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Abstract

This paper introduces a new machine representations of multiple-precision
(MP) numbers, geared toward simple and fast implementations. We observe,
in the usual high-radix representations, that carry management accounts for a
lot of the complexity of the core multiple-precision algorithms (addition and
multiplication). Our representation therefore trades space for simplicity : the
digits of the multiple-precision numbers are coded on less bits than the ma-
chine numbers can offer. The reserved bits are used during MP addition and
multiplication to guarantee that no overflow or rounding can occur in any in-
ternal computations. This leads to simple and therefore fast algorithms. In
other words, all the carries generated in these internal computations are saved
in these reserved bits, to be managed as late as possible. In addition to sim-
plicity, this software carry-save representation allows to expose parallelism just
like its hardware counterpart. An initial implementation of this representation
is shown to compare favorably to other multiple-precision libraries.

Keywords: Multiple precision, representation, addition, multiplication.

Résumé

Cet article présente une nouvelle représentation machine des nombres multipré-
cision, permettant des implémentations simples et rapides. Nous observons que,
dans les représentations usuelles en grande base, la propagation des retenues
constitue une part importante de la complexité des algorithmes d’addition et
multiplication. Nous proposons donc de coder les chiffres en grande base sur
moins de précision que ce que la machine peut traiter. Les bits mis de coté sont
utilisés, lors des additions et multiplications multiprécision, comme retenue
conservée pour garantir qu’aucun dépassement de capacité n’a lieu pendant un
calcul interne. Ceci conduit & des algorithmes plus simples, donc plus rapides
méme s’ils ont plus de chiffres & traiter pour une méme précision. En outre,
cette retenue conservée logicielle permet comme sa version matérielle des al-
gorithmes paralléles au niveau du chiffre. Les tests réalisés montrent que les
processeurs superscalaires récents peuvent en tirer parti.

Mots-clés: Précision multiple, représentation, addition, multiplication.
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1 Introduction

Most modern computers obey the IEEE-754 standard for floating-point (FP)
arithmetic, which defines the well-known single and double precision FP formats,
along with the behavior of the usual arithmetic operators in several rounding
modes. For some applications, however, the precision provided by this standard
(53 bits in double precision) is not enough. These applications include large-
scale numerical simulations, but also very small computations where precision is
paramount. For instance, previous research has shown that an internal precision
of around 200 bits is needed to provide correctly rounded elementary functions
in double precision [9].

1.1 An overview of multiple-precision formats

In addition to scientific computing packages such as Maple or Mathematica,
many multiple-precision libraries exist, such as Briggs’ double-double[2], Bai-
ley’s quad-double[8], the floating-point expansions of Daumas et al [7], or the
GNU Multi Precision (GMP) library [3] — on top of which several other libraries
are built (see MPFR [4] or Arithmos [6]). These libraries are widely used for
numerical analysis, cryptography or computational geometry. Some offer arbi-
trary precision with static or dynamic precision control, other simply offer a
fixed precision which is higher than that of the IEEE-754 standard.

All of these libraries internally represent MP numbers as arrays of digits,
which are themselves machine numbers, i.e numbers in one of the native for-
mat on which the microprocessor can directly compute: integer, or IEEE-754
floating-point numbers. According to the type of machine numbers used, there
are thus two classes of multiple-precision libraries :

Integer-based libraries This is the case of commercial packages like Maple
or Mathematica. It is also the case of the GNU Multi Precision (GMP)
library, in which the digits are integers of the native machine word size
(currently 32 or 64 bits). In GMP, the core loops of both addition and
multiplication are written in assembly language for most existing archi-
tectures, and are thus very efficient (all algorithms for the division use
additions and/or multiplications, and we will usually not mention them in
this paper). Conversions between integer-based MP format and IEEE-754
FP format, however, are sometimes fairly expensive.

