P Rebreyend

F E Sandnes

G M Megson

Static Multiprocessor Task Graph Scheduling in the Genetic Paradigm: A Comparison of Genotype Representations 2

Keywords: Multiprocessor Scheduling, Genetic Algorithms, direct and indirect representation R ordonnancement de programme parall ele sur machines multiprocesseurs, algorithmes g en etiques, repr esentation directe et indirecte

In the NP-hard multiprocessor scheduling problem a set of precedence constrained tasks are allocated onto processors in a processing order in order to minimise the makespan. Many heuristic methods for nding solutions exist, but they are all sub-optimal on general task graphs. To i m p r o ve these solutions, genetic algorithms have successfully been applied to the problem and the results reported have been superior to the list-scheduling approaches. However, the application of genetic algorithms to the multiprocessor scheduling problem have predominantly followed two main paths of developments, namely the use of direct and indirect representations. In the direct chromosome representation the schedule is represented and manipulated directly by the genetic operators, and the genotype is identical to the phenotype. In the indirect representation only the decisions on how to build the schedule is encoded in the chromosome. The genetic operators a ect the schedules implicitly, and the genotype is different to the phenotype. In this paper these two main approaches to genetic scheduling are compared by e v aluating their respective quality of results and time of convergence.

Introduction

Static multiprocessor task graph scheduling belong to one of the many c o m binatorial optimisation problems and numerous scheduling algorithms have been published 4, 8, 6 , 1 7 , 1 9]. The static multiprocessor scheduling problem involves allocating processing order and processor elements to a set of precedence constrained tasks.

The quality o f a s c hedule is evaluated quantitatively using the makespan or response time, which is de ned as the di erence between the start-time of the earliest task and the nishing-time of the latest task. Clearly, the makespan is sensitive t o v ariations in processing order and processor allocations. The multiprocessor scheduling problem therefore consist of nding the con guration that minimises the makespan. The most widely referenced constructive method is the Critical Path -Most Immediate Successor First CP/MISF 13]. The problems with this and the other traditional constructive (list-scheduling) methods are the poor quality of the sub-optimal solutions (i.e., solutions whose optimality cannot be guaranteed) produced. Because of the inadequacy of these algorithms genetic algorithms have successfully been employed in the search for the sub-optimal solution 1, 2, 3, 5, 7, 10, 11, 12, 14, 20, 2 3 , 21, 22, 24]. A genetic algorithm is a guided random parallel search strategy where elements (called individuals) i n a g i v en set of solutions (called population) are randomly combined and modi ed by genetic operators such a s crossover and mutation, r espectively until some termination condition is satis ed. The population evolves iteratively through series of generations in order to improve t h e tness of its individuals. A chromosome structure is also called a genotype, and a solution structure is often called a phenotype.

The genetic scheduling attempts can be classi ed into two major categories, direct and indirect representations. In the direct representation the genotype is identical to the phenotype and the genetic operators are manipulating the schedules directly. In the indirect representation the phenotype is di erent from the genotype, and the chromosome contains decisions on how to build the schedule. As a result the genetic operators only a ect the phenotype implicitly. The direct representation was introduced by Hou et. al . 10] and later modi ed by the likes of Greenwood et. al. 12], Baccouche 2] and Rebreyend 5]. Early indirect representations were proposed by Benten and Sait 3] and Kidwell 14] and later modi cations are introduced by the likes of Ahmad and Dhodhi 7, 1] Ravikumar and Gupta 20] and Sandnes and Megson 21,[START_REF] Sandnes | Genetic Algorithms Applied t o A utomatic Parallel Controller Code Generation[END_REF].

In this paper we compare these two major strategies. There are two m a i n criteria for comparing genetic algorithms, namely the quality of the results and the e ort of computation. These criteria can be materialised quantitatively using the response-time as a qualitative measure and the time of convergence as a measure of e ort. The main emphasis is on the state-of-the-art, namely Rebreyend et. This paper is organised as follows. First the scheduling problem is de ned formally. Thereafter, the di erent approaches are surveyed. This is followed by experimental evidence and a discussion. The paper is closed by a set of concluding remarks. 1 2 Multiprocessor scheduling A (homogeneous) multiprocessor system is composed of a set P = fp 1 p m g of m identical processors. These processors are fully or partially inter-connected in a network, where all links are identical. Each processor can execute at most one task at a time and tasks can not be pre-empted. A processor can communicate asynchronously through one or several of its links simultaneously. Processors are fully connected.

