N

N

Lower bounds are not easier over the reals: inside PH

Hervé Fournier, Pascal Koiran

» To cite this version:

Hervé Fournier, Pascal Koiran. Lower bounds are not easier over the reals: inside PH. [Research
Report] LIP RR-1999-21, Laboratoire de I'informatique du parallélisme. 1999, 24+p. hal-02102035

HAL Id: hal-02102035
https://hal-lara.archives-ouvertes.fr /hal-02102035
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal-lara.archives-ouvertes.fr/hal-02102035
https://hal.archives-ouvertes.fr

AN

Laboratoire de I’ Informatique du Par-
allélisme

Ecole Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON % CENTRE NATIONAL

(o) DE LA RECHERCHE
n 5668 SCIERTIRQUE

Lower Bounds Are not Easier
over the Reals: Inside PH

Hervé Fournier and Pascal Koiran March 1999

Research Report N° 1999-21

Ecole Normale Supérieure de
Lyon

46 Allée d'Italie, 69364 Lyon Cedex 07, France E l
Téléphone : +33(0)4.72.72.80.37 ‘ I N R I A

Télécopieur : +33(0)4.72.72.80.80
Adresse €lectronique : 1ipQ@ens-lyon.fr

Lower Bounds Are not Easier
over the Reals: Inside PH

Hervé Fournier and Pascal Koiran

March 1999

Abstract

We prove that all NP problems over the reals with addition and order can
be solved in polynomial time with the help of a boolean NP oracle. As a
consequence, the “P = NP?” question over the reals with addition and
order is equivalent to the classical question. For the reals with addition
and equality only, the situation is quite different since P is known to be
different from NP. Nevertheless, we prove similar transfer theorems for
the polynomial hierarchy.

Keywords: Transfer theorems, decision trees, point location, algebraic
complexity, Blum-Shub-Smale model.

Résumé

On montre que tous les probléemes NP sur les réels avec addition et
ordre peuvent étre résolus en temps polynomial & I'aide d’un oracle NP
booléen. Il en résulte que la question “P=NP ?7” sur les réels avec addi-
tion et ordre est équivalente a la question classique. Pour les réels avec
addition et égalité la situation est bien différente puisqu’il est connu
que P # NP. Cependant, nous démontrons des résultats de transfert
similaires pour la hiérarchie polynomiale.

Mots-clés: Théoremes de transfert, arbres de décision, localisation de
point, complexité algébrique, modéle de Blum-Shub-Smale.

Lower Bounds Are not Easier over the Reals:
Inside PH

Hervé Fournier and Pascal Koiran*
Laboratoire de I'Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
46, allée d’Ttalie
69364 Lyon Cedex 07, France

19th March 1999

Abstract

We prove that all NP problems over the reals with addition and
order can be solved in polynomial time with the help of a boolean NP
oracle. As a consequence, the “P = NP?” question over the reals with
addition and order is equivalent to the classical question. For the reals
with addition and equality only, the situation is quite different since
P is known to be different from NP. Nevertheless, we prove similar
transfer theorems for the polynomial hierarchy.

Keywords: Transfer theorems, decision trees, point location, alge-
braic complexity, Blum-Shub-Smale model.

1 Introduction

Just as in discrete complexity theory, the main goal of algebraic complex-
ity theory is to prove superpolynomial lower bounds for certain “natural”
problems. In several algebraic settings this goal has not been achieved yet.
For instance, it is not known whether the resultant of two sparse univariate
polynomials can be computed by straight-line programs of polynomial length
(see [11] for a motivation); the problem “VP = VNP?” in Valiant’s model
of computation [12, 13] is still open; and the same is true of the “P = NP?”
problem in the most interesting versions of the Blum-Shub-Smale model.
It is not always clear whether these algebraic questions are easier than the
well-known open questions from discrete complexity theory. Indeed, it was
shown in [3] that problems such as Knapsack can be solved in polynomial
time on a real (multiplication-free) Turing machine under the hypothesis
P = PSPACE. Therefore a superpolynomial lower bound (on the circuit

*Email: [Herve.Fournier,Pascal. Koiran]@ens-lyon.fr.

size, or on the running time of a real Turing machine) for Knapsack would
imply a separation of P from PSPACE. In this paper we investigate similar
questions for smaller complexity classes. Our main result is the following
transfer theorem.

Theorem 1 P]%Ovs = NP%OUS if and only if P = NP.

This implies for instance that Knapsack is in P]%m under the hypothesis
P = NP, which is a weaker hypothesis than P = PSPACE. Here P]%OUS stands
for the class of decision problems that can be solved in polynomial time by
parameter-free real Turing machines over the structure R,,s (i.e., the only
legal operations are 4+, — and <). The main result of [3] was that P} =
PAR?&OUS is equivalent to P = PSPACE (PAR stands for “parallel polynomial
time”). The complexity theory of R,,s has been studied in [4, 2]. More
background on computation over the reals and other algebraic structures
can be found in the textbooks [1, 8].

In this paper, real Turing machines will be parameter-free unless stated
otherwise. Results for machines with parameters follow from those for
parameter-free machines. For instance:

Corollary 1 P, ., = NPg, . if and only if P/poly = NP /poly.

