , Q(X X x t]) (3) wp(t 1 t 2)(Q(X X 0)) , wp(t 1)((wp(t 2)(Q(X i X 0))) X X 0] X i X]) (4) wp(if b then t 1 else t 2)(Q(X X 0))
, if b then wp(t 1)(Q(X X 0)) else wp(t 2)(Q(X X 0)) (5) wp(while b do t done)(Q(X i X 0)) ^b = true) wp(t)((wp(while b do t done)(Q(X i X 0))) X X 0]) (6) (wp(while b do t done)(Q(X i X 0))) X X 0] ^b X X 0] = false) Q(X i X 0) Notice that those properties of wp allow us, for the fragment without loops, to compute it recursively from the structure of the program.

2

These results show h o w it is possible the give a precise de nition of the total correctness formula in presence of before-after predicates and auxiliary variables, a correct and complete deduction calculus \ a la Hoare" being still de nable. It now becomes important t o m o ve a step further and to study the case of a more realistic programming language.

3 A logic for real programming languages Let us consider now a more powerful programming language, called Real, that mixes imperative and functional features. On one hand, in contrast with purely imperative programming languages, a program is no longer a sequence of commands, but is now a n expression of atomic type, and we h a ve n o w functions (procedures are just functions returning a value of type unit). On the other hand, in contrast with purely functional languages, we still have references, sequences and loops.

Atomic types (A) are the type bool of booleans, the type int of integers and the type unit of commands. Base types (B) are either atomic types or types of references on integers, written int ref. Access to the value of the reference x is written !x. F unctions have t ypes of the form B 1 ! ! B n ! A, which means that functions take either arguments by values or by references and return values of atomic types. To simplify the presentation, we assume that arguments passed by v alues are given rst and then those given by references. We do not consider here the case of partial applications. Notice that the presence of local references (let ref) allow u s t o h a ve l o c a l v ariables in functions.

Programs are closed expressions that follow the syntax given in gure 3 and that are correctly typed with respect to the typing rules given in the appendix, gure 5. Since programs are now expressions, we h a ve to extend the notion of postcondition to establish properties of the result of programs. F or this purpose, a postcondition will now b e a predicate over the variables of V and V 0 , and also over a special variable r that stands for the result of the program. Moreover, the functional translation of a program p of type A is now a term p of type int Xp ! int Xp A, i.e. a term that takes the values of the variables used by p and that returns the new values of these variables together with the result of p.

Then we can de ne the correctness formula, which is somewhat similar to the correctness formula (3) de ned in the previous section. With the same notations as before, we de ne fPg p fQg def = P(X)) 9 (X 0 r):(X 0 r) = p X (X) ^Q(X X 0 r) [START_REF] Coquand | The Calculus of Constructions[END_REF] Notice that the value of the reference x is written !x inside programs to avoid confusion with the reference itself, but is directly written x in the logical propositions.

Deduction rules.

The new deduction rules to establish correctness formulae are given in appendix, gure 6 on page 20. They di er quite a lot from the classical Hoare rules, mainly because expressions can now cause side e ects and must be treated as programs. See for instance the rule (store) of assignment w h i c h i s n o w completely di erent from the rule (assign F) g i v en in gure 2 page 9. The rule for the loop has also changed. The idea is still to prove t h a t a n i n variant holds during the whole execution of the loop, but the di erence is now that the test b is any expression of type bool, and may cause some side-e ects. Therefore, instead of just writing b = true at the entrance of the loop and b = false at its exit, we can use any predicate R. I f b is purely functional we can choose for R the predicate b = r then the rst premise becomes trivially true and we nd again the same rule as before (see gure 2).

The rules for application may seem complicated because they are given in their full generality, for any a r i t y. (Notice that we c hose to evaluate arguments of functions from left to right. We could have c hosen to do the converse, but in presence of side-e ects it would have given a completely di erent semantics to our language). These rules are easy to understand and quite natural when instantiated on small arities. Let us give some examples.