The parallel program is described by an acyclic digraph D = (T A). The vertices represent the set T = ft 1 : : : t n g of tasks and each arc represents the precedence relation between two tasks, i.e. the precedence relation limits the processing order of the tasks . An arc (t i1 t i2) 2 A represents the fact that at the end of its execution, t i1 sends a message whose contents are required by t i2 to start execution. In this case, t i1 is said to be an immediate predecessor of t i2 , and t i2 itself is an immediate successor of t i1 .

A path is a sequence of nodes < t i1 t ik >, 1 < k n such t h a t t il is an immediate predecessor of t il+1 , 1 l < k . A task t i1 is a predecessor of another task t ik if there is a path < t i1 t ik > in D. T o e v ery task t i , there is an associated weight representing its duration, known before the execution of the program. In addition, all the communications are also known at compile-time. Thus, to every arc (t i1 t i2) 2 A there is an associated weight representing the transfer time of the message sent b y t i1 to t i2 .

Tasks without predecessors are called entry nodes and are to be executed rst. Tasks without successors are called exit tasks and are executed last.

A schedule is a vector s = fs 1 s m g, w h e r e s j = ft i1 t in j g, i.e., s j is the set of the n j tasks scheduled to p j . F or each task t il 2 s j , l represents its execution rank in p j under the schedule s. F urther, for each t a s k t i , w e denote p(t i s) a n d r(t i s), respectively, the processor and the rank in this processor of t i under the schedule s. The execution time yielded by a s c hedule is called the makespan. A list heuristic is used whose principle is to schedule each t a s k t i to p(t i s) according to its rank r(t i s). In addition, the task is scheduled as soon as possible depending on the schedule of its immediate predecessors 5].

Genetic algorithms

A GA is a stochastic optimisation method 9, 1 8]. It maintains a set of chromosomes representing problem solutions. These chromosomes are modi ed using simulated evolution by employing genetic operators. The two main operators are crossover and mutation. The crossover attempts to adopt and combine characteristics from two parents in its o spring. The mutation introduces perturbation into the search. These modi cations are applied through successive generations. Selection is applied to the individuals of one generation to form the population of the next generation. This allows the algorithm to take biased decisions favouring good individuals. For this, some of the more-t individuals are replicated, while some of the less-t individuals are ltered. As a consequence, after the selection, the population is likely to be \dominated" by good individuals.

Direct representations

In the Direct representation scheme, a chromosome represents a solution. A chromosome can be easily build from a solution and vice-versa. Hou, Ansari and Ren 10] used this scheme in the HAR algorithm. In the next paragraph we explain the HAR chromosome representation. This representation is adopted by Rebreyend, Correa and Ferreira 5] and their version called Lyon is described thereafter.

Representation

We h a ve a solution for the scheduling problem when we k n o w the processor and time allocated to each task. This means that the same solution always yields the same makespan.

A c hromosome, like DNA, is often a string or a set of strings and operators use some properties of these strings. A string of elements de nes an order on these elements. We can use it to express the order between tasks 5]. But, a string represents the execution order on one processor but not the starting time of each task. An execution order can represent several feasible solutions. Such solutions are made by delaying some task. But, as we focus on solutions with the lowest makespan, we only represent a subset of all the solutions. Given a chromosome, the solution is built using a list scheduler which s c hedules each task at the earliest possible time-slot. It is also possible to build a chromosome from a solution. Consequently, the search is reduced but optimal solutions can still be represented with this genoty p e a s s h o w i n 5] .

The initial version of HAR assumes zero-communication times. To allow for non-zero communication times the tness function is extended.

HAR

The HAR algorithm employs the above representation. It is desirable to only represent feasible solutions, as this allows the genetic algorithm to converge onto quality solutions with less computational e ort. If a task t i is before t j on one string and there is a dependency from t j to t i the chromosome represents an infeasible solution. In HAR and the Lyon algorithm, chromosomes only represent feasible solutions. This is achieved by using problem-speci c genetic operators. These genetic operators can be slower, especially for larger problems. For example, if a mutation operator swaps two tasks, to conserve feasibility, these two tasks cannot be picked totally at random. The two tasks must be selected such that the o spring is feasible. HAR uses the levels of each t a s k t o achieve this. The level of a task is the longest path (i.e the number of tasks) from a task without predecessor to the given task. Task levels are used to rapidly build feasible schedules. It is trivial to show that the schedule on each processor is feasible if the order of the tasks is chosen according to their levels. The proof is simple: If a schedule is infeasible, it is because a task is scheduled before its predecessors. However, this is not possible since the level of the predecessors is strictly less than the level of the task.