Our proof of Theorem 1 relies on Meyer auf der Heide’s construction of
linear decision trees for point location in arrangements of hyperplanes [6, 7.
Roughly speaking, we show in Theorem 2 that his construction can be made
uniform if a boolean NP oracle is available. This result is established in
section 2, and complexity-theoretic consequences are drawn in section 3 (as
a byproduct, we obtain the unexpected result that problems such as the real
Traveling Salesman Problem or Knapsack are NPg_ _-complete for Turing
machine reductions). Here Theorem 3 is a key result: problems in NP]%OUS
can be solved in polynomial time with the help of a boolean NP oracle.
Theorem 1, its corollary, and the completeness results just mentioned then
follow immediately.

In the order-free structure R,s (where addition, subtraction and equality
tests are the only operations allowed) the situation is quite different than
in R,,s since it is possible to prove the unconditional result Pr, , # NPg, _,
as shown originally by Meer [5]. It would be interesting to obtain other
separation results in this structure. Unfortunately, for several questions
(such as the collapse of the polynomial hierarchy PHg ; and the separation of
PHp,, from PARR,,) this turns out to be impossible with current techniques:
the transfer theorems in section 4 show that these questions are as hard as
outstanding open problems from discrete complexity theory.

2 Point location in an arrangement of hyperplanes

We first recall some terminology regarding arrangements of hyperplanes.
Let H = {h1,...,hn} be a set of hyperplanes in R”. We denote by A
and h; the two open half-spaces defined by h;. For a point z € R",
we set z(z) = 0 if z € h; and z;(z) = 1 (respectively, —1) if z € h}
(respectively, z € h;). We define ¢(z) = (z1(x),...,2zm(x)). The faces
of the arrangement A(H) are by definition the classes of the equivalence
relation z ~ y < p(z) = ¢(y) on R". The dimension of a face is the
dimension of its affine closure; a face of dimension 0 is called a vertex, and
a face of dimension n a cell.

We can now state the problem. Let #, be the set of all hyperplanes
defined by equations with integer coefficients in {—2t™), ... 21"} where
t is some fixed polynomial. We say that an algorithm solves the location
problem (for the family of arrangements H; = (H,,)nen) if, on an input point
(Z1,...,25) € R", it computes a system

:{ fily) <0 i=1,...,p

made up of p + r = n®") affine (in)equations with integer polynomial-size

coefficients such that the set of points Ps of R” satisfying & is included in
a face of A(H,), and z € Ps.

Theorem 2 The location problem for H; is in FP%OUS(NP) for any polyno-
mial t € Z[X]. This means that a system locating the input point can be

computed in polynomial time by a Turing machine over Ry,s using a boolean
NP oracle.

Defining formally the model of “real Turing machine with a boolean oracle”
used in this theorem would be tedious but completely straightforward. The
idea is that such a Turing machine can only use the instructions “write-0” or
“write-1” to write on its oracle tape. This ensures that the oracle query is a
word of {0, 1}*, despite the fact that the other tapes of the Turing machine
may contain arbitrary real numbers.

Before proving the theorem we have to make an observation about
(parameter-free) algorithms over the structure R,,s. By running such an
algorithm on the formal input (Xi,...,X,) and taking all possible paths
into account, it is clear that each test is of the form 2?21 a; X; + any1 >0
(a; € Z). Thus, to a test on an input of length n corresponds an oriented
hyperplane of R" (having an equation with integer coefficients). This allows
us to define a notion of size for the coefficients of tests:

Remark 1 All tests performed by a program running in time q(n) have
coefficients bounded by 21"

Let ¢t be a polynomial in Z[X], and £, C R" the union of the hyperplanes in
the arrangement H,, defined in section 2. Before solving the point location
problem for H,, we will describe an algorithm for recognizing £,,. The union
of the £,, for n > 1 is a language of R* denoted L;.

Proposition 1 For any polynomial t, L; is in P]%OUS(NP).

The remainder of this section is devoted to the proof of Proposition 1 and
Theorem 2. The algorithms are based on a construction of Meyer auf der
Heide [6, 7], who has described families of polynomial depth linear deci-
sion trees deciding unions of hyperplanes.! We shall build a uniform ma-
chine with an oracle in NP performing the same computation. The proof
of Proposition 1 is in three steps: in section 2.1 we describe an algorithm
for deciding a union of hyperplanes on [—1,1]". The size of the tests in this
algorithm is analyzed in section 2.2, and the algorithm for deciding a union
of hyperplanes in R” is then obtained in section 2.3. Finally, this algorithm
is turned into a point location algorithm in section 2.4.

2.1 Deciding a union of hyperplanes on a cube

We now describe a recursive method for deciding L, = (¢4, b on [—1,1]".

Lemma 1 There is a P%OUS(NP) algorithm which, for any input © € R,
decides whether x € L, N [—1,1]™.

For the complete proof that the algorithm described below really is
PR (NP) we need polynomial size bounds on the coefficients of tests. These
bounds are established in section 2.2.

Given a point y € R” and a set A C R", we denote by Aff(y, A) the
affine closure of {y} U A, and by P(y,A) = {dy+ (1 = N)z,z € A, X < 1}
the pyramid of top y and base A. Recursion on the dimension n of the cube
is made possible by the following lemma.

Lemma 2 (Meyer auf der Heide) Let S = {hi,...,h,} be a set of hy-
perplanes in R™ such that the intersection I = (!_; h; in nonempty. Let
A be a polytope on a hyperplane hg which does not contain I, and let s be
a point in I\ hy. If a program decides L' = |J0_, hi N hg on A, then the
program obtained by replacing each test h' by Aff(s,h') (with the appropriate
sign) decides L = J?_, h; on P(s, A).