Unary operation. For a primitive unary operation op we get the deduction rule fP(X)g e fQ(X X 0 (op r)g fP(X)g (op e) fQ(X X 0 r)g Binary operation. For a primitive binary operation op we get the deduction rule fP(X)g e 1 fR(X X 0 rg fR(X 0 X v 1 g e 2 fQ(X 0 X 0 (op v 1 r)g fP(X)g (op e 1 e 2) fQ(X X 0 r)g Function application. Let us consider the case of a function taking two arguments, the rst one by v alue, of type int, and the second by reference, of type int ref.

Then the deduction rule is fP(X)g e 1 fR(X X 0 r)g fR(X 0 X x) y z]g e fQ(X 0 X 0 r) y z]g fP(X)g (x : int] z : int ref]e e 1 z) fQ(X X 0 r)g where y z] stands for the substitution of y by z in X, X 0 and X 0 . In the right premise, the auxiliary variables X 0 represent t h e v alues of variables before the whole execution of the -redex this is similar to what is done in the rule for composition, and this will be justi ed in the next paragraph.

Let us give some examples of correctness proofs with this new system.

Example 3 First, let us consider a trivial correctness proof. Let p be the program x := !x+1, without any precondition and with the postcondition Q x 0 > x . The deduction is the following x + 1 > x fx + 1 > x g !x fr + 1 > x g fg !x fr+ 1 > x g fv 1 + 1 > x 0 g 1 fv 1 + r > x 0 g fg !x + 1 fr > x g fg x := !x + 1 fx 0 > x g and so the only logical premise to prove is

x + 1 > x 2
Example 4 Then, let us illustrate how it works with a function application. Let f be t h e function that augments a reference with a given value, that is f x : int] y : int ref]y := !y + x Let p be t h e p r ogram (f 3 z) with the precondition P z > 0 and the postcondition Q z 0 > 3. The derivation is the following D fy + x > 3g !y fr+ x > 3g fv 1 + x > 3g x fv 1 + r > 3g fy + x > 3g !y + x fr > 3g fy + x > 3g y := !y + x fy 0 > 3g fz > 0g (f 3 z) fz 0 > 3g where D is the derivation z > 0) z + 3 > 3 fz + 3 > 3g 3 fz + r > 3g fz > 0g 3 fz + r > 3g and so the only logical premise to prove is

z > 0) z + 3 > 3 2
Application as a let in construct. It is important to notice that the rule for function application is not really a rule of -reduction, since there is no real substitution of the formal arguments by the real ones. It is better to see it as a sequence of bindings of several values in an expression i.e. as a sequence of let in constructs. Indeed, a -redex may be rewritten like this (x 1 : A 1] : : : x k : A k]e e 1 : : :e k) let x 1 = e 1 in let x 2 = e 2 in : : : let x k = e k in e By the way, w e could add the construct let x = M in M to the syntax of our language Real, and the corresponding deduction rule would be fP(X)g e fR(X X 0 r)g fR(X 0 X x)g e 0 fQ(X 0 X 0 r)g fP(X)g let x = e in e 0 fQ(X X 0 r)g

Using this deduction rule for each argument e i of the function, and some substitutions for the arguments which are references, we nd again exactly the same rule as the rule () g i v en in gure 6, page 20.

Actually, it is possible to consider a let in construct as a sequence, by i n troducing a new reference variable. Indeed, we can write let x = e in e 0 x := e e 0 x !x]. Then, a function application can be considered as a sequence of assignments followed by the body of the function i.e.

(x 1 : A 1] : : : x k : A k]e e 1 : : :e k) x 1 := e 1 : : : x k := e k e x i !x i] with still some substitutions for the references given as arguments. Seen like this, the rule for function application becomes really obvious. But it is clearly not the good way to handle functions and that is the problem we shall consider in the next section. [START_REF] Barras | The Coq P r oof Assistant Reference Manual Version 6[END_REF] Structured programming and recursive functions Until now w e h a ve considered a program as a single closed term. It is clear that this is not the case in practice and that programs are split into some more or less elementary functions. And so must be the correctness proofs. The idea is to associate a correctness formula fP f g f fQ f g to the de nition of each function f = x] z]e. T o p r o ve i t i s j u s t p r o ving it for the body e.