Building the initial population is done as follows: For each level, tasks are assigned to a processor and this is done from level 0 to the highest level. When a task is assigned to a processor, it is added at the end of the current string which represents the schedule at this processor. A similar approach applies to the crossover operator. The procedure is to cut the set of tasks into two parts, one which consists of tasks executing at the beginning and the other of tasks executed at the end. Thereafter, two new schedules can be built by s w apping the last two parts between the two s c hedules. To guarantee feasibility, the members of the rst partition represents tasks with a level smaller than a chosen level and the other partition contains the remaining tasks. For mutation, HAR only swaps two tasks at the same level.

Lyon

Rebreyend et. al. identi ed two shortfalls of HAR. First, HAR is sometimes unable to reach the optimal solution as shown in 5] and tasks are not uniformly distributed among processors in the initial population. Instead of using levels to ensure the feasibility o f a s c hedule, Lyon uses the task graph. This is computationally more costly but at least one optimal solution can be represented. They prove t h a t a s c hedule s is feasible if and only if D(s) is acyclic, where D(s) is the graph D of precedence constraints augmented by the set of precedence constraint g i v en by t h e s c hedule (When a task is scheduled before another on the same processor).

The initial population is randomly chosen by using a list algorithm. The Lyon algorithm uses knowledge augmented operators. Traditional genetic algorithms are based on a random search and can often be slow in practice. To improve the speed of the search, additional knowledge can be used by incorporating it into the operators.

The crossover operator rst cuts all strings in two parts as done in HAR. But, instead of using levels, the cut is chosen by using the digraph D: A t each step, a free task (not already assigned to a part) is assigned to a part and all predecessors (or successors), both from D or from a string are assigned to the same part. This is repeated until all tasks are assigned to a part. The left part remains unchanged and the right part is built using the right end-part of the other parent. To build the right part, a greedy algorithm is used and to maintain characteristics of the other parent, a precedence constraint is added to D between two tasks if and only if these two tasks are scheduled adjacently on the same processor. The rst step is to build all feasible task-processor couples. In the second step we determine the subset of couples with the earliest starttime. The third step selects couples with the longest critical path. Finally, t h e couples with the highest number of descendants remain. From this nal set one couple is picked at random. The mutation operator constructs the schedule in a similar manner to the right part of the crossover. However, only the two rst steps are performed.

Other uses of the direct representation

Both Greenwood et. al. 12] and Baccouche and Muntean 2] are inspired by the work of Hou et. al. and thus adopt their problem encoding. However, their objectives are slightly di erent a s t h e y a r e s c heduling real-time tasks. Besides the precedence constraints each task has a periodic deadline, thus the genetic algorithm has to satisfy a set of timing constraints. Moreover, in a faulttolerant real-time systems, a subset of the tasks must be replicated onto di erent processors and child nodes of the replicated nodes are responsible for voting and thus detect and correct failures. The genetic algorithm has to adopt to a set of replication constraints such that the schedules are made fault-tolerant. Because of these additional constraints both approaches introduce invalid schedules, thus schedules that contain tasks that do not meet their deadlines, and tasks that are not replicated according to the replication constraints. These di culties are overcome by penalising such solutions, such t h a t t h e y e v entually are removed from the population by the genetic engine.

Indirect representations

In the indirect chromosome representation the phenotype is constructed using the genotype. The genoty p e i s a s e t o f s y m bols that are used by some decoding algorithm to build the schedule.

Previous work

Benten and Sait 3] only encode the processor allocations in the genetic algorithm. The time allocation is performed by b u i l d i n g a l i s t s c hedule, where all the processor allocations are determined by the chromosome string. This encoding will always produce valid schedules when using standard one-point order crossover, however just a limited set of the search space is considered, constrained by the list scheduler. Kidwell 14] also encode the processor allocations in the genetic algorithm in a similar manner to Benton and Sait.