Let z € P(s, A). The previous lemma is clear when we notice the equiv-
alence

thlU...Uhp@(Sx)ﬂhoE(hlﬂho)U...U(hpﬂhg).

! As mentioned in the introduction, he has also described families of linear decision
trees solving the whole location problem.

Now we need a definition. A number r > 0 is a coarseness of a
set of hyperplanes hq,...,h; of R" if, for any ball B of radius r, either
{hiyhi N B # 0} =0 or ﬂhmB;é(D h; # (. Let r, be a coarseness of H,. In

[7] it is shown that one can take 1/r, = n" 220" Hn)+0(n%),

Here is how the algorithm works.
If n = 1 we can decide whether x € L,, by binary search (no NP oracle is
needed). We now assume that n > 1, and set HY = H,,.
> Step 1.
We subdivide the cube C} = [—1,1]" in little cubes with radius smaller
than 7, (i.e., with edge length smaller than 2r,/\/n). By binary search
on each coordinate, we find a little cube ¢} such that z € c.. Let us call
H! ={h € HY, hnecl #0}. There are two cases :

(i) HL = 0.
(ii) Otherwise, [,c mh# () by definition of coarseness.

We can check with a boolean NP algorithm whether (i) holds, and reject
the input if this is the case. If it turns out that we are in case (ii) we
compute in polynomial time with the help of a boolean NP oracle a point
shin I = ﬂheH}L h. In order to do this we will in fact compute a strictly
decreasing sequence Fj, ..., E; of affine subspaces such that E; is an element
of H! and E; = I' (note that j < n). Since the condition H} # 0 is in
NP, we can compute F; by prefix search with an NP oracle. FE;;; can be
computed from F; as follows. If it turns out that E; C h for all h € H}L we
can halt with I' = E;. This condition can again be checked with a boolean
NP oracle. Otherwise there exists h € H;} such that dim(hNE;) = dim E;—1
(since we are in case (ii) the case h N E; = () is not possible). Such an h can
be determined by prefix search, and we set F;;; = E; N h. Finally, when
E;j=1 ! has been determined we can easily compute a point s> on this affine
space (e.g. by fixing some coordinates 0). If z = s. we accept the input.
Otherwise we repeat the same procedure in dimension n — 1 as explained
below.

First we determine a face f,! of the cube C} such that z is in P(s), f}),
the pyramid of top s’ and base f}. Let g. be the affine closure of f}
(the equation of g is of the form x; = +1). Then Lemma 2 applies, so it
remains to solve a (n — 1)-dimensional problem: decide whether the point
(stz)n £l lies on Unem: (gL Nh) on the (n —1)-dimensional cube [—1,1]"~1
of g}. An important point is that if r is a coarseness of a set {h,h1,...,h,}
of hyperplanes, then r is a coarseness of h N hy,...,h N h, on h. Since the
hyperplane which plays the role of h (namely g.) is an element of H,, this
will allow us to subdivide the (n — 1)-dimensional cube with the same r,
(and this remains true at further steps of the recursion).

> Step k (1 < k < n).

At this step, we work on the cube C¥ = [—1,1]"7**+! of the affine space
{z;, = e1,...,2z4,_, = ex_1} with a projected point z¥ (the values of €5 €
{—=1,1} and of the i; depend on which face of Cj was chosen as base of
the pyramid at step j). We subdivide Cﬁ in smaller cubes, and then locate
7¥ in a little cube c& of C*. Note that the coordinates of ¥ need not be
computed explicitly. Instead, a test A’ on z* is done by performing the
test Aff(sL, (Aff(s2, Aff(..., Aff(sE=1 1/)...) on z. Let HF be the subset of
hyperplanes of H,, that intersect all little cubes ¢}, ..., ¢t found up to step
k. We know that if z lies on an hyperplane of H,,, this point must in fact
lie on an hyperplane of HE. If H¥ = () we reject z as in step (i). Otherwise

we compute a point sk € (\,cpyx I as in step (ii). If k = n we accept = if

z = s¥, and reject otherwise. If & < n we determine 4, and e, and go one

step further into the recursion.

2.2 Coefficients of tests in the location algorithm

What is the running time of the procedure described in section 2.17 As
= 2”0(1), locating a point in a small cube by binary search always takes
polynomial time. Moreover, it is clear that the number of operations per-
formed (over Z) to compute the coefficients of tests is polynomially bounded.
To make sure that the algorithm is really P?&m (NP), it just remains to check
that the coefficients of these tests are of polynomial size. For this we need
a bound on coefficient size for hyperplanes of R” given as affine hulls of n
points.

Lemma 3 Let vy,...,v,_1 be linearly independent vectors of R™ with
integer coordinates bounded by A in absolute wvalue. The hyperplane
Vect(vy,...,u,—1) has an equation with integer coefficients bounded by

A" (n — 1)=D/2 in absolute value.

Proof. An equation of this hyperplane is det(vy,...,v,_1,2) = 0. Its coef-
ficients are (n — 1) x (n — 1) minors with entries bounded by A in absolute
value. The result then follows from the Hadamard inequality (e.g., [9] p. 7).
O

Corollary 2 Let a1,...,a, be n points of R* such that their affine hull H
s an hyperplane.

(i) If the a;’s have integer coordinates bounded by B in absolute value, H
has an equation with integer coefficients bounded by B"n™'? in absolute
value.