FP-based libraries Briggs’[2] double double, Bailey’s quad doubles [8] and
Daumas’ floating-point expansions [7] consist of the unevaluated sum of
several double-precision FP numbers. Arithmetic operations on this for-
mat use only FP operations. The motivation here is that the floating-point
units (FPUs) in modern processors are highly optimized: for example,
in recent 64-bit architectures like UltraSparc and Itanium, floating-point
multiplications are faster than their integer counterpart. Besides, super-
scalar processors have several such units, and the trend is towards having
more FPUs than integer units.

Another advantage of FP based multiple precision is that conversion from
IEEE-754 floating point to such a format is trivial, and conversion back
is relatively easy. Addition and multiplication, however, are more compli-
cated: When adding or multiplying two FP number, some precision can
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be lost to rounding, and has to be recovered. This requires sophisticated
algorithms which have to be carefully proven, sometimes even requiring
the assistance of automatic theorem provers [5].

The purpose of this article is to propose an alternative internal format for
multiple precision which will address this last problem.

1.2 A new multiple-precision format for faster algorithms

Our format codes a MP number as a sum of integers or FP numbers, which
we will also call digits. However, to ensure that no precision is lost in the FP
multiplication of two digits, these digits don’t use all the precision available in
the machine format. They use sufficiently little precision to ensure that all the
internal computation performed in a MP addition or multiplication are exact. A
similar idea seems to be used by Abraham Ziv et al in their IBM mathematical
library with correct rounding [1], although we couldn’t find any article on the
subject.

Knowing that all the internal operations will be exact greatly simplifies the
algorithms for MP addition and multiplication. The format of course wastes
space, as it stores many zeroes instead of useful information. It also wastes
time, as it uses the machine operators to less than their full power. In the
sequel, we discuss this tradeoff, and demonstrate some tests which show that
the advantage of simpler algorithms prevails.

1.3 A carry-save representation expresses parallelism

Another very important aspect of the proposed format is that it allows to add
several MP numbers with only one carry propagation in the end. In this respect,
it is very similar to the carry-save representation commonly used in hardware
multipliers: Our format can be thought of as a software, high radix carry-save
representation, the carry being saved in the unused bits of each digit.

A parallel algorithm may seem a luxury in a software context. Indeed, as
our tests will show, recent super-scalar processors, with their many functional
units, can take advantage of it.

1.4 Outline of this paper

Section 2 presents in details the proposed representation, along with its main
motivation in a MP multiplication. Section 3 details the algorithms used to per-
form MP additions/subtractions and multiplications. Section 5 presents some
results of our initial implementation, comments and compares them to other
available multiple-precision libraries. Section 6 concludes the paper.

2 A format for fast multiple-precision multiplica-
tion
2.1 Overview of the standard MP multiplication algorithm

There are several multiple-precision multiplication algorithms. The simplest
one is similar to the multiplication algorithm learnt in elementary school, and
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is depicted on Fig. 1. It should be pointed out that algorithms exist with a
better asymptotic complexity (for instance the Karatsuba algorithm), however
they become interesting for precisions much larger than those considered here.

CXp XX XX XX )
X (YL (Y, X Y3 (Y2

e Y %)
+ g e

Figure 1: Multiple-Precision multiplication

The figure represents the two input numbers X and Y, decomposed into
their n digits x; and y; (with n = 4 on the figure). Each digit is itself coded in
m bits of precision: These digits will be machine integers in GMP (m = 32 or
64), or IEEE-754 double-precision numbers in Bailey’s library (m = 53).

The algorithm (depicted on the figure) proceeds as follows:

e The first step is to produce an array of partial products x;y;. Each partial
product is a 2m-bit number.

e These partial products have then to be summed. There are at most n
of them in a column, which means that the sum ¢; in each column is a
number of up to 2m + [log, n] bits.

e Finally the column sums ¢; are decomposed into numbers of only m bits.
This is done in an iterative manner by summing from right to left the
numbers of equivalent weight, storing the lower m bits as a digit of the
result, and keeping the higher bits for the next iteration.

The exact product of two n-digit numbers is a 2n-digit number. We consider
here that we want the result as an n-digit number, therefore some rounding has
to be done. In the sequel, we will simply not compute all the lower partial
products, and give a bound on the error made. This choice has no influence on
the validity of what follows. For example it is well known that correct rounding
needs the computation of all the partial products, and an implementation of our
format with correct rounding is possible.