It is expressed by the following rule fP f (X)g e fQ f (X X 0 r)g fP f (X)g (f x 1 : : :x k z 1 : : :z n) fQ f (X X 0 r)g (Abstraction) Once the correctness formula for f is proved, or assumed, it can be used to do other correctness proofs and it should not be necessary to look again at the body of f. So correctness proofs are now done in environments of the kind ; ::= j ; 8A:8X:fP f (X)g f fQ f (X X 0 r)g where A stands for the auxiliary variables appearing in the correctness formula of f. T h e variables of A and those of X must be abstracted in the correctness formula since this one may be used in di erent contexts.

Then, one could think that the consequence rule is exactly the rule we need to use informations of the context, but that is not so. Indeed, suppose for instance that we h a ve speci ed a function f that augments a reference with a given value i.e. we assume the correctness formula fg (f x y) fy 0 = y + xg to be in the context. Then we w ant to use this assumption to prove the correctness formula fz = 0 g (f 1 r) fr 0 = r + 1 ^z0 = 0 g. Omitting the premise corresponding to the evaluation of the rst argument, 1, an application of the consequence rule would give us the premises: z = 0) True fg (f 1 r) fr 0 = r + 1 g r 0 = r + 1) r 0 = r + 1 ^z0 = 0 fz = 0 g (f 1 r) fr 0 = r + 1 ^z0 = 0 g and clearly the third one is not provable. Indeed, two main facts are not expressed by t h e consequence rule: rstly that z = 0 should still be available to establish the postcondition, and secondly that z is not modi ed by f (so that we can replace z 0 by z).

Actually, each of these two problems can be easily solved. Firstly, the fact that the precondition still holds after the computation | as a predicate of the variables representing the old values, of course | is expressed by the following rule: fP(X)g e fQ(X X 0 r)g fP(X)g e fP(X) ^Q(X X 0 r)g (Persistence) which is clearly sound.

Secondly, the fact that some variables are not modi ed by a program is expressed by t h e following rule: fP(X)g e fQ(X Y X 0 r)g Y \ var(e) = fP(X)g e fQ(X Y 0 X 0 r)g (Identity)

which is also sound since e X is the identity on the variables of X that do not belong to var(e).

Function application. Since the two previous rules can be used anywhere, it is di cult to use them signi cantly in an automatic application of the deduction rules. But we c a n actually restrict their use to function application. The rule we propose for application (app) is given in appendix, gure 6. Let us illustrate it on the example of a function taking two arguments, one by v alue and one by reference. The corresponding rule is: fP(X)g e fR(X X 0 r)g R(X 0 X x)) P f (X) z y] R(X 0 X x) ^Qf (X X 0 r) z y]) Q(X 0 Y W 0 r) Y \ var(f) = fP(X)g (f e y) fQ(X Y 0 W 0 r)g under the assumption that a correctness formula for f of the kind fP f g (f x z) fQ f (X X 0 r)g belongs to the context. This rule illustrates the fact that we rst evaluate the argument e, leading to a predicate R, then we h a ve t o p r o ve that the precondition P f of the function is true under the assumption R and nally we h a ve to establish the postcondition Q under the assumptions R and Q f . Recursive functions. We a r e n o w in position to deal with recursive functions. As do the loops, the recursive functions also carry an argument o f w ell-founded induction, as a quantity . So recursive functions will be written Rec f = x 1] : : : x n]e. Since we h a ve n o w a rule for function application, the only thing to do is to give a rule to establish the correctness of a recursive function. The idea is to prove the correctness formula under the assumption that it holds for smaller calls of the function, in the sense of the well-founded induction.

So, writing explicitly the context ; in which w e do the correctness proof, the rule to derive the correctness formula for a recursive function F Rec f = x]e is the following:

; 8Y:fP(Y) ^ (Y) < (X)g (f ỹ) fQ(Y Y 0 r)g f P(X)g e fQ(X X 0 r)g ; f P(X)g (F x) fQ(X X 0 r)g (Rec)
We h a ve s h o wn in this section that it is possible to keep the structure of programs when doing correctness proofs, by associating a correctness formula to each function. This way, it enables modularity in correctness proofs, in the sense that it is possible to assume and to use the speci cation of a function without having to implement it, which is crucial in real software validation.