(ii) If the a;’s have rational coordinates with numerators and denomina-
tors bounded by C in absolute value, H has an equation with integer
coefficients bounded by Cr /2 in gbsolute value.

Proof. For (i), let @; be the point of R**! with its first n coordinates equal to
those of a;, and its last coordinate equal to 1. By Lemma 3, Vect(at,...,a,)
has an equation of the form ajzy + - -+ + apxn + Ap+12p+1 = 0 where the
«;’s are integers bounded by B"n™2 in absolute value. An equation of H is
then a1z + -+ + apzp + apy1 =0.

In case (ii), write a; = (pij/qij)1<j<n Where p;; and ¢;; are integers
bounded by C' in absolute value. Next, perform the change of variable y; =
[17 gij-zj for j =1,...,n. In the y coordinates, the components of the a;’s
are integers bounded by C™ in absolute value. It follows from (i) that in these
new coordinates, H has an equation of the form ajy; +---+ apyp, +c =0
with coeflicients bounded by C™n™? in absolute value. Going back to the
x coordinates yields the desired bound. O

When the algorithm is run in dimension n, test hyperplanes are of the
form f, o...0 fsr1(hs) with f; : b — Aff(s"*'=% h) and hs a hyperplane
created in dimension s (that is, at step n — s + 1 of the algorithm). We call
“initial hyperplane” such an hyperplane.

The tops of the pyramids are the points y that appear in the functions
f:+ h— Aff(y,h). Such a point y lies in I = ﬂheHl}‘S“ h. If dim1 > 0,
we add some equations of the form z; = 0 to obtain an intersection reduced
to a point. We obtain y by Cramer’s rule: y = (ni/d,...,ns/d) where
|d], |n;| < (24M)"pn/2 since HE 51 C H,,.

The initial hyperplanes are of three kinds:

(a) The intersection zg of h € H? **! with a one-dimensional affine space
of the form {z;, =¢e1,...,zi,_, =en_1} (with g; € {-1,1}).

(b) The hyperplanes used to test in which pyramid the point lies. They are
of the form h = Aff(y, f) where f is the intersection of two faces of the
cube [—1,1]® in the s-dimensional space {z;, = €j,,...,%i,_, =¢€i,_.}
(with g; € {—1,1}).

(c) The hyperplanes used to decompose the unit cube in smaller cubes.

As the bound for (¢) dominates the bounds for (a) and (b), we conclude that
in R" each test hyperplane is the affine hull of n points with rational coor-
dinates having numerators and denominators bounded by [v/n/2](1/r,) <
n* 220" (m)+0(?*) in absolute value. Call C' this bound. By Corollary 2,
each test hyperplane has an equation with integer coefficients bounded by
C™+npn/2 in absolute value. As a consequence, the length of these coeffi-

cients is polynomial in n.

2.3 Deciding a union of hyperplanes on R”

Let H, be the family of hyperplanes of R**! defined by equations of the
form Z?Zl a;%; — bxry1 = 0 where b and the a;’s are integers bounded in
absolute value by 24" and (ai,...,an,b) # 0. H, is obtained from H, by
transforming each hyperplane h € H,, of R" of equation Y. ; a;z; = b into
the hyperplane h of R*t1 of equation Y ;" | a;z; — bxpy1 = 0. We describe
below a P]%OUS (NP) algorithm which recognizes the union of the hyperplanes
in ﬁn. Proposition 1 will follow by setting x,+; = 1.

On a nonzero input & € R"*! this algorithm first determines a face
f of the cube [—1,1]""! such that ¥ € P(0,f) (if £ = 0 we can accept
directly). Let f be the affine closure of f and y = (0z) N f. Since the
hyperplanes of H, have a common intersection point in Ogn+1, Z lies on
an hyperplane of this family if and only if v lies on an hyperplane of f in
the family H, = {h N f; h € H,}. Note that H, is exactly the family
of hyperplanes of f defined by equations with integers coefficients bounded
by 24" in absolute value. Given y one can therefore use the P]%OUS (NP)
algorithm of Lemma 1 to decide whether this point lies on an hyperplane of
H,. Let T be the corresponding oracle Turing machine. It is not possible
to compute explicitly the coordinates of y from those of Z since we work
with multiplication-free machines. However, on input Z we can emulate the
behavior of T" on input y. This is done as in section 2.1: in order to test the
position of y with respect to an hyperplane h of f, we test the position of Z
with respect to Aff(0,h). The corresponding algorithm remains P} (NP).
This completes the proof of Proposition 1.

2.4 Proof of the location theorem

We are now ready for the proof of Theorem 2. Let z = (z1,...,x,) be the
point to be located. We use a perturbation method to turn the algorithm
of section 2.3 into a point location algorithm. Set Z = (z1 +&1,..., 2y, +€p)
where €1,..., €, are infinitely small, positive, and ¢; € €3 € -+ K g,,. Now
we run on input z the algorithm of Proposition 1 for deciding £,, = |J hew,, I
Of course we know in advance that will be rejected since this input does
not lie on any hyperplane with integer coefficients; the point is that the
collection of all tests performed on Z during the execution of this algorithm
is a system which locates # in A(H,). Let S = {fi(y) < O0,..., f,(y) < 0}
be this system. Then for each i we test whether f;(z) < 0 or f;(z) = 0:
this yields a new system S, which locates = in A(#,). Moreover the size
conditions are fulfilled: S is made of n") affine (in)equations with integers

coefficients of size nO(1),

3 Transfer theorems for R,

We first recall some notations and results on the structure R,,s = (R, +, —, <
) of the reals with addition and order. A real language (or real problem)
is a subset of R* = [] yR". The boolean part BP(L) of a language
L C R*® is by definition L N {0,1}*°. For a class C of real languages,
BP(C) = {BP(L), L € C}.