With the previous description in mind, it should be clear that any imple-
mentation using, as digits, full machine numbers (be it integer or floating-point)
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can not represent in one machine number the partial products, neither the col-
umn sums. Algorithmic tricks are therefore needed to get these values coded on
two or more digits. In Bailey’s FP based library, these tricks involve elaborate
considerations on the rounding of the operations. In the case of GMP, specific
assembly language instructions are used, exploiting at their best the facilities
offered by each specific processor.

These various tricks imply in turn strong dependencies on the operations.
In GMP, for instance, computing each line of partial product involves a carry
propagation (each line is converted to a standard MP number). For a small n,
this may lead to poorer performance than the processor can offer. In Bailey’s
library, the dependencies are not even regular.

2.2 The proposed format

The idea behind our format is therefore to sacrifice enough machine precision
in coding the digits of X and Y to ensure that each column sum ¢; can fit on
a machine number. If we note m; the precision offered by the machine format,
then each digit in our representation will only use m,. bits of this precision, and
this condition can be expressed as:

my > loga(n.) + 2m, (1)

This ensures that all the intermediate computations in the multiplication
algorithms are exact, in the sense that their results fits in a machine number
without any rounding error. This guarantee that the same holds for additions
and subtractions.

Of course, we will need to compute a little bit more than four times the
number of partial products computed in the dense implementations. But we
observe that in these dense representation, computing and summing exactly
these partial products ends up being more than four times more expensive than
our simple, exact operations.

Equation (1) is a relation between the number m, of bits stored on each
machine number and the number of digits manipulated n,.. The overall precision
is the product n,. x m,.. Table 2 gives some values of these parameters for various
machine word formats, using sensible values of m,..

| Machine word | mr | m, | Ny | max. precision
IEEE double precision | 5241 bits | 26 Bits | 15 terms | 390 Bits

IEEE double precision | 5241 bits | 25 Bits | 63 terms | 1575 Bits
Double-extended (x86) | 64 bits 30 Bits | 31 terms | 930 Bits
Double-extended (x86) | 64 bits 29 Bits | 127 terms | 3683 Bits
64-bit integer 64 bits 30 Bits | 15 terms | 450 Bits
64-bit integer 64 bits 29 Bits | 63 terms | 1827 Bits

Figure 2: Some examples of precisions that can be reached with the proposed
format.

We believe that our format is interesting only for moderate precisions (a few
hundred bits), because the waste of space and time increases as m, decreases
for a given m;. However a detailed study of this tradeoff remains to be done.
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2.3 Machine implementation

A MP number is represented in the proposed format as a structure R, as shown
on Figure 3. The Software Carry Save Structure (SCSS) R is composed of the
following fields:

R.digits[n,] A table of n, digits with m, bits of precision, using either inte-
ger or FP machine numbers (we will chose the most efficient for a given
machine);

R.index An integer storing the index of the first digit in the range of repre-
sentable numbers, as depicted on Figure 3;

R.sign A sign information.

A SCSS number R is said to be normal when each of its digit store infor-
mation only on the least m, significant bits. The other bits from m; to m, of
R.digits field correspond to the carry field. If R have a digit with a carry field
different from 0 then R is said to be unnormal.

In other words, the value x of a representation R is:

N
x = R.sign x Z R.digits[j] x 2mr*(indez—j) (2)
j=1

A MP number is define as

{x: 110101010110011101011110J
Index = 3 2 0 -1 -2 |
,,,,,,,, R
- -2.
Value= 2" Fm 2™ 2 2 2"
R.digits =000110101010f1001110101 1110000

R.index =3

R.sign=1 Software Carry Save Structure (SCSS)

Figure 3: The proposed format

In the case when FP machine numbers are used, their exponent field is
unused. However, a trick allows to exploit their sign bit , along with the well-
defined rounding properties of the IEEE-754 standard, to increase the precision
of each word by one bit, which explains some values of Table 2. Due to lack of
space we do not, detail this trick here.