Conclusion and future work

Two main ideas summarize what we h a ve presented in this paper. First, we h a ve proposed a correctness formula for imperative programs in Type Theory. The main advantage is that there are several robust implementations of theorem provers for type theoretic frameworks (HOL, Coq, PVS, etc.). Moreover, they are general provers i.e. in which w e can de ne new notions and prove new theorems. This is not the case in specialized provers for one particular logic.

Let us compare our approach to the approach of the B method 1]. There are not so many di erences in the proof obligations, even if types allow not to consider proof obligations of the kind t 2 int since they are treated by the decidable typing judgment. But the way t h e proof obligations are generated and proved are really di erent. Indeed, in the case of the B method, the proof obligations are generated from the speci cations by an external program, the proof obligations generator, and passed to another program, the prover, which tries to prove them using a huge database of logic rules (more than 2000). In case of failure, it is possible to add unjusti ed axioms in the database of the prover. The speci cations and the proof obligations do not belong to the same logic actually, the correctness formula is not even expressed.

In our approach, on the contrary, the correctness formula is expressed in the same logic as the speci cations. The generation of the proof obligations is now just a particular tactic to help the user in proving the correctness formulae. Therefore, if the user need more notions and more theorems to ful ll its proof (a proof of well-foundness for instance) he can use the all power of the theorem prover to do so.

The second main result of this paper is the extension of what was traditionally done for imperative programming languages with functional features, still keeping a set of Hoare deduction rules and a notion of weakest precondition. Then it was rather easy to give sound deduction rules for functions, even recursive ones. In the way, this proof of correctness of imperative programs is no longer restricted to imperative programming languages like C , Pascal or ADA, but can be applied to functional languages with imperative features, like SML or Objective Caml, which has never been done previously to our knowledge.

A step further. A lot of work is currently in progress to get a real environment for program validation in the Calculus of Inductive Constructions. Firstly, w e m ust de ne a functional translation of imperative programs, which is necessary to de ne the correctness formula. This translation has to be proved correct with respect to the semantics of the programming language. This is described in a forthcoming paper 5].

But this alone is not enough, of course. We w ould like to add two main aspects to the programming language, which are data-types and exceptions. Concerning data-types, the case of arrays or tuples is quite easy to handle but the general case of recursive data-types | with mutable parts | is not. But this is necessary to prove real programs dealing with lists, trees, etc. Exceptions are also a fundamental aspect in real software development a n d they have to be understood on the point of view of correctness. This work is still in progress. fQ(X X v)g v fQ(X X 0 r)g (value) fQ(X X x)g x fQ(X X 0 r)g (variable) fQ(X X x)g !x fQ(X X 0 r)g (access) fP(X)g e fQ(X X 0 x 0 r] voidg fP(X)g x := e fQ(X X 0 r)g (store)

fP(X)g e 1 fR(X X 0 r)g fR(X i X voidg e 2 fQ(X i X 0 r)g fP(X)g e 1 e 2 fQ(X X 0 r)g (sequence)

fP(X)g e 1 fR(X X 0 r)g fR(X i X trueg e 2 fQ(X i X 0 r)g fR(X i X falseg e 3 fQ(X i X 0 r)g fP(X)g if e 1 then e 2 else e 3 fQ(X X 0 r)g (if) fQ(X i X)g b fI(X i X 0 r)g fI(X i X true)g e fQ(X i X 0) ^ X X 0] < g fQ(X X)g while b do e done fQ(X X 0) ^R(X X 0 false)g (loop)

where I(X X 0 r) Q(X X 0) ^R(X X 0 r) fP(X)g e 1 fR(X X 0 r)g fR(X i X x g e 2 fQ(X i X 0 r)g fP(X)g let x = ref e 1 in e 2 fQ(X X 0 r)g (new ref)

Primitive operation fP(X)g e 1 fR 1 (X X 0 r)g fR i;1 (X 0 X v i;1 g e i fR i (X 0 X 0 r)g i = 2 : : : n fP(X)g (op e 1 : : : e n) fQ(X X 0 r)g (op)

where R n (X X 0 r) Q(X X 0 (op v 1 : : : v n;1 r))

