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Abstract

We describe Nestor� a library to easily manipulate Fortran pro�
grams through a high level internal representation based on C��
classes� Nestor is a research tool that can be used to quickly im�
plement source to source transformations� The input of the li�
brary is Fortran 		� Fortran �
� and HPF ��
� Its current out�
put supports the same languages plus some dialects such as Pe�
tit� OpenMP� CrayMP� Compared to SUIF ��
 that is still an�
nounced� Nestor is less ambitious� but is light� ready to use �http�
��www�ens�lyon�fr��gsilber�nestor�� fully documented and is
better suited for Fortran to Fortran transformations�

Keywords� Library� program transformations� HPF� parallelization� object oriented�

R�sum�

Dans ce rapport� nous d
crivons Nestor� une biblioth�que pour ma�
nipuler facilement des programme Fortran � l�aide d�une repr
senta�
tion interne de haut niveau qui se fonde sur des classes C��� Nestor
est un outil de recherche qui peut �tre utilis
 pour implanter rapi�
dement des transformation source � source� Les langages reconnus
par la librairie sont Fortran 		� Fortran �
 et HPF ��
� Les langages
disponibles en sortie sont les pr
c
dents plus des dialectes de For�
tran comme Petit� OpenMP� CrayMP� etc� Compar
 � SUIF ��
 qui
est toujours annonc
� Nestor est moins ambitieux� mais il est l
ger�
pr�t � �tre utilis
 �http���www�ens�lyon�fr��gsilber�nestor�
et compl�tement document
� De plus� Nestor est mieux adapt
 aux
transformations source � source de Fortran�

Mots�cl�s� Biblioth�que� transformation de programmes� HPF� parall
lisation�
orient
 objet�



The Nestor library� a tool for implementing Fortran

source to source transformations

Georges�Andr� Silber Alain Darte�

��th September ����

Abstract

We describe Nestor� a library to easily manipulate Fortran programs through a
high level internal representation based on C�� classes� Nestor is a research tool
that can be used to quickly implement source to source transformations� The input
of the library is Fortran ��� Fortran ��� and HPF ���� Its current output supports
the same languages plus some dialects such as Petit� OpenMP� CrayMP� Compared to
SUIF ��� that is still announced� Nestor is less ambitious� but is light� ready to use
�http���www�ens�lyon�fr��gsilber�nestor�� fully documented and is better suited
for Fortran to Fortran transformations�

� Introduction and motivations

Several theoretical methods that transform programs to gain parallelism or to improve mem�
ory locality have been developed �see ���� �� for surveys�� Unfortunately� there is a gap be�
tween the bunch of known parallelism detection and code optimization algorithms� and those
implemented in real compilers� Indeed� these algorithms are often di�cult to implement� be�
cause they use graph manipulations� linear algebra� linear programming� and complex code
restructuring �see for example ���� ��� ��� �� for some parallelism detection algorithms�� Con�
sequently� their implementation is a research problem by itself and must be ease by a simple
but powerful representation of the input program� This representation should provide all the
basic blocks to let the researcher concentrate on algorithmic implementation problems� and
hide the classical low level representation of the program �low level abstract syntax tree��

The Nestor library provides such a framework� focusing on tools for source to source
transformation of Fortran and its dialects �Fortran 		� �
� HPF ��
 ����� OpenMP ��	��
CrayMP� SunMP� etc��� We chose HPF and its variants because it o�ers useful means
to express parallelized codes� such as directives for parallel loops� privatized arrays� data
distributions� task parallelism� etc� Moreover� the obtained codes can be executed on a
parallel computer after compilation by an HPF �or equivalent� compiler� Furthermore� the
parallel code is still readable for the programmer and by Nestor itself� We believe that

�LIP� ENS�Lyon� ����� Lyon� France� E�mail� �gsilber�darte	�ens�lyon�fr
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this high level parallelizing approach �through directives insertion� is important to improve
the relationship between the programmer and the compiler� and to enable semi�automatic
parallelization �see Figure � for the compilation scheme��

HPF
Fortran

OpenMP
Cray

Parallel
machine
code

Fortran
HPF

source to source
compiler

Nestor

compiler
adaptor, pghpf, sunf90, ...