3 Arithmetic operations

In this section we present algorithms used to perform basic arithmetic oper-
ations. For easier comprehension, we adopt a syntax very similar to the C
language syntax.



6 David Defour, Florent de Dinechin

3.1 Conversion from double to SCSS

There are two ways to convert a double precision floating point number d into
an SCSS representation. The first solution is to extract the exponent des), from
d and then determine the corresponding R.index . This can be done by taking
the integer part of ‘;;’,‘5’.

The second solution, described below, just uses some multiplications by
27™r As we don’t have to extract the exponent from d, it is faster than the

first when the exponent of the input number is close to 0.

Algorithm 1 (double2SCSS)
Input: A double precision floating point number d.

Output: A multi-precision number R.

Method: R.index = 0;
if d is a Nan, +/ — co then

R=d; return;
ifd>0 R.sign=1;
else R.sign = —-1; d= —d;
while d > 2™ do R.index++; d=dx27™; for(i — 1
while d < 1do  Rindex ——; d=dx2mr; o7 =

3i<nes5i++)
R.digits[i] = |d];
d = (d — R.digits[i]) x 2™r;

3.2 Renormalisation (carry propagation)

This step is used at the end of additions or multiplications to propagate the
saved carries. It may be executed only once after several consecutives SCSS
additions.

Working from low order to high order digits, each digit is split into two
parts. The low m,. bits are a digit of the normalized result, and the upper part
is the carry that has to be added to the next digit. To take high part from
a floating point digit, we use a well-known trick consisting of adding and then
subtracting a constant. When working with integer, the split can be done by
using an integer mask.

Algorithm 2 (Carry propagation)
Input: A multi-precision number A where each digit are less than 2™ 1,

Output: A multi-precision number R with carry information set to 0.

Method: Clni+1]=0;
R.index = A.index;
for(k=n, 6>035k——)
High = (A[k] + (2mitme 4 gmitme—1y)
_(2mi+m7" + 2m7,+mT—1)
Clk + 1]+ = Alk] — High;
C[k] = High x 27™r;

J
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k=1;
While C[k] =0 do k++; R.index — —;
forG=13j<n.355++,k++) R.digits[j] = Ck];

Theorem 1 This algorithm normalizes a SCSS number with a relative error
less than 2> (nr—1)+1

Proof 1 The worst case happens when there is a carry-out from C.digits[1].
In this case we have to perform a translation of digits that leads to the lost of
the last digit. Then the result is composed of (n, — 1) digits with m, bits of
precision. The first digit has at least one bit of precision. Therefore the final
relative error is then less than 2™ (nr—1+1

3.3 Addition and subtraction

The addition of two numbers SCSS is done by adding in parallel the digits of
same order. These additions will be exact as long as each digit is less than
2mi=2  The advantage of this representation is therefore that we can sum-up
a huge amount of SCSS numbers avoiding the time-expensive carry propagate
step.

Example 1 Let us consider integer arithmetic with m; = 64 and m, = 30 (see
Table 2). Then we can add approzimately 8 x 10° normal SCSS numbers.

If the user wants to perform another operation different than addition, as
for example a multiplication it is recommended to perform a “renormalisation”
that set all the carry field to 0. This necessity of the renormalisation depends
on the maximum value for each digits and on the value chosen for m,., m; and
Ty

The subtraction is very similar to the addition algorithm, although more
depending on the choice of integer or FP format. It may also classically lead to
a cancellation, which may need an update of the index of the result.

3.4 Multiplication

In the multiplication of two multiple precision numbers, we only perform the
operations significant to the result. Contrary to the addition algorithm no
dramatic cancellation of digits can appears. The SCSS multiplication is done in
three steps, depicted on the figure (1):

1. Compute the partial products. These partial products correspond to digit
per digit multiplications, and can be done in parallel.