Fact 1 BP(Py) = P, BP(NPy) = NP, BP(Pg,,) = P/poly and
BP(NPg,,.) = NP/poly.

We recall that NDP]?{MS is a “digital” version of NP]?{OUS where certificates
are required to be boolean. More precisely, a problem A C R* is in NDP]?%MS
if there exists B € P]%OUS and a polynomial p such that

z=(z1,...,2n) €A Iz {0,1}?™(z,2) e B .
Fact 2 NP} =NDP} .

The proofs of these results can be found in [4] and [2]. We can now state
and prove a key transfer theorem.

Theorem 3 NP} C P} (NP).

Proof. Let L € NPE{OUS. By Fact 2, there exists A € P%OUS and a polynomial
r such that

(z1,...,2n) € L& 3z € {0,1}"™W(z, 2) € A.

For any z € R" and z € {0,1}"(™), the condition (z,z) € A can be checked in
polynomial time ¢(n) by a Turing machine T" over R,,s, and the polynomial
t depends only on A. Let H, be the set of all hyperplanes of R" with
coefficients in {—24") ... 24"}, For any z € {0,1}"(, if we run A(., z) on
the formal input (X7,..., X},), each test is of the form Y7 | a;X;+an41 > 0,
with a; in {—2t™) .. 2"} As a consequence, L NR™ is a union of faces
of A(Hy,). The PR _(NP) algorithm deciding L works in two steps.

First, the input = (z1,...,xz,) is located in A(H,,). By Theorem 2, this
can be done in FP%OUs (NP). The output is a system S of n°(1) (in)equations
of the form h;(z) < 0 or h;(z) = 0 such that the h;’s have polynomial size
coefficients and the set Ps of the points of R" satisfying S is included in a
face of A(Hy,).

Then it remains to check whether Pg is included in L or in its comple-
ment. This can be done by a standard NP algorithm: we guess a certificate
z € {0,117 and an accepting computation path of T. The set of inputs
of R” which given z follow this computation path is a polyhedron P de-
fined by a system of linear inequalities of polynomial size. We accept z if

PN Ps # (). This linear programming problem can be solved in polynomial
time. (Another method consists in guessing a rational point ¢ € Ps with
small coordinates — such a point exists, see [4] — and then running 7' on

(¢,2)). O

Remark 2 Other inclusions can be obtained with this method. The point
location algorithm described above can be used for any real language L in a
complezity class Cﬂ%ovs C PAR]%OUS. Then it remains to check whether the re-
sulting polyhedron Ps is included in L or in its complement. If C is “reason-
able”, this will be feasible in Cy,. For example, we have PP]%OUS - P%MS(PP),
(St)0 C PR (%) for k € N and PARg = C P} (PSPACE). Of
course we have (H]ﬁom)0 C Py (IIF) too. For BPP, we only obtain
BPPy_ C PR (NP & BPP) where & is the join operation.

The results stated in the introduction (Theorem 1 and its corollary) are
direct consequences of Theorem 3.

Proof of Theorem 1. If P]%OUS = NPE{OUS, P = NP by Fact 1. The converse
follows immediately from Theorem 3. O

Proof of Corollary 1. If Pg,,, = NPg,,., P/poly = NP/poly by
Fact 1. For the converse, consider a problem A in NPg .. There ex-
ists B € NP%OUS and parameters «i,...,q, such that (z,...,2,) € A &
(z1,...,%pn,0,...,0p) € B. By Theorem 3 B € P]%{OUS(NP), hence B €
P]%OUS(P /poly) by the assumption P/poly = NP /poly. Encoding the advice
function in an additional parameter yields B € Pg,,,, therefore A € Pg_, .
too. O

We will now give a completeness result. For a real language L C R, let
us define the integer part of L as

IP(L) = U{(pla apn>a (pla"- apn) €L andpl,--- yPn € Z}
neN

For a real complexity class C, we set IP(C) = {IP(L), L € C}.

Lemma 4 Let A C R* be such that IP(A) is Turing NP-hard. Then A is
Turing NP]%OUS—hard.

Proof. By Theorem 3, NP§ ~ C P (NP). As IP(A) is NP-hard,
PR (NP) C P (IP(A)), and of course P} (IP(A)) C Py (A). Here
IP(A) is a boolean language used as a boolean oracle: as explained after
Theorem 2, such an oracle only handles inputs made of 0’s and 1’s. We

conclude that NPR,_C Py (A). O

10

Let us recall the definitions of two classical real languages. The real
knapsack problem Knapsacky is defined by

n
Knapsackg N R = {(z1,...,2,,5), Jui,...,u, € {0,1}, Zuzxz =s}.
i=1

The traveling salesman problem TSPg is the set of pairs (A,d) where A
is a distance matrix of {1,...,n} and d € R", such that there exists a
Hamiltonian tour over {1,...,n} of length at most d. The final result of
this section follows immediately from Lemma 4.

Proposition 2 Knapsacky and TSPr are Turing NP%ovs—complete.