Ravikumar and Gupta 20] x the number of processors but try to nd the optimal inter-processor connection topology. Their chromosome consists of three parts, each with its own genetic operators. The rst part of the chromosome is a p p connectivity matrix. The second part of the chromosome is an integer array of size n that comprises the processor allocations, where element i denote the processor allocated to task i. The third part of the chromosome consists of the scheduling information in an integer array of size n. This is encoded as a list of priorities, where element i contain the priority o f t a s k i . S c hedules are built using the processor allocations encoded in the chromosome, and using a priority l i s t s c heduler, where the priorities encoded in the chromosome are used (Increasing priority order). The crossover operator for the link assignments copies the p p matrices from the parents to the o springs, then a random matrix row is exchanged between the two o springs and rotated to maintain symmetry. No mutation operator is applied to the link assignments. The crossover operator for the processor assignments uses a one point order crossover. Mutation is achieved by random exchange. The priority list crossover operator is constructed by selecting a random time t. T w o lists are created, such that each c o n tains the list of nodes in the parents that could have been red at time t. These two lists are replaced for the two o springs. Mutation is achieved by selecting one of the n tasks at random, say task t. The task t 0 among the predecessors of t that have the latest schedule time is determined, similarly, the task t 00 , w h i c h has the earliest schedule time among the successors of t is found. Clearly, t h e position of task t in the ready list can be varied in the range t 0 + 1 t o t 00 ; 1 without violating any constraints. The mutation operator assigns a position for t randomly in the above range. This may necessitate the modi cation of the priorities of the other tasks in the range in a domino like fashion. The authors claim that their approach is suitable for heterogeneous systems, as each processor is assigned a class number, and each task is assigned a class set that indicates which processor the task can run on.

Dhodhi and Ahmad et al. 7] attempt to use genetic algorithms to determine the optimal number of processors for a given task graph in a heterogeneous system. The rst part of the chromosome indicates the availability of processors. This is implemented as a boolean array that indicates the presence or absence of a particular processor. Note that each processor can be di erent, hence the heterogenicity. The second part of the chromosome consists of a priority list, where each allele represents the priority for the task with that index. When decoding the chromosome, this priority is used to build the schedule using priority list scheduling. A separate single point crossover and mutation approach is applied to each o f t h e t wo parts of the chromosome.

Ahmad and Dhodhi 1] also used a chromosome representation where only task priorities are encoded. The schedules are built by s c heduling all tasks in the freelist in bulk in their order of priority, before the freelist is updated. Processor assignments are made by assigning a task the processor with the earliest possible start time. They report to have better results than Hou et al. but do not consider communication overheads.

Reading approach

Sandnes and Megson's 23] improved scheduling approach is based on the implicit representation proposed by Ahmad and Dhodhi due to its high quality results (See the experiments). It was extended to include non-zero communication overheads and partially connected processor networks through an extended chromosome representation.

Ahmad and Dohdi proposed to allocate processors implicitly using an earliest start-time heuristic 1, 7]. Their original representation consists only of a priority list of size N. A s c hedule is built by s c heduling all tasks in the freelist. Each task is allocated to the processor that o ers the earliest start-time taking the precedence constraints into consideration.

Non-zero communication costs

This processor allocation heuristic is extended to incorporate communication overheads and partially connected processor networks. The proposed extended processor allocation heuristic is to allocate a given task to the processor that o er the earliest start-time. The earliest start-time is found by computing the earliest start-time on each processor and choosing the smallest. The earliest start-time on a processor is computed by nding the maximum of the nishingtimes of the parent tasks plus the product of the communication time and the number of relays the message has to make.

The genetic algorithm can adapt schedules for di erent n e t work structures, and the network topology must be incorporated into the scheduling model. A network connectivity matrix can be used to accomplish this, where the elements denote the cost of transmitting unit data between two processors. A zero element means that there is no link connecting the two processing elements, and messages must travel via intermediate nodes. Most networks of interests are partially-connected therefore, some non-diagonal elements in the matrix are zero. In a partially connected network a message is relayed through the nodes of a path connecting the two c o m m unicating processors.

Expanding the search space

Situations occur where the implicit processor allocation strategy is sub-optimal. Imagine a scenario where the earliest possible start time is the same on several processors. For instance, this occurs when scheduling the rst task as all the start-times are zero. The implicit processor allocation strategy then selects a processor from the set of feasible processors using some xed strategy. F or example, the strategy might be to select the available processor with the smallest index. Such processor assignments limit the search s p a c e . For example, a three-processor star topology, and a task graph with four nodes as depicted in Figure 1. When scheduling task 1 with the implicit processor allocation strategy one processor is chosen according to some xed policy, such as the processor with the smallest index, here processor 1. However, in this example task 1 must be allocated processor 2 in order to nd the optimal solution with makespan 4. If task 1 is allocated processor 1 or 3 the best solution will have at best a sub-optimal makespan of 5. Hence, the static processor allocation policy that selects from a set of processors with equal smallest start-times can lead to sub-optimal solutions, especially on asymmetric network topologies.