Function fP(X)g e 1 fR 1 (X X 0 r)g fR i;1 (X 0 X x i;1)g e i fR i (X 0 X 0 r)g i = 2 : : : k fR k (X 0 X x k) y i z i]g e fQ(X 0 X 0 r) y i z i]g fP(X)g (f e 1 : : :e k y 1 : : :y n) fQ(X X 0 r)g () where f x 1 : A 1] : : : x k : A k] z 1 : int ref] : : : z n : int ref]e fP(X)g e 1 fR 1 (X X 0 r)g fR i;1 (X 0 X x i;1)g e i fR i (X 0 X 0 r)g i = 2 : : : k R k (X 0 X x k)) P f (X) z i y i] R k (X 0 X x k) ^Qf (X X 0 r) z i y i]) Q(X 0 Y W 0 r) Y \ var(f) = fP(X)g (f e 1 : : :e k y 1 : : :y n) fQ(X Y 0 W 0 r)g (app)

Figure 6: Deduction rules for Real

 fx = x 0 ^x 0g y := 1 fy = 1 ^x = x 0 ^x 0g Assign + Consequence fx! y = x 0 ! ^x 0g Consequence while x x > 0 do fx! y = x 0 ! ^x 0 ^x > 0 ^x = zg y := y x x := x ;1 fx! y = x 0 ! ^x 0 ^x < z g 2 Assign + Consequence done fx! y = x 0 ! ^x 0 ^x 0g Loop fy = x 0 !g Consequence As for example 1, this derivation in Hoare d e duction calculus can be t r anslated i n t o a

 For instance, P.W. O'Hearn and J. C. Reynolds recently described how to translate Algol programs into a purely functional language, in an unpublished article 11]. Independently, w e i n troduced another way t o d o s u c h translations based on monads this work is described in 5]. Without entering into technical details, let us brie y describe what

3. 1

 1 The programming language Real.

Figure 3 :

 3 Figure 3: Syntax of Real

Acknowledgments. I w ould like to thank rst of all Christine Paulin, my supervisor, not only for her help but also for her trust and her patience during the long and di cult genesis of this work. I am also grateful to both Judica el Courant and Hugo Herbelin for remarks and discussions about program validation. Finally, I wish to thank Ajay Chander for a very detailed reading of this paper.

This research w as partly supported by ESPRIT Working Group \Types". 1

Logical propositions: L Informative propositions: P ::= L j L) P j 8 x:P j 9 x:L Realizers: e ::= t j x:e j (e e) j if t then e else e j let x = e in e j let rec x = e in e (t is a term) Proofs environments:

; ::= j ; Lj ; x: P ; `L(t) ; 9 x:L(x) t] ; 9 x:L(x) t] ; L (x) `P e] x = 2 ; P ; `P let x = t in e] ; `P(x) e] x = 2 ; ; 8 x:P(x) x:e] ; 8 x:P(x) e] ; `P(t) (e t)]

; L`P e]

; `L) P e] ; `L) P e] ; `L ; `P e] ; b= true `P e 1] ; b= false `P e 2]

; `P if b then e 1 else e 2] ; f: 8x 1 :x 1 < x) P(x 1) `P(x) e] ; `P(x) let rec f x = e in f x] A ::= unit j bool j int Base types:

B ::= A j int ref Typing environments: ; ::= j x : B ; ; `v : t ype of v x : B 2 ;

; `x : B ; `x : int ref ; `!x : int ; `x : int ref ; `e : int ; `x := e : unit ; `e1 : unit ; `e2 : A ; `e1 e 2 : A ; `e1 : bool ; `e2 : A ; `e3 : A ; `if e 1 then e 2 else e 3 : A ; `b : bool ; `e : unit ; `while b do e done : unit ; `e1 : int ; x: int ref `e : A ; `let x = ref e 1 in e : A op : A 1 ! !A n ! A ; `ei : A i i = 1 : : : n ; `(op e 1 : : : e n) : A ; x 1 : B 1 : : : x n : B n `e : A ; `ei : B i i = 1 : : : n ; `(x 1 : B 1] : : : x n : B n]e e 1 : : : e n) : A