4 The polynomial hierarchy over R,

The result Pr,, # NPg,, was proved by Meer [5]. In this section we show
that similar arguments can be used to separate the lowest levels of the
polynomial hierarchy PHg, .. Separating the higher levels of the hierarchy
is essentially “impossible” due to the transfer theorems established in sec-
tion 4.2. These results rely on elementary observations on the structure
of subsets of R" definable in R,s (see Lemma 6 and Lemma 7 in particu-
lar). In the following, these subsets will simply be called “definable sets”.
Remember that definable sets are definable without quantifiers since Ry
admits quantifier elimination. Consequently, a definable set is nothing but
a boolean combination of hyperplanes.

As in the rest of the paper, we work with parameter-free machines unless
stated otherwise. We point out in Remark 4 at the end of the paper that it is
straightforward to generalize our transfer theorems to the case of machines
with parameters.

We first recall the generic path method. Let M be a machine over Ry,
stopping on all inputs, and L the language decided by M. Given n € N\ {0},
we set L, = LNR". The generic path in M for inputs of size n is the path
obtained by answering no to all tests of the form "h(z) =0 7" (unless h = 0,
in which case we answer yes).

This definition is effective in the sense that the generic path can be
followed by running M on the formal input (X1,...,X,). If M is parameter-
free this computation can be carried out on a classical Turing machine.
Moreover, if M works in time #(n), it takes time O(nt(n)?) to apply the
generic path method, and the tests that are performed by M along this
path can be computed effectively. Let us call {hq,...,h,} these tests. We
have r < t(n), and these hyperplanes have the following property: if the
inputs following the generic path are rejected, L, C h; U...U h,; otherwise
these inputs are accepted and L), C hy U... U h,.

11

Note that the generic path method can be applied to an affine subspace
X C R” instead of R”, in which case we answer yes to a test "h(z) =0 7" if
and only if X C h. Remember also that a definable subset A of R is dense
on X iff it contains an open dense subset of X, and that this is equivalent
to dim AN X = dim X. We summarize these observations in a lemma which
will be used in section 4.2. In this lemma, Sys” denotes the set of systems
of affine equations in n variables with coefficients in Z. For S € Sys", Pg
denotes the affine subspace of R” defined by S.

Lemma 5 Let A be a language of R® and A" = ANR". We denote by
L™ the set of systems S € Sys™ such that A™ is dense in Ps, and by L the
language |J,,~, L". Assume that A € Cﬂ%’us’ with C = PAR or C = %F for
some k € N. Then L € Cyz,.

Proof. Note that A™ is definable for any A € Cﬂ%’us (this is in fact true
for any recursive language of RJC). This set is dense in Pg iff a generic
point of Pg belongs to A. We can therefore apply the generic point method
described above. More precisely, consider first the case A € P]%Us. Given
a test hyperplane h, we can decide in polynomial time whether Ps C h by
linear algebra (for instance, we precompute d = dim(Ps) and d + 1 points
Z1,...,Tq+1 such that Ps = Aff(zq,...,2441); then we declare that Ps C h
if ; € h for all ¢ = 1,...,d + 1). The same remark applies to the case
C = PAR since test hyperplanes still have polynomial-size coefficients in this
case. We conclude that Lisin P if A € P]%vs, and L is in PARz, = PSPACE
if A € PAR}, .

If Ae (Eﬂévs)o for some k > 1 we use the equivalence between real and
boolean alternation for R, [2]: there exists a polynomial p and B € P}
such that for any z € R*, x € A iff

Quy1 € {0,137 .. Qpyr € {0, 1} (2, y1,...,y4) € B

(the quantifiers @; alternate, starting with Q1 = 3). The set A™ is dense in
Pg iff the statement

Qlyl € {Oa l}p(n) o Qkyk € {Oa l}p(n)Fn(yla s ayk) (1)

is true. Here F,(y1,...,yx) stands for: “{z € R*; (z,y1,...,yx) € B} is
dense in Pg”. Since B € P]%Us, we know that F,(y1,...,yx) can be decided
in polynomial time by the generic point method. Therefore (1) shows that
Lexk O

Note that in the case C = £ it is really necessary to go to boolean quantifi-

cation before applying the generic point method (think for instance of the
set of points z € R defined by the formula Jy z = y).

12

4.1 Separation of Lower Levels

It was pointed out in [10] that the Twenty Questions problem might be a
plausible witness to the separation Pc # NPc¢. Formally, this problem is
defined as follows:

TQ = |J{(z1,...,22) €R", 71 €{0,...,2" = 1}}.
neN

Here we show that Twenty Questions can be used to separate Eﬁ%vs from
JIE
RUS

Proposition 3 TQ € Eivs — Hivs.

Proof. We recall from [10] that TQ € X since the restriction of this prob-
lem to R" is TQ, = {(z1,...,%y), Ju1,...,uy € {0,1} 2 =Y, 271w}

Assume by contradiction that TQ € Hﬂ%vs: TQ,, is therefore the intersec-
tion of a finite number of sets A; of the form A; = L; "R™ where L; € P]%US.
Since TQ,, is not dense in R", there exists an A;, which is also not dense in
R"™. The generic path method then implies that A;, is included in the union
of n®M) hyperplanes. This is impossible since TQ,, is made of 2™ distinct
hyperplanes. O

Proposition 4 (3§ NIE) — (3 UIIE) #0.
Proof. Consider the following language:

L=Upen {(@1,...,2n), Jur,...,up € {0,1} Yor,..., v, € {0,1}
1 =Y,27 u; and 7y # > 2771, 3.