This shortfall is amended by modifying the implicit processor assignment representation. A second chromosome part is added, namely a processor choice part. This part is an integer string of size N where the genes are in the range 1::p]. This part of the chromosome is used when an ambiguous situation occurs, i.e. when there is a tie between two or more processors. If e is the set of processors with the earliest start time for task i, then processor e modjej is chosen, where is the gene value. In other words, the decision concerning which processors to chose in ambiguous situations is encoded in the chromosome, instead of choosing one statically or randomly. This safeguard reduces the chances of converging at sub-optimal solutions.

The advantage of this simple chromosome representation is that a standard genetic search engine can be applied to the problem with simple computationally e cient operators. Sandnes and Megson used Goldberg's PMX crossover and random swap mutation for the priority part of the chromosome and uniform crossover and random-increment-decrement for the processor allocation part of the chromosome.

5 Experimental evidence

The test-suite

Three test-suites where used: First a set of general task-graphs generated by a tool called ANDES-Synth 15, 16], a set of state-space controllers from Sandnes and Megson 21,[START_REF] Sandnes | Genetic Algorithms Applied t o A utomatic Parallel Controller Code Generation[END_REF] and the standard Stanford arm and elbow manipulator task graphs of Kasahira and Narita 13] with added communication overheads. ANDES-Synth is a tool that generates synthetic task digraphs whose shapes represent known parallel programs, such as divide and conquer, prolog solving and Gauss elimination. The parameters of the ANDES-Synth test-suite represents the characteristics on an IBM SP-1 parallel computer. Five algorithms are applied to the test-suite and compared: 1) CP/MISFthe heuristic is run iteratively where ambiguous choices are resolved randomly, i.e. guided random search, 2) HAR -Hou et. al.'s GA with non-zero communication costs. 3) Lyon GA, 4) Ahmad's GA with non-zero communication costs and 5) Reading GA. Each trial is run with exclusive access to an Intel Pro 200 for two hours.

Discussion

The table 3 summarises the results. It shows the relative deviation in percentage from the best for all methods applied to all the problems. The best result for each problem is highlighted in boldface.

Clearly, HAR produces the worst results. These results are even worse than the results obtained with guided random search. The reasons for these poor results are explained in detail in 5]. They can be summarised as being due to a limited search space caused by the genetic operators and a non-uniform distribution of tasks to processors in the initial population.

The results are relatively consistent, where the Lyon, Ahmad and Reading approaches produce results of similar quality although with slight v ariations. The Lyon approach produce the best results on average, followed by A h m a d and Reading. The Ahmad approach is the most reliable as it has the lowest maximum deviation from the best solution found, thus it is more likely to produce good results in most situations. The Reading approach produces slightly worse results than Ahmad. This is because Reading is an extension of Ahmad specially designed for a network of partially connected processors. In these tests the problems were evaluated on a 16-processor fully connected network. However, Sandnes and Megson shows that Reading outperforms Ahmad on a partially connected processor networks. An interesting observation is that the CP/MISF heuristic with random search scores the highest in number of best solutions as about half of the best solutions are found by this method, although it ranks as second worst on average quality and maximum deviation from the best. This is an indication that a heuristic method with random search is a competitive strategy, although not as reliable as the genetic algorithms. With random search one is likely to occasionally hit a desirable location in the search space, likewise there is a probability that such a region of the search space will never be traversed. The genetic algorithm however, takes the best from two w orlds, it starts with a random search in the initial population, and then apply its stochastic operators to re ne these solutions. Consequently, the genetic algorithm almost always converges at a high quality solution.

An exception to the general results can be seen for the graph 12. F or this graph, the two indirect methods give superior results to the other approaches. Repeated runs of the various algorithms reveal this predominant pattern, and we are unable to explain this phenomena.

Table 3 shows that the indirect representation is e cient. It is relatively simple to implement. One other hand, the direct representation is non-trivial to implement since one relies on non-standard computationally-costly genetic operators with built-in heuristics. However, operating directly on the phenotype is exible and allows for certain extensions such as genetic operators with di erent heuristics to be made.