2. Sum up the partial products of same order. Each column can be summed
in parallel, as for the addition algorithm.

3. Call the renormalisation/carry-propagation procedure.

The last step may even be skipped in some contexts (typically, a multipli-
cation followed by one or several additions as in polynomial evaluations, if the
values of m,., m;, n, allow). This may allow for further optimization.
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4 Conversion from SCSS to floating-point

In applications where conversion from the multi-precision format to the work-
ing precision are done very often, this step needs to be done very fast. With
SCSS representation, this conversion is composed of a few multiplications and
additions. Note that no renormalisation of the input SCSS number is needed
for this algorithm.

Algorithm 3 (Conversion to floating-point)
Input: A SCSS number A.
Output: A double precision floating-point number d.

Method: d = A.sign x 24-ndezxmr » (
A.digits[0]+
27™mr x A.digits[1]+
272mr x Adigits[2]+
273mr x Adigits[3]);

The number of digits of a SCSS number to add in this algorithm depends
on the parameters of the representation. In this algorithm we used 4 digits
corresponding to the worst case for m; = 53 and m,. = 26.

5 Results and timing

It is quite difficult to compare the performances of MP libraries. The cost
of a multiplication or addition is very different from one machine to another
one, and also depends on the context of this operation in today’s sophisticated
processors with deep pipelines and out-of-order execution. Even the definition
of an operation is machine-dependent (32- or 64-bit, availability or not of a fused
multiply-and-add).

We have written (in C) and refined several implementations of this library,
with various machine formats and instruction ordering. In our tests, we use the
same code, compiled with the same compiler (gcc.2.95.4), the only change being
the machine format which can be floating-point or integer (we chose the best).
In both cases we ensure 200 bits of precision.

We compare our code with the reference multiple-precision library GMP][3]
(more precisely it floating representation MPF), with Bailey’s quad-double li-
brary [8], and also with Ziv’s library[1]. Each result is obtain by measuring
the execution times on 10° random values (the same values are used for all the
libraries). For clarity we normalized results to SCSS library.

Each additions and multiplications performed with SCSS algorithms include
a call to the renormalisation procedure (carry propagate). So the following
results don’t show all the potentiality of our methods.

The multiplication times on Celeron and Itanium seem contradictory. An
interpretation could be that we get the best results on the Itanium architec-
ture, whose instruction set was designed with parallelism in mind, and therefore
makes better use of our more parallel algorithms. However this hypothesis has
to be taken with caution. A deeper investigation is needed to see what is the
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| Description | SCSS lib. | Ziv lib. | Bailey lib. | GMP lib. |
Itanium 733 Mhz 1 13.05 1.73 1.72
x86 Celeron 566 Mhz 1 5.85 0.33 0.74
Sun Ultra-5 400 Mhz 1 1.22 0.32 0.37

Figure 4: Comparisons of conversion times from double-precision to multiple-

precision
| Description | SCSS lib. | Ziv lib. | Bailey lib. | GMP lib. |
Itanium 733 Mhz 1 8.74 25.1 1.90
x86 Celeron 566 Mhz 1 2.35 9.0 1.41
Sun Ultra-5 400 Mhz 1 2.97 26.33 1.39

Figure 5: Comparisons of MP addition times

influence of the compiler and coding style on these results. It should also be
mentionned that the quad-double library is written in C++ language, which
may affect its performances.

6 Conclusion and future work

We have presented the software carry-save representation for multiple-precision
numbers that allows simpler, more parallel, and therefore faster MP additions
and multiplications. This representation can provide very high precision, how-
ever is probably most suited for limited precisions of up to a few hundred bits.

The main idea developed in this method is to avoid overflows/rounding/carries
in the machine operations internal to a MP operation. Being parallel, the code
is suited to modern highly super-scalar processors. Being simple, it is also fairly
compact.

After our first tests, the most obvious limitation of this method is its high
dependence to the architecture. We will try to investigate the interaction be-
tween code, compiler, and processor architecture to write code which performs
well on most architectures. Using IEEE-754 normalized arithmetic should allow
us to avoid GMP-like machine-specific assembly optimizations.

Future work also include real-world tests of this library, in particular to
compute transcendental functions such as cosine, sine, exponential.
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