Figure �� source to source parallelization of sequential Fortran�

Nestor is a C�� library that provides classes and methods to parse a source code in
Fortran� to analyze or modify this source code easily with a high level representation� and to
unparse this representation into Fortran with parallelization directives� The representation
that can be manipulated with Nestor is a kind of AST �Abstract Syntax Tree� where each
node is a C�� object that represents a syntactical element of the source code� and that can
be easily transformed� The front�end of Nestor is the robust front�end of Adaptor �	�� an
excellent HPF compiler of the public domain written by Thomas Brandes� This front�end
supports HPF ��
 and Fortran �
�

Nestor aims to be used by researchers that want to implement high level transformations
of Fortran source codes� It provides all the features for building a source to source Fortran
transformer� The library is easy to use and is portable� it is written in GNU C�� and uses
the STL �Standard Template Library� that implements classes for manipulating lists and
other container objects� There is a full documentation in postscript and an on�line docu�
mentation in HTML and Java that describes all the classes of the library� The programmer
has just to click on the hypertext links to follow the class hierarchy in order to �nd a de�
scription of their methods� their attributes� and some useful examples� This documentation
can be found at the World Wide Web url� http���www�ens�lyon�fr��nestor�doc�

This paper is organized as follows� In Section �� we present the di�erences between Nestor
and existing related tools� in particular SUIF� In Section �� we describe Nestor in details� The
section � gives examples of its usefulness and its ease of use� Then� we give some concluding
remarks and some future work�

� Related tools

Several research tools implementing program analysis or parallelization algorithms have been
developed �Bouclettes ���� Petit ����� LooPo ������ Their main objectives were to prove that
these algorithms could be implemented in a real compiler� For example� Petit demonstrates
the power of the Omega test and of the Omega library� Nevertheless� they were not conceived
to handle real codes� they all take as input a toy language� usually a subset of Fortran�

But theoretical methods have to be validated also by testing their behaviors on real ap�
plications� such as benchmarks or scienti�c codes� Several more ambitious tools have been
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developed in the past� PIPS ���� developed at the Ecole des Mines de Paris� Polaris ���� de�
veloped at Urbana�Champaign� SUIF ��
� developed at Stanford� PAF developed at PRiSM�
These tools have been developed over more than ten years for some of them� they are now
huge systems �di�cult to maintain and extend� and their internal representations begin to be
at a too low level for new developers� For example� SUIF ��
 is currently moving to SUIF ��

with deep changes� People from Polaris think of changing their internal representation� We
believe that Nestor could be an interesting platform for that�

One could argue that SUIF ��
 has the same objectives as Nestor concerning the simplicity
of use of its internal representation� Compared to SUIF ��
� the main transformation is
indeed to make the representation more object�oriented� Although this feature is already
available in Nestor� when SUIF ��
 is only announced� Nestor should not be seen as a rival
tool for SUIF ��
� First of all� Nestor is devoted to Fortran like languages� whereas SUIF
has been designed for manipulating C programs �Fortran is handled through f�c and cannot
be unparsed�� Fortran is a simpler language than C� easier to optimize at a high level �in
particular for dependence analysis�� and thus it leads to a simpler internal representation�

In addition to this main di�erence in the input and output languages� Nestor is far less
ambitious� It is not a full compiler� but just a kernel for source to source transformations of
Fortran programs� Nestor does nothing� It only provides means to do something� But this
limited goal gives it some advantages�

� Nestor is small� The library provides only the basic blocks for building source to source
transformation systems� Its size allows an easy and quick installation on every system�
It is developed and maintained by a single person�

� Nestor is fully documented� We think that this feature is maybe even more impor�
tant than any other� as far as implementing algorithms is the main issue� There is a
postscript documentation describing in details the whole library and each class� There
is also an HTML�Java documentation that is very useful when developing with the
library� This documentation is automatically generated from the source �les and is
always up to date� thanks to doc��� a public domain software �����

� Nestor o�ers a Fortran�
�HPF input and output� All the other tools support only
Fortran 		� It is impossible for example to insert parallelizing directives a la HPF as
easily as Nestor does �see examples in Section ���

� Description of Nestor

��� Implementation choices

The �rst choice was to choose a language to develop the library� This choice is important�
because users that are going to use the library will have to write their transformations in
this language� For several reasons� we have chosen C�� to develop Nestor�

� C�� is widely used� and a lot of existing libraries are written with this language �or
in C�� This means that these libraries can be used together with the Nestor library�
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� C�� is object�oriented� The internal representation of a Fortran program �ts very
well in the object�oriented world� For instance� the inheritance principle gives several
views of the internal representation� All objects composing it can be seen as a tree
organization of NstTree objects� which is the base class of the library �each class inherits
from it�� But� the programmer can have a higher view of the representation by using
the actual type of each object� There are no real NstTree objects� but only child objects
of this class �NstStatement� NstDeclaration� etc��� This is explained in Section ����

� C�� o�ers a lot of useful templates with the Standard Template Library �STL���
This library is now widely available� especially in the GNU C�� compiler that is our
compiler of development� This compiler is available on every usual platform� The
choice of using the STL is then a reasonable choice� instead of investing a lot of time
developing and maintaining new templates for lists� containers� etc�

� C�� o�ers operator overloading� This feature is useful� especially for writing the
unparse� the operator � is overloaded for each class of the library� allowing to write
custom unparse and to write to a �le or to standard output easily� It is also useful for
creating new expressions �see Example �� in Section �����

� C�� o�ers virtual methods that are useful to de�ne type methods� For instance� a
virtual method type�� is de�ned in each class and returns the actual type of the object�
even if there is only a subpart of it that is available�

��� Writing a source to source transformation pass

When developing Nestor� we wanted to create a development platform for writing a source
to source parallelizer� We had a lot of algorithms to implement and evaluate� and we wanted
to automatically generate HPF programs starting from Fortran sequential programs� With
Nestor� each transformation can be written independently� because the output of one pass
can be used by another pass� It is one of the advantages of working at the source level� For
instance� one pass can take a Fortran source code� insert HPF directives in front of DO loops
and unparse the internal representation� One second pass can take the result of this pass
and can generate the distributions of the arrays� The main idea is that each programmer can
write its own optimization and test it immediately by compiling the result with a Fortran
compiler that supports parallelization directives� Moreover� the result is easy to read because
it is still written in a high level language instead of a tricky internal representation or in a
low level language like C�

Example �� The code example depicted in Figure ��� gives the scheme of a typical trans�
formation pass written with our library� The �rst statement creates an object from the
class NstComputationUnit that gives a starting point to the internal representation of the
program passed in parameter in the command line� The last statement unparses the inter�
nal representation in Fortran on the standard output� This program adds� in front of the

�Included in the ANSI
ISO Standard C�� Library� corresponding to Committee Draft �
��� as revised
through July �����
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output� a comment with the name of the source �le� It shows the simplicity of writing a
transformation pass with the library�

�include �libnstbase�H�

void main�int argc	 char

 argv� �

if �argc 

 �� �

NstComputationUnit prog�argv�����

cout �� �� file�� �� argv��� �� endl�

cout �� prog �� endl�

�

�

Figure �� C�� code of Example �

�HPF� INDEPENDENT

DO I 
 �	N

A�I� 
 B�I� � �

D�I� 
 C�I� � �

ENDDO

Figure �� Fortran code for Example �

��� A quick look at the internal representation

Usually� compilers use program internal representations that are too low�level for user�s
manipulation� They do not fully retain the high�level language semantics of a program
written in Fortran� One of the advantage of Nestor is that its internal representation is
intuitive because there is a one�to�one correspondence between a syntactical element in a
Fortran code and the Nestor object representing this element�

Example �� Consider a DO statement in Fortran as given in Figure �� It is composed of an
index variable� a lower bound� an upper bound� possibly a step� and a list of statements� The
following source code is an excerpt of the C�� de�nition of the Nestor class NstStatementDo�
representing DO statements of Fortran�

class NstStatementDo � public NstStatement �

public�

NstVariable
 index�� const�

NstVariable
 index�NstVariable� new�var��

NstExpression
 lower�bound�� const�

NstExpression
 lower�bound�NstExpression� new�exp��

NstExpression
 upper�bound�� const�

NstExpression
 upper�bound�NstExpression� new�exp��

NstStatementList body�

bool independent�

���

��

Each element of a DO can be accessed or modi�ed by the corresponding method in the
class� A call to the method index�� returns an object representing the index variable of
the loop� A call to the method index�j� replaces the old index variable by a new object j�
Each element of the DO can be accessed�modi�ed the same way� The statements in the body
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of the loop are stored in the list of statements body� This is a doubly�linked list that can
be modi�ed with usual operations on a list� add� delete� traversal� � � � The �ag independent

tells if the loop is parallel or not and unparses an 	HPF
 INDEPENDENT in front of the loop
if the �ag is set �or the equivalent directive for other dialects��

The class NstStatementDo inherits from the class NstStatement and then has all the
methods and attributes of this class� The class NstStatement contains all the informations
that are common to all types of statements in a Fortran code� line number in the source
code� label of the statement� � � � This class inherits from the class NstTree� like all the other
classes of the Nestor library�

��� Type of objects

In the AST created with the Nestor library� each object �i�e�� each instance of a class� has a
type� Each class inherits �directly or indirectly� from the class NstTree� This class de�nes a
virtual method type�� that is rede�ned in each subclass� This method is very useful� because
it introduces some genericity in the internal representation and in its use� Remember the
class NstStatementDo �see Example ��� Inside� the attribute body is a list of statements�
An object representing a statement can be an instance of one of these classes�

NstStatementContinue NstStatementBasic NstStatementWhere

NstStatementWhile NstStatementIf NstStatementNestor

NstStatementDo NstStatementForall

It is di�cult to make a list containing objects of di�erent types� this is why a list of
statements is a list of NstStatement objects� Each statement inherits from this class� the
method type�� will give the actual type of the object�

Example �� This example is a traversal of a list of statements that prints the number of
speci�ed parallel loops� It illustrates the use of the type�� method� and the use of the lists
de�ned in the Standard Template Library�� Lists can be traversed with iterator objects�

void print�number�of�par�NstStatementList� sl� �

int num 
 ��

NstStatementList��iterator sl�it�

NstStatement
 current�stat�

NstStatementDo
 do�loop�

for �sl�it 
 sl�begin��� sl�it �
 sl�end��� sl�it��� �

current�stat 
 
sl�it�

if �current�stat��type�� 

 NST�STATEMENT�DO� �

do�loop 
 �NstStatementDo
� current�stat�

if �do�loop��independent� ��num�

�

�

cout �� �There are � �� num �� � parallel loops�� �� endl�

�

If you take a look at the example above� you can see the three lines�
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if �current�stat��type�� 

 NST�STATEMENT�DO� �

do�loop 
 �NstStatementDo
� current�stat�

if �do�loop��independent� ��num�

�

Instead of doing a cast from the object NstStatement to the object NstStatementDo� there
are some safe cast methods implemented from each parent class to its child� Here� these
three lines can be replaced by�

do�loop 
 current�stat��isNstStatementDo���

if �do�loop �� do�loop��independent� ��num�

The virtual method isNstStatementDo�� returns NULL if the actual object is not an object
of the class NstStatementDo and a pointer to the NstStatementDo object otherwise�

��� Traversals

The class NstTree gives a mechanism to write recursive traversals of the AST� The class
NstTree provides the two virtual methods init�� and next�� that gives respectively the
�rst and the next child of a NstTree �or a derived class� object�

Example �� A recursive traversal of an AST that prints the type of each object encoun�
tered� The method class�type�� is de�ned for each class and returns a string containing
the type of the class� This example illustrates the use of the init�� and next�� methods�
These methods are de�ned for each class� even for classes representing lists� Consequently�
they can be used to traverse a list instead of using an object iterator�

void print�type�NstTree
 t�

�

cout �� t��class�type�� �� endl�

NstTree
 current 
 t��init���

while �current� �

print�type�current��

current 
 t��next���

�

�

The class NstTree also provides the method�

void traversal�int �
action��NstTree
	 void
�	 void
 extra 
 NULL��

that executes a recursive traversal of the object� executing the function action at each node�
The recursion stops when action returns a nonzero value� There is a class NstTreeTravel
that can be extended to write more complicated recursive travels�

	



��� The front�end

The front�end of Nestor is a slightly modi�ed version of the front�end of Adaptor �	� that
recognizes HPF ��
 ������ Adaptor has been written by Thomas Brandes and is an excellent
public domain HPF compiler� Its front�end is robust� publicly available� and has been written
with the GMD compiler toolbox �	� �a high level language to easily describe grammars�� We
have added the directives of OpenMP and Cray� This front�end allows Nestor to handle real
codes� instead of only considering a subset of language or an ad�hoc language� This part is
also useful because it checks the syntax and the semantics of the code� Once the code has
been parsed� the resulting internal representation is a correct Fortran program�

For supporting semi�automatic parallelization� it is useful to de�ne parts of code that
have to be parallelized and others that must be ignored� The library o�ers a mechanism�
by the use of new directives� that permits to ignore parts of codes that are known to be
sequential and to emphasize parts that must be parallelized� These directives are comments
and do not modify the compilation of the code� They begin with the keyword 	NESTOR
�
The directive 	NESTOR
 SINGLE is to be placed in front of a loop �DO or FORALL�� it sets a �ag
in the corresponding Nestor object� The second directive �	NESTOR
 BEGIN� 	NESTOR
 END�
de�nes a region of code� The library provides functions to retrieve the marked statements�

There is only one way to parse a code with the Nestor library� with the constructor of
the NstComputationUnit class� The following code�

NstComputationUnit file�parsed��example�f���

parses the Fortran �le example�f� checks if the source code is a correct Fortran program�
and creates an object file�parsed that contains the Nestor representation of the source
code� This internal representation captures all the information of the source code� A table of
symbols is created for each subroutine or function of the source code� Figure � in Appendix A
gives an example of an internal representation for a simple program�

The constructor has some parameters that can be con�gured� for instance to parse For�
tran �
 free code format or to tag all the code as if BEGIN�END directives were enclosing all
the statements of the code� The object NstComputationUnit has also two special tables of
symbols that store the externals and the intrinsics of the Fortran source code� By default�
the table of intrinsics knows all the Fortran �
 and HPF intrinsics�

��� The back�end

The internal representation of Nestor can be unparsed in Fortran 		� Fortran �
� HPF ��
�
OpenMP� CrayMP directives and in the Petit language� Each object has its own unparse
methods� one for each of the Fortran dialect� Unparsing recursively an object is a very simple
task by the overload of the C�� operator �� The unparsed language can be chosen by a
global �ag� By default� the unparsed language is HPF ��
�

�Historically� Nestor has been written as a parallelizing pre�phase for Adaptor� Starting from a sequential
Fortran program� Nestor�Adaptor can transform it into a parallel program with message passing� The name
Nestor comes from the term loop nest and the name Adaptor�
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Example �� The example below is extracted from the code of the Nestor library� This
is the unparse method that is called when a NstStatementIf is unparsed in Fortran� This
example shows how the overload of the operator � leads to a simple and clean code�

void NstStatementIf��unparse�fortran�ostream� s� const

�

indent�s�� s �� �if �� �� 
condition�� �� �� then� �� endl�

inc�indent���

s �� then�part �� endl�

dec�indent���

if �else�part�size�� � �� �

indent�s�� s �� �else� �� endl�

inc�indent���

s �� else�part �� endl�

dec�indent���

�

indent�s�� s �� �end if��

�

��	 Dependences and graphs

Dependence analysis is the �rst step before any optimization that modi�es the order of com�
putations in a program� Without a sophisticated dependence analyzer� code transformations
such as loop transformations� scalar expansion� array privatization� dead code removal� etc�
are impossible� Therefore� any parallelizing tool must contain a dependence analyzer�

Nevertheless� it is well known that the development of a dependence analyzer both pow�
erful and fast is a very hard task� This comes from the fact that the problem is in theory
NP�complete� if not undecidable� but that it can be fasten in practice thanks to a pool of
ad�hoc methods devoted to frequent cases� For this reason� we decided to rely on a free soft�
ware tool� named Petit ����� developed by Bill Pugh�s team at the University of Maryland�
Petit�s input is a short program� written in a restricted language� close to � but di�erent
than � Fortran 		� Its output is a �le that describes pairs of array references involved in a
dependence� and this dependence is represented by a �sometimes complicated� relation based
on Presburger arithmetic�

A possibility to integrate Petit into Nestor was to plug all Petit�s techniques directly into
Nestor�s abstract syntax trees� However� since Nestor accepts the full Fortran� and Petit only
a simple Fortran�like language� it is not so simple to modify the sources of Petit� even for
the creators of Petit themselves� Following Bill Pugh�s advice� we chose to use Petit as an
independent tool through its input and output �les� This strategy is not only simpler to
implement� it is also more portable� potential bugs in Petit and potential bugs in Nestor are
separated� and furthermore updating Petit to new versions will be easier� Two problems still
remained� feeding Petit with a correct input� and plugging Petit�s output at the right place
into the original Fortran code�

The �rst task was easy to complete thanks to the clean design of Nestor� As mentioned
before� Nestor is a C�� library� The unparse function �i�e� the function that transforms
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an abstract syntax tree into a program in a given language� has been de�ned simply as the
output operator �the C�� operator ��� Therefore� we just had to rede�ne this operator for
all C�� classes that have their equivalence in the Petit language� For example� the operator
�� applied to the class that corresponds to a Fortran DO loop� automatically generates a loop
in Petit�s format� and recursively applies the operator � to the body of the loop� In Nestor�
there is a global �ag that determines the output language chosen by the unparse function�
and that switches from one to another�

The second task was twofold� First� we had to make the correspondence between array
references in Petit and the original array references of the Fortran program� Line num�
bers are not su�cient because both languages can be formatted in a di�erent manner� and
furthermore� only a part of the original code may be sent to Petit� Therefore� we slightly
modi�ed Petit�s grammar so as to number array references in the same order as they appear
in Nestor�s abstract syntax trees� Second� we modify the way dependences are represented in
Petit�s output� Indeed� in most parallelizing algorithms� what we need is an approximation
of distance vectors� and not a too complicated Presburger formula� We wrote a small tool�
based on the Polylib ����� a library for manipulating polyhedra� developed at IRISA in Patrice
Quinton�s team �mainly by Doran Wilde and Herv
 Le Verge�� This tool extracts� from a
Presburger formula� a description of dependences by level� direction vector� and polyhedral
approximation� the three representations used respectively by the parallelizing algorithms of
Allen and Kennedy ���� Wolf and Lam ����� and Darte and Vivien ����

We point out that we don�t need to send the full program to Petit� Indeed� we use Petit
only to analyze small portions of codes that we want to parallelize� the unparse function of
Nestor builds the corresponding code in Petit�s format� and also creates the declaration part
of this small program� based on all variables that are used in this portion� For example�
if we decide to analyze a single loop� surrounded by an outer loop� then the loop counter
of the outer loop becomes a parameter that must be declared in Petit�s input� This �local�
unparsing technique allows us to manipulate large codes� even if Petit is limited to the
analysis of small codes�

Example �� The very simple example below illustrates the dependence representations
that are now available in our Petit implementation� It is the typical case where level and
direction vectors are not su�cient to detect parallelism�

DO I�
�n

DO J�
�n

S� A�i�j� � A�j�i� � A�i�j�
�

ENDDO

ENDDO

Our tool detects three dependences� a �ow dependence� due to the read A�i�j�
�� of
level �� direction vector ��� �� and whose polyhedral approximation is the singleton ��� ���
and two other dependences� one �ow dependence and one anti dependence� both due to the
read A�i�j�� and of level �� direction vector ���� ��� and whose polyhedral approximation
is the polyhedron with one vertex ������ and one ray �������
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Building a dependence graph is a very easy task and is completed by a call to the con�
structor of the class NstRDGVar� This class contains the list of edges and the list of vertices of
the dependence graph� The constructor builds the Petit input� calls Petit and retrieves the
output of Petit to build the dependence graph� Each vertex is linked to the corresponding
variable access in the AST of Nestor� Classical graph manipulation algorithms� such as com�
putations of connected components� of strongly connected components� topological ordering�
etc� are provided�

��
 Automatic parallelization

Nestor already implements two algorithms for parallelism detection� These algorithms are
very simple and were implemented to validate the internal representation of Nestor and to
check its ease of use� The �rst algorithm only detects if the loop is parallel without any
modi�cation �see Example � of Section � for a description�� The second is a modi�ed version
of the Allen�Kennedy algorithm ���� Our goal with this modi�ed version was to have at
least one robust algorithm� able to handle complex loops with conditionals and possibly non
constant loop bounds� in other words structured codes that may contain control dependences�
Many extensions of the Allen�Kennedy algorithm have been proposed in the literature that
are able to handle control dependences� All of them rely on the creation of �execution
variables� �scalar or array variables� that are used to pre�compute and store the conditionals�
and on the conversion of control dependences into data dependences ��� ��� ����

While implementing such an algorithm� we found out that it was di�cult� in general� to
determine the size of these new arrays� especially in parameterized codes� Furthermore� in
the context of High Performance Fortran and distributed memory systems� the problem of
aligning and distributing these new arrays arises� To avoid these two problems� it may be
better to re�compute the conditionals �when it is possible� instead of using a stored value� It
may also be better to manipulate privatized arrays or scalars than to manipulate distributed
arrays� We therefore tried to understand how these two new constraints  the control of the
new array dimensions� and the re�computations of conditionals  can be handled� since no
previously proposed algorithm can take them into account�

For that� we explored a new strategy for taking control dependences into account� The
technique is to pre�process the dependence graph� and once this process is achieved� any
version of the Allen�Kennedy algorithm can be used� the dimensions of the new arrays are
guaranteed to satisfy the desired constraints� To make things simpler� the automatic version
that is currently implemented in Nestor is a version that guarantees that all new variables
are at worst privatized scalar variables �thus� with no size to declare�� A semi�automatic
version o�ers to the user the choice of the array dimension he tolerates for his program�

On Figure �� we give a parallel version of the code of Figure �� obtained with our al�
gorithm� The important thing here is the new array nst�� introduced to hold the values
of the loop upper bound� This code is correct only because this array is privatized� In the
implementation of our algorithm� this array has been privatized by adding it to the list of
privatized variables in the NstStatementDo class� with the instructions�

NstIdentifier new�id�

NstDeclarationVariable new�array�program	 new�id	 array�type��

��



do I 
 �	N

do J 
 �	N

do K 
 �	 A�I	J��	��

A�I	J	K� 
 B�I	J	K��A�I	J��	K�

C�I	J	K� 
 A�I	J��	K����D�I	J	K�

enddo

enddo

enddo

Figure �� Original code�

�HPF� INDEPENDENT	 NEW�nst���

do I 
 �	N

�HPF� INDEPENDENT

do J 
 �	N

nst���J� 
 A�I	J��	��

end do