Figures 2 and3 shows the converging characteristics of the di erent a pproaches, where tness is plotted against a log-scale of time in seconds. Clearly, the Lyon, Ahmad and Reading GA's converge in a similar manner and HAR appears to converge prematurely. N o t e t h a t L y on in Figure 3 obtain the rst solution after 10 seconds. This delay is due to setup and initialisation overheads. "lyon" "ahmad" "reading" "har" "heuristic"

Conclusion

This paper investigates the two main directions of research i n to genetic algorithms applied to static multiprocessor scheduling, namely the direct representation proposed by Hou et. al and the indirect representations. This paper veri es that genetic algorithms are e ective in the search for high quality s c hedules. The experiences obtained with both approaches indicate that genetic algorithms can be applied with little knowledge about a problem and still produce acceptable solutions, given adequate computational e ort. However, both camps of re- "lyon-2" "ahmad-2" "reading-2" "har-2" "heuristic-2" search has revealed the fact that combining the genetic algorithm with domain speci c knowledge greatly improves the quality o f t h e s c hedules and reduces the time of convergence. In multiprocessor scheduling this imply the assignment o f processing order and processor elements to the tasks.

The rst attempts at applying genetic algorithms to multiprocessor scheduling varied greatly in quality. H o wever, as more domain speci c information is incorporated into the search both approaches tends towards the same lower bounds with respect to quality.

The experiments also show that the time of convergence are similar for the two main approaches where the indirect method is slightly faster than the direct method. This is most likely due to the added complexity of the non-trivial augmented operators used with the direct method.

In general the indirect method is simple and straightforward in structure. The direct method require more implementation e ort, however it is more exible.

Graphs

 al.'s enhanced direct representation strategy and Sandnes and Megson's modi ed indirect representation, but the results obtained with Hou et. al. and Ahmad and Dhodhi are included for completeness.

Figure 1 :

 1 Figure 1: Shortfall of implicit processor allocation.

Figure 2 :

 2 Figure 2: Convergence of methods on the 15 graph.

Figure 3 :

 3 Figure 3: Convergence of methods for the 7 graph

Table 1 :

 1 Results in 2 hours

	Graphs 1 -m 365 size	NON GA CP/MISF	Direct HAR	Lyon	GA	Indirect Ahmad	Reading
	48,363,350 10 -m 768 4,633,100,500 9,920,502,750 4,628,742,350 4,598,559,550 4,598,559,550 -l 1482 2,936,022,450 9,234,372,700 2,915,146,000 2,570,505,150 f2,795,218,300 11 -m 214 80,436,450 186,779,350 63,292,900 63,445,800 63,522,250 -l 1313 717,576,450 1,039,016,450 270,162,250 299,015,150 311,565,450 12 -m 326 1,176,047,050 3,566,221,900 1,176,047,050 1,173,100,600 1,173,100,600 -l 1027 3,928,300,600 11,127,636,700 3,913,568,350 2,038,576,050 2,038,576,050 13 103 6630 6864 6630 6630 6630 14 90 668 844 647 627 639 15 5 200 110 151 108 109 110 6 288 126 177 127 125 127 7 392 139 253 140 144 142 8 512 164 289 169 173 172 9 648 173 313 178 179 180

Table 2 :

 2 Time of the results

	1 -m -l 2 -m -l 3 -m -l 4 -m -l 5 -m -l 6 -m -l 7 -m -l 8 -m -l 9 -m -l 10 -m -l 11 -m -l 12 -m -l 13 14 15 5 6 7 8 9	NON GA CP/MISF 2362 6577 6144 Direct HAR Lyon Ahmad Reading GA Indirect 7079 5261 821 6928 4668 1575 7193 838 6988 7037 1877 330 1072 6306 2209 2451 4923 815 7043 1838 7052 2201 4022 6601 2950 6105 5511 854 3651 2619 4767 1201 2851 5539 4329 6515 1196 1818 7015 5211 6385 6534 6840 6953 878 2101 7045 1416 5426 3771 658 2762 127 6322 1424 6906 5045 1237 908 692 250 4833 6176 65 1843 5005 3656 1998 6415 2723 3087 7053 171 6452 6395 7105 6469 406 6751 807 34 59 980 6602 2266 6826 7082 6522 7178 2183 6 6 5516 7088 1242 6022 4098 188 1082 4285 1804 2802 6894 7015 3800 5776 6447 25 1516 31 4 4 786 4688 5392 20 20 1 2519 1 230 5 6960 3136 1534 2056 3676 3071 224 3324 2849 4066 5815 6480 2802 5430 3951 909 1474 4176 482 3781 460 6125 2482 988 699 4939 7141 2851 5525 3808

This work was partially supported by the HCM project SCOOP -Solving

Graphs