The two quantifier blocks in this definition can be swapped, whence L €
Z%{vs N H%{US. Assume now that L € Eﬂ\’ivs' The restriction L, = LN R" is
therefore a finite union of sets A; of the form L; NR™ where L; € P]%Us. One
of these sets, say A;,, must be dense in the subspace S = {z € R",z; = 0}.
The generic path method applied to L;, on this subspace shows that A7 NS
is included in the union of n®(") hyperplanes. This is impossible since L¢N.S
is the union of 2" hyperplanes. A similar argument applied to S" = {z €
R", x5 = 1/2} shows that L ¢ II}; . O

4.2 Transfer Theorems for the Polynomial Hierarchy

In this section we show that it will be considerably harder to separate the
higher levels of PHg,, than the lower levels. We begin with two lemmas.
Lemma 6 is a remark on the structure of definable subsets of R", and in
Lemma 7 we build a generic Z%{vs formula deciding a definable set A with
the help of the predicate dimS N A = dim S (the variable S represents an
affine subset of R™).

13

Lemma 6 Any nonempty definable set A C R" can be written as

A=Ep\ (Bp—1\ (... \ Ep))

where E; is a finite union of affine subspaces, E; 1 C E;, E; = E; \ E;_1,
and k < dim A.

Proof. If dimA = 0 the result is clearly true since A is a finite set of
points. Assume by induction that the result is true for all definable sets of
dimension at most d — 1, and let A be a definable set of dimension d. The
topological closure A of A is a finite union of affine subspaces. If A = A we
set k = 0 and E, = A. Otherwise, consider the definable set A; = A\ A.
Since dim Ay < d — 1, for some k£ < d one can write by induction hypothesis
Al = Ex1 \ (Eg—2 \ (---\ Ep)) with E; a finite union of affine subspaces,
E,_CFE, E =E \ FE;_1. Since A = Z\ Ay, we can take Fj = A. O

Lemma 7 For any definable set A C R™ we have:

(:El,... ,:En) € A& 3451VS,
z € SiANdimANS; =dim S,
/\(dimAﬂSl NSy <dimS; NS, =z &5 ﬂSQ)

where S1 et Sy are affine subspaces of R™.

Proof. The result is clearly true if A = (). Otherwise, write A = Ej \ (Ex—1\
(...\ Ep)) as in Lemma 6. Let z € A and 79 = min{é; i = k mod 2, z € E;}.
Then x ¢ E;,_1: if z belonged to E;,_1, since z € A there would exist ¢ < g
such that 1 = k£ mod 2 and x € F;. This would be in contradiction with the
minimality of 4.

We first show the implication from left to right: let S7 be a maximal affine
subspace in E;, containing x. Since z € S1 and x¢E;,_; the strict inclusion
Sl N EZ'O,1 g Sl holds. Hence dim Sl \ EZ'O,1 = d1mS’1 and dim A N Sl =
dim Sq. At last, if dimA NS NSy < dimS; N So, then S7 NSy C Eio—l-
Thus z € Sl N SQ.

Conversely, assume now that z satisfies the formula for S; = S. Since
ANS is definable, by Lemma 6 we can write ANS = E\ (Ep—1\ (... \ Eo)).
Here E, = ANS = S (the second equality follows from dimA NS = S).
E}._ is a finite union of affine subspaces. For any subspace S2 in this union
we have dim A NSNSy < dim S N Sy, therefore &S N Sy. This shows that
T¢€F,_1, hencex € ANS. O

Remark 3 If the definable set A in the above lemma is a boolean combi-
nation of hyperplanes with coefficients in some subset D C R, then we can
quantify only on affine subspaces defined by systems of affine equations with
coefficients in D.

14

We can now state and prove our transfer theorems for R,s. Note that
there is a two level shift in Theorem 4 and Theorem 5.

Theorem 4 P = PSPACE = PAR} = (22)'n (3)"

Proof. Let us assume that P = PSPACE, and let L € PAR]?{US be decided
by a family of P-uniform circuits with depth ¢(n). It is enough to show that
PARp = (E]%{US)O since PAR}, _ is closed under complement. By Lemma 7,

L is decided by the following (Eﬁvs)o formula:
(21,...,2p) € L & A5 VS
z € Ps, Adim L™ N Ps, = dim P,
A(dim L™ N Ps,us, < dim Ps,us, = © & Ps,us,)
where L™ = LNR", § and S are systems of at most n affine equations
with coefficients in {—2:"), ... 24"} (Remark 3), and Ps is the subspace

of R" defined by §. By Lemma 5 the condition dim L, N Ps = dim Ps can
be checked in PSPACE, and therefore in P by hypothesis. O

Theorem 5 For all kK > 0:
PH =" = PH} = (Sh2)",

Proof. Consider a problem L € PH]%{US: we have L € (EJLII\’{US)O for some
g > 0. As in the proof of the previous theorem, we use the %2 formula
from Lemma 7. Since PH%N - PARIQ&US, by Remark 3 we can still quantify
on systems of equations with coefficients in {—2”(”),...,2”(”)}, for some
polynomial p. By Lemma 5 the condition dim Ps N L, = dim Ps can be
checked in X9, and thus in ¥ by hypothesis. Putting the resulting formula
in prenex form shows that L € (Eﬁf)o. 0

Our final transfer theorem is based on a slightly different technique.

