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École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.00
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Abstract

In the NP�hard multiprocessor scheduling problem a set of precedence con�
strained tasks are allocated onto processors in a processing order in order to
minimise the makespan� Many heuristic methods for �nding solutions exist�
but they are all sub�optimal on general task graphs� To improve these solu�
tions� genetic algorithms have successfully been applied to the problem and the
results reported have been superior to the list�scheduling approaches� However�
the application of genetic algorithms to the multiprocessor scheduling problem
have predominantly followed two main paths of developments� namely the use
of direct and indirect representations� In the direct chromosome representation
the schedule is represented and manipulated directly by the genetic operators�
and the genotype is identical to the phenotype� In the indirect representation
only the decisions on how to build the schedule is encoded in the chromosome�
The genetic operators a	ect the schedules implicitly� and the genotype is dif�
ferent to the phenotype� In this paper these two main approaches to genetic
scheduling are compared by evaluating their respective quality of results and
time of convergence�
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R�esum�e

Dans le probl
eme NP�dur de l�ordonnancement sur machine parall
ele� un en�
semble de t�aches avec des contraintes de pr
ec
edences sont ordonnanc
ees sur un
ensemble de processeurs a�n de minimiser la dur
ee totale d�ex
ecution� Plusieurs
m
ethodes heuristiques existent pour trouver des solutions sous�optimales� Pour
am
eliorer ces solutions� les algorithmes g
en
etiques ont 
et
e utilis
es avec succ
es
et les r
esultats sont meilleurs que ceux obtenus avec des algorithmes de listes�
Cependant� cette utilisation d�algorithmes g
en
etiques pour le probl
eme de l�or�
donnancement sur machine parall
ele s�est fait suivant deux voies principales� la
repr
esentation directe et celle indirecte� Dans le cas de la repr
esentation directe�
l�ordonnancement est repr
esent
e directement par le chromosome et manipul
e
aussi de mani
ere directe par les op
erateurs g
en
etiques� Le g
enotype est donc
identique au ph
enotype� Par contre� dans le cas de la repr
esentation indirecte�
le chromosome code seulement des d
ecisions sur comment construire la solu�
tion� Les op
erateurs g
en
etiques a	ectent donc la solution de mani
ere implicite�
indirecte et donc le g
enotype est di	
erent du ph
enotype� Dans ce rapport� les
deux m
ethodes sont compar
ees�

Mots�cl�es� ordonnancement de programme parall
ele sur machines
multiprocesseurs� algorithmes g
en
etiques� repr
esentation directe et indirecte�
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� Introduction

Static multiprocessor task graph scheduling belong to one of the many combi�
natorial optimisation problems and numerous scheduling algorithms have been
published ��� �� �� ��� ���� The static multiprocessor scheduling problem in�
volves allocating processing order and processor elements to a set of precedence
constrained tasks�

The quality of a schedule is evaluated quantitatively using the makespan or
response time� which is de�ned as the di	erence between the start�time of the
earliest task and the �nishing�time of the latest task� Clearly� the makespan is
sensitive to variations in processing order and processor allocations� The multi�
processor scheduling problem therefore consist of �nding the con�guration that
minimises the makespan� The most widely referenced constructive method is
the Critical Path � Most Immediate Successor First CP�MISF ����� The prob�
lems with this and the other traditional constructive �list� scheduling� methods
are the poor quality of the sub�optimal solutions �i�e�� solutions whose opti�
mality cannot be guaranteed� produced� Because of the inadequacy of these
algorithms genetic algorithms have successfully been employed in the search for
the sub�optimal solution ��� �� �� �� �� ��� ��� ��� ��� ��� ��� ��� ��� ���� A
genetic algorithm is a guided random parallel search strategy where elements
�called individuals� in a given set of solutions �called population� are randomly
combined and modi�ed by genetic operators such as crossover and mutation� re�
spectively until some termination condition is satis�ed� The population evolves
iteratively through series of generations in order to improve the �tness of its
individuals� A chromosome structure is also called a genotype� and a solution
structure is often called a phenotype�

The genetic scheduling attempts can be classi�ed into two major categories�
direct and indirect representations� In the direct representation the genotype
is identical to the phenotype and the genetic operators are manipulating the
schedules directly� In the indirect representation the phenotype is di	erent
from the genotype� and the chromosome contains decisions on how to build the
schedule� As a result the genetic operators only a	ect the phenotype implicitly�
The direct representation was introduced by Hou et� al� ���� and later modi�ed
by the likes of Greenwood et� al� ����� Baccouche ��� and Rebreyend ���� Early
indirect representations were proposed by Benten and Sait ��� and Kidwell ����
and later modi�cations are introduced by the likes of Ahmad and Dhodhi ��� ��
Ravikumar and Gupta ���� and Sandnes and Megson ���� ����

In this paper we compare these two major strategies� There are two main
criteria for comparing genetic algorithms� namely the quality of the results and
the e	ort of computation� These criteria can be materialised quantitatively
using the response�time as a qualitative measure and the time of convergence
as a measure of e	ort� The main emphasis is on the state�of�the�art� namely
Rebreyend et� al��s enhanced direct representation strategy and Sandnes and
Megson�s modi�ed indirect representation� but the results obtained with Hou
et� al� and Ahmad and Dhodhi are included for completeness�

This paper is organised as follows� First the scheduling problem is de�ned
formally� Thereafter� the di	erent approaches are surveyed� This is followed
by experimental evidence and a discussion� The paper is closed by a set of
concluding remarks�
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� Multiprocessor scheduling

A �homogeneous� multiprocessor system is composed of a set P � fp�� � � � � pmg of
m identical processors� These processors are fully or partially inter�connected in
a network� where all links are identical� Each processor can execute at most one
task at a time and tasks can not be pre�empted� A processor can communicate
asynchronously through one or several of its links simultaneously� Processors
are fully connected�

The parallel program is described by an acyclic digraph D � �T � A�� The
vertices represent the set T � ft�� � � � � tng of tasks and each arc represents the
precedence relation between two tasks� i�e� the precedence relation limits the
processing order of the tasks � An arc �ti� � ti�� � A represents the fact that at
the end of its execution� ti� sends a message whose contents are required by ti�
to start execution� In this case� ti� is said to be an immediate predecessor of ti� �
and ti� itself is an immediate successor of ti� �

A path is a sequence of nodes � ti� � � � � � tik �� � � k � n such that til is an
immediate predecessor of til�� � � � l � k� A task ti� is a predecessor of another
task tik if there is a path � ti� � � � � � tik � in D� To every task ti� there is an
associated weight representing its duration� known before the execution of the
program� In addition� all the communications are also known at compile�time�
Thus� to every arc �ti� � ti�� � A there is an associated weight representing the
transfer time of the message sent by ti� to ti� �

Tasks without predecessors are called entry nodes and are to be executed
�rst� Tasks without successors are called exit tasks and are executed last�

A schedule is a vector s � fs�� � � � � smg� where sj � fti� � � � � � tinj g� i�e�� sj is

the set of the nj tasks scheduled to pj� For each task til � sj � l represents its
execution rank in pj under the schedule s� Further� for each task ti� we denote
p�ti� s� and r�ti� s�� respectively� the processor and the rank in this processor of
ti under the schedule s� The execution time yielded by a schedule is called the
makespan� A list heuristic is used whose principle is to schedule each task ti to
p�ti� s� according to its rank r�ti� s�� In addition� the task is scheduled as soon
as possible depending on the schedule of its immediate predecessors ����

��� Genetic algorithms

A GA is a stochastic optimisation method ��� ���� It maintains a set of chromo�
somes representing problem solutions� These chromosomes are modi�ed using
simulated evolution by employing genetic operators� The two main operators
are crossover and mutation� The crossover attempts to adopt and combine
characteristics from two parents in its o	spring� The mutation introduces per�
turbation into the search� These modi�cations are applied through successive
generations� Selection is applied to the individuals of one generation to form
the population of the next generation� This allows the algorithm to take biased
decisions favouring good individuals� For this� some of the more��t individuals
are replicated� while some of the less��t individuals are �ltered� As a conse�
quence� after the selection� the population is likely to be �dominated� by good
individuals�

�



� Direct representations

In the Direct representation scheme� a chromosome represents a solution� A
chromosome can be easily build from a solution and vice�versa� Hou� Ansari
and Ren ���� used this scheme in the HAR algorithm� In the next paragraph we
explain the HAR chromosome representation� This representation is adopted
by Rebreyend� Correa and Ferreira ��� and their version called Lyon is described
thereafter�

��� Representation

We have a solution for the scheduling problem when we know the processor and
time allocated to each task� This means that the same solution always yields
the same makespan�

A chromosome� like DNA� is often a string or a set of strings and operators
use some properties of these strings� A string of elements de�nes an order on
these elements� We can use it to express the order between tasks ���� But� a
string represents the execution order on one processor but not the starting time
of each task� An execution order can represent several feasible solutions� Such
solutions are made by delaying some task� But� as we focus on solutions with
the lowest makespan� we only represent a subset of all the solutions� Given a
chromosome� the solution is built using a list scheduler which schedules each
task at the earliest possible time�slot� It is also possible to build a chromosome
from a solution� Consequently� the search is reduced but optimal solutions can
still be represented with this genotype as show in ����

The initial version of HAR assumes zero�communication times� To allow for
non�zero communication times the �tness function is extended�

��� HAR

The HAR algorithm employs the above representation� It is desirable to only
represent feasible solutions� as this allows the genetic algorithm to converge
onto quality solutions with less computational e	ort� If a task ti is before tj on
one string and there is a dependency from tj to ti the chromosome represents
an infeasible solution� In HAR and the Lyon algorithm� chromosomes only
represent feasible solutions� This is achieved by using problem�speci�c genetic
operators� These genetic operators can be slower� especially for larger problems�
For example� if a mutation operator swaps two tasks� to conserve feasibility�
these two tasks cannot be picked totally at random� The two tasks must be
selected such that the o	spring is feasible� HAR uses the levels of each task to
achieve this� The level of a task is the longest path �i�e the number of tasks� from
a task without predecessor to the given task� Task levels are used to rapidly
build feasible schedules� It is trivial to show that the schedule on each processor
is feasible if the order of the tasks is chosen according to their levels� The proof
is simple� If a schedule is infeasible� it is because a task is scheduled before its
predecessors� However� this is not possible since the level of the predecessors is
strictly less than the level of the task�

Building the initial population is done as follows� For each level� tasks are
assigned to a processor and this is done from level � to the highest level� When
a task is assigned to a processor� it is added at the end of the current string
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which represents the schedule at this processor� A similar approach applies to
the crossover operator� The procedure is to cut the set of tasks into two parts�
one which consists of tasks executing at the beginning and the other of tasks
executed at the end� Thereafter� two new schedules can be built by swapping the
last two parts between the two schedules� To guarantee feasibility� the members
of the �rst partition represents tasks with a level smaller than a chosen level
and the other partition contains the remaining tasks� For mutation� HAR only
swaps two tasks at the same level�

��� Lyon

Rebreyend et� al� identi�ed two shortfalls of HAR� First� HAR is sometimes
unable to reach the optimal solution as shown in ��� and tasks are not uniformly
distributed among processors in the initial population� Instead of using levels
to ensure the feasibility of a schedule� Lyon uses the task graph� This is com�
putationally more costly but at least one optimal solution can be represented�
They prove that a schedule s is feasible if and only ifD�s� is acyclic� where D�s�
is the graph D of precedence constraints augmented by the set of precedence
constraint given by the schedule �When a task is scheduled before another on
the same processor��

The initial population is randomly chosen by using a list algorithm� The
Lyon algorithm uses knowledge augmented operators� Traditional genetic al�
gorithms are based on a random search and can often be slow in practice� To
improve the speed of the search� additional knowledge can be used by incorpo�
rating it into the operators�

The crossover operator �rst cuts all strings in two parts as done in HAR�
But� instead of using levels� the cut is chosen by using the digraph D� At each
step� a free task �not already assigned to a part� is assigned to a part and all
predecessors �or successors�� both from D or from a string are assigned to the
same part� This is repeated until all tasks are assigned to a part� The left
part remains unchanged and the right part is built using the right end�part of
the other parent� To build the right part� a greedy algorithm is used and to
maintain characteristics of the other parent� a precedence constraint is added to
D between two tasks if and only if these two tasks are scheduled adjacently on
the same processor� The �rst step is to build all feasible task�processor couples�
In the second step we determine the subset of couples with the earliest start�
time� The third step selects couples with the longest critical path� Finally� the
couples with the highest number of descendants remain� From this �nal set one
couple is picked at random� The mutation operator constructs the schedule in
a similar manner to the right part of the crossover� However� only the two �rst
steps are performed�

��� Other uses of the direct representation

Both Greenwood et� al� ���� and Baccouche and Muntean ��� are inspired by
the work of Hou et� al� and thus adopt their problem encoding� However�
their objectives are slightly di	erent as they are scheduling real�time tasks�
Besides the precedence constraints each task has a periodic deadline� thus the
genetic algorithm has to satisfy a set of timing constraints� Moreover� in a fault�
tolerant real�time systems� a subset of the tasks must be replicated onto di	erent
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processors and child nodes of the replicated nodes are responsible for voting and
thus detect and correct failures� The genetic algorithm has to adopt to a set of
replication constraints such that the schedules are made fault�tolerant� Because
of these additional constraints both approaches introduce invalid schedules� thus
schedules that contain tasks that do not meet their deadlines� and tasks that
are not replicated according to the replication constraints� These di�culties are
overcome by penalising such solutions� such that they eventually are removed
from the population by the genetic engine�

� Indirect representations

In the indirect chromosome representation the phenotype is constructed using
the genotype� The genotype is a set of symbols that are used by some decoding
algorithm to build the schedule�

��� Previous work

Benten and Sait ��� only encode the processor allocations in the genetic algo�
rithm� The time allocation is performed by building a list schedule� where all
the processor allocations are determined by the chromosome string� This en�
coding will always produce valid schedules when using standard one�point order
crossover� however just a limited set of the search space is considered� con�
strained by the list scheduler� Kidwell ���� also encode the processor allocations
in the genetic algorithm in a similar manner to Benton and Sait�

Ravikumar and Gupta ���� �x the number of processors but try to �nd the
optimal inter�processor connection topology� Their chromosome consists of three
parts� each with its own genetic operators� The �rst part of the chromosome is
a p � p connectivity matrix� The second part of the chromosome is an integer
array of size n that comprises the processor allocations� where element i denote
the processor allocated to task i� The third part of the chromosome consists
of the scheduling information in an integer array of size n� This is encoded
as a list of priorities� where element i contain the priority of task i� Schedules
are built using the processor allocations encoded in the chromosome� and using
a priority list scheduler� where the priorities encoded in the chromosome are
used �Increasing priority order�� The crossover operator for the link assignments
copies the p�p matrices from the parents to the o	springs� then a randommatrix
row is exchanged between the two o	springs and rotated to maintain symmetry�
No mutation operator is applied to the link assignments� The crossover operator
for the processor assignments uses a one point order crossover� Mutation is
achieved by random exchange� The priority list crossover operator is constructed
by selecting a random time t� Two lists are created� such that each contains
the list of nodes in the parents that could have been �red at time t� These two
lists are replaced for the two o	springs� Mutation is achieved by selecting one
of the n tasks at random� say task t� The task t� among the predecessors of t
that have the latest schedule time is determined� similarly� the task t��� which
has the earliest schedule time among the successors of t is found� Clearly� the
position of task t in the ready list can be varied in the range t� � � to t�� � �
without violating any constraints� The mutation operator assigns a position
for t randomly in the above range� This may necessitate the modi�cation of
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the priorities of the other tasks in the range in a domino like fashion� The
authors claim that their approach is suitable for heterogeneous systems� as each
processor is assigned a class number� and each task is assigned a class set that
indicates which processor the task can run on�

Dhodhi and Ahmad et al� ��� attempt to use genetic algorithms to determine
the optimal number of processors for a given task graph in a heterogeneous sys�
tem� The �rst part of the chromosome indicates the availability of processors�
This is implemented as a boolean array that indicates the presence or absence
of a particular processor� Note that each processor can be di	erent� hence the
heterogenicity� The second part of the chromosome consists of a priority list�
where each allele represents the priority for the task with that index� When
decoding the chromosome� this priority is used to build the schedule using pri�
ority list scheduling� A separate single point crossover and mutation approach
is applied to each of the two parts of the chromosome�

Ahmad and Dhodhi ��� also used a chromosome representation where only
task priorities are encoded� The schedules are built by scheduling all tasks
in the freelist in bulk in their order of priority� before the freelist is updated�
Processor assignments are made by assigning a task the processor with the
earliest possible start time� They report to have better results than Hou et al�
but do not consider communication overheads�

��� Reading approach

Sandnes and Megson�s ���� improved scheduling approach is based on the im�
plicit representation proposed by Ahmad and Dhodhi due to its high quality
results �See the experiments�� It was extended to include non�zero communica�
tion overheads and partially connected processor networks through an extended
chromosome representation�

Ahmad and Dohdi proposed to allocate processors implicitly using an earliest
start�time heuristic ��� ��� Their original representation consists only of a priority
list of size N � A schedule is built by scheduling all tasks in the freelist� Each
task is allocated to the processor that o	ers the earliest start�time taking the
precedence constraints into consideration�

����� Non�zero communication costs

This processor allocation heuristic is extended to incorporate communication
overheads and partially connected processor networks� The proposed extended
processor allocation heuristic is to allocate a given task to the processor that
o	er the earliest start�time� The earliest start�time is found by computing the
earliest start�time on each processor and choosing the smallest� The earliest
start�time on a processor is computed by �nding the maximum of the �nishing�
times of the parent tasks plus the product of the communication time and the
number of relays the message has to make�

The genetic algorithm can adapt schedules for di	erent network structures�
and the network topology must be incorporated into the scheduling model� A
network connectivity matrix can be used to accomplish this� where the elements
denote the cost of transmitting unit data between two processors� A zero ele�
ment means that there is no link connecting the two processing elements� and
messages must travel via intermediate nodes� Most networks of interests are
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Figure �� Shortfall of implicit processor allocation�

partially�connected� therefore� some non�diagonal elements in the matrix are
zero� In a partially connected network a message is relayed through the nodes
of a path connecting the two communicating processors�

����� Expanding the search space

Situations occur where the implicit processor allocation strategy is sub�optimal�
Imagine a scenario where the earliest possible start time is the same on several
processors� For instance� this occurs when scheduling the �rst task as all the
start�times are zero� The implicit processor allocation strategy then selects
a processor from the set of feasible processors using some �xed strategy� For
example� the strategy might be to select the available processor with the smallest
index� Such processor assignments limit the search space�

For example� a three�processor star topology� and a task graph with four
nodes as depicted in Figure �� When scheduling task � with the implicit proces�
sor allocation strategy one processor is chosen according to some �xed policy�
such as the processor with the smallest index� here processor �� However� in
this example task � must be allocated processor � in order to �nd the opti�
mal solution with makespan �� If task � is allocated processor � or � the best
solution will have at best a sub�optimal makespan of �� Hence� the static pro�
cessor allocation policy that selects from a set of processors with equal smallest
start�times can lead to sub�optimal solutions� especially on asymmetric network
topologies�

This shortfall is amended by modifying the implicit processor assignment
representation� A second chromosome part is added� namely a processor choice
part� This part is an integer string of size N where the genes are in the range
����p�� This part of the chromosome is used when an ambiguous situation occurs�
i�e� when there is a tie between two or more processors� If e is the set of
processors with the earliest start time for task i� then processor e�modjej is
chosen� where � is the gene value� In other words� the decision concerning
which processors to chose in ambiguous situations is encoded in the chromosome�
instead of choosing one statically or randomly� This safeguard reduces the
chances of converging at sub�optimal solutions�

The advantage of this simple chromosome representation is that a standard
genetic search engine can be applied to the problem with simple computationally
e�cient operators� Sandnes and Megson used Goldberg�s PMX crossover and
random swap mutation for the priority part of the chromosome and uniform
crossover and random�increment�decrement for the processor allocation part of
the chromosome�
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� Experimental evidence

��� The test�suite

Three test�suites where used� First a set of general task�graphs generated by a
tool called ANDES�Synth ���� ���� a set of state�space controllers from Sandnes
and Megson ���� ��� and the standard Stanford arm and elbow manipulator
task graphs of Kasahira and Narita ���� with added communication overheads�
ANDES�Synth is a tool that generates synthetic task digraphs whose shapes rep�
resent known parallel programs� such as divide and conquer� prolog solving and
Gauss elimination� The parameters of the ANDES�Synth test�suite represents
the characteristics on an IBM SP�� parallel computer�

� Bellford
� Diamond�
� Diamond�
� Diamond�
� Diamond�
� Divconq
� FFT
� Gauss
� Iterative
�� MS�Gauss
�� Prolog
�� QCD
�� elbow manipulator
�� Stanford arm
�� SSC

Five algorithms are applied to the test�suite and compared� �� CP�MISF �
the heuristic is run iteratively where ambiguous choices are resolved randomly�
i�e� guided random search� �� HAR � Hou et� al��s GA with non�zero communi�
cation costs� �� Lyon GA� �� Ahmad�s GA with non�zero communication costs
and �� Reading GA� Each trial is run with exclusive access to an Intel Pro ���
for two hours�

� Discussion

The table � summarises the results� It shows the relative deviation in percentage
from the best for all methods applied to all the problems� The best result for
each problem is highlighted in boldface�

Clearly� HAR produces the worst results� These results are even worse than
the results obtained with guided random search� The reasons for these poor
results are explained in detail in ���� They can be summarised as being due
to a limited search space caused by the genetic operators and a non�uniform
distribution of tasks to processors in the initial population�

The results are relatively consistent� where the Lyon� Ahmad and Reading
approaches produce results of similar quality although with slight variations�
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Table �� Results in � hours

The Lyon approach produce the best results on average� followed by Ahmad
and Reading� The Ahmad approach is the most reliable as it has the lowest
maximum deviation from the best solution found� thus it is more likely to pro�
duce good results in most situations� The Reading approach produces slightly
worse results than Ahmad� This is because Reading is an extension of Ahmad
specially designed for a network of partially connected processors� In these
tests the problems were evaluated on a ���processor fully connected network�
However� Sandnes and Megson shows that Reading outperforms Ahmad on a
partially connected processor networks�

An interesting observation is that the CP�MISF heuristic with random
search scores the highest in number of best solutions as about half of the best
solutions are found by this method� although it ranks as second worst on aver�
age quality and maximum deviation from the best� This is an indication that a
heuristic method with random search is a competitive strategy� although not as

�



reliable as the genetic algorithms� With random search one is likely to occasion�
ally hit a desirable location in the search space� likewise there is a probability
that such a region of the search space will never be traversed� The genetic algo�
rithm however� takes the best from two worlds� it starts with a random search
in the initial population� and then apply its stochastic operators to re�ne these
solutions� Consequently� the genetic algorithm almost always converges at a
high quality solution�

An exception to the general results can be seen for the graph ��� For this
graph� the two indirect methods give superior results to the other approaches�
Repeated runs of the various algorithms reveal this predominant pattern� and
we are unable to explain this phenomena�

Table � shows that the indirect representation is e�cient� It is relatively
simple to implement� One other hand� the direct representation is non�trivial
to implement since one relies on non�standard computationally�costly genetic
operators with built�in heuristics� However� operating directly on the pheno�
type is �exible and allows for certain extensions such as genetic operators with
di	erent heuristics to be made�

Figures � and � shows the converging characteristics of the di	erent ap�
proaches� where �tness is plotted against a log�scale of time in seconds� Clearly�
the Lyon� Ahmad and Reading GA�s converge in a similar manner and HAR
appears to converge prematurely� Note that Lyon in Figure � obtain the �rst
solution after �� seconds� This delay is due to setup and initialisation overheads�
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Figure �� Convergence of methods on the �� graph�

� Conclusion

This paper investigates the two main directions of research into genetic algo�
rithms applied to static multiprocessor scheduling� namely the direct representa�
tion proposed by Hou et� al and the indirect representations� This paper veri�es
that genetic algorithms are e	ective in the search for high quality schedules� The
experiences obtained with both approaches indicate that genetic algorithms can
be applied with little knowledge about a problem and still produce acceptable
solutions� given adequate computational e	ort� However� both camps of re�
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search has revealed the fact that combining the genetic algorithm with domain
speci�c knowledge greatly improves the quality of the schedules and reduces the
time of convergence� In multiprocessor scheduling this imply the assignment of
processing order and processor elements to the tasks�

The �rst attempts at applying genetic algorithms to multiprocessor schedul�
ing varied greatly in quality� However� as more domain speci�c information
is incorporated into the search both approaches tends towards the same lower
bounds with respect to quality�

The experiments also show that the time of convergence are similar for the
two main approaches where the indirect method is slightly faster than the direct
method� This is most likely due to the added complexity of the non�trivial
augmented operators used with the direct method�

In general the indirect method is simple and straightforward in structure�
The direct method require more implementation e	ort� however it is more �ex�
ible�
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