Theorem 6 P = NP = (s)'n (k)" =P) .

Proof. Consider a problem L € (Eﬁ%s)o N (Hﬁ%s)o. Since L € (Eivs)o, there
exists A € P]%{Us and a polynomial p such that
L={zeR>®; Juc {0,1}*1 (z u) € A}.
There is also a problem B € P]%{US and a polynomial g such that
L={zeR®; e {01} (z,4) € B}

since L € (Hivs)o. We write A} = {z € R";(z,i) € A} and B} = {z €
R";(z,j) € B}. With these notations, we have L™ = Uie{o 1) Al =
ﬂj €{0,132(m B} where L™ = L NR". Both languages A and B are decidable

in polynomial time; let ¢ be a polynomial such that #(n) is an upper bound
on the computation time required to:

15

(i) decide A on inputs of the form (z,u) with z € R and u € RP(");
(ii) decide B on inputs of the form (z,v) with z € R” and v € R

Let us consider the two cases: dimL" < n or dim L™ = n. In the first
case, one of the B', say B;', must be such that dim Bj} < n since L" is the
(finite) intersection of the Bf'. As L™ C B[, by the generic point argument
L™ is included in the union of ¢(n) affine subspaces hj of dimension n — 1.
In the case dim L™ = n, there must exist A7 such that dim A = n. Now
(L") = N;(A})¢ C (A})¢. Therefore the complement of L" is included in
the union of #(n) affine subspaces hj of dimension n — 1. Moreover, the
restriction of L™ to a hyperplane h; (or even any hyperplane) has the same
structure.

We now explain how L can be decided in P]%{vs under the hypothesis
P = NP. Let z be an input in R". At the first step, we use the generic
path method to check whether dim L™ < n or dim L™ = n (this is an NP
problem). First case: dimL" < n. Then we guess j € {0,1}%™ such that
dim B} < n. Using again the generic path method, we compute at most
t(n) hyperplanes whose union contains L™ (this algorithm is in P). Then
we check whether x lies on one of these hyperplanes: if it doesn’t, we reject;
otherwise, we go to the next step. The case dim L™ = n is similar. We guess
i € {0,1}*™ such that dim A? = n. The generic path method yields at
most ¢(n) hyperplanes whose union contains (L™)¢. It remains to check if z
belongs to one of the hyperplanes. If it doesn’t we accept, otherwise we go
to the next step.

At the beginning of the k-th step, we have computed a system of equa-
tions (with integer coefficients) defining an affine subspace of dimension
n — k + 1 on which z lies. We also know that the restriction of L™ to this
space has the same structure as in the first step: L™ or its complement,
restricted to this space, is included in the union of at most #(n) affine sub-
spaces of dimension n — k. Using a boolean NP oracle we can determine
these hyperplanes and then we either accept z, reject z, or go to step k + 1.
This algorithm terminates after at most n steps. O

Remark 4 The three transfer theorems of this section can be extended
to the case of machines with parameters. For example, let us show that
PH = ©% = PHg,, = Eﬁjf. For any problem L € PHg, there ezist pa-

rameters o, ...,o, and a problem L' € PH]%{US such that (z1,...,z,) € L
iff (z1,...,2n,04,...,0p) € L'. By Theorem 5, L' € (ZE’?)O under the
assumption PH = ¥, This implies that L € EE’?.

16

References

[1]

2]

L. Blum, F. Cucker, M. Shub, and S. Smale. Complezity and Real
Computation. Springer-Verlag, 1998.

F. Cucker and P. Koiran. Computing over the reals with addition and
order: Higher complexity classes. Journal of Complexity, 11:358-376,
1995.

H. Fournier and P. Koiran. Are lower bounds easier over the reals 7 In
Proc. 30th ACM Symposium on Theory of Computing, pages 507-513,
1998.

P. Koiran. Computing over the reals with addition and order. Theoret-
ical Computer Science, 133(1):35-48, 1994.

K. Meer. A note on a P#£NP result for a restricted class of real ma-
chines. Journal of Complexity, 8:451-453, 1992.

F. Meyer auf der Heide. A polynomial linear search algorithm for the
n-dimensional knapsack problem. Journal of the ACM, 31(3):668-676,
1984.

F. Meyer auf der Heide. Fast algorithms for n-dimensional restrictions
of hard problems. Journal of the ACM, 35(3):740-747, 1988.

B. Poizat. Les Petits Caillouz. Nur Al-Mantiq Wal-Ma'rifah 3. Aléas,
Lyon, 1995.

A. Schrijver. Theory of Linear and Integer Programming. Wiley, New-
York, 1986.

M. Shub and S. Smale. On the intractability of Hilbert’s Nullstellen-
satz and an algebraic version of “P=NP”. Duke Mathematical Journal,
81(1):47-54, 1996.

S. Smale. On the P=NP problem over the complex numbers. Lecture
given at the MSRI workshop on Complexity of Continuous and Alge-
braic Mathematics, November 1998. Lecture on video at www.msri.org.

L. G. Valiant. Completeness classes in algebra. In Proc. 11th ACM
Symposium on Theory of Computing, pages 249-261, 1979.

L. G. Valiant. Reducibility by algebraic projections. In Logic and Algo-
rithmic (an International Symposium held in honour of Ernst Specker),
pages 365—380. Monographie n° 30 de L’Enseignement Mathématique,
1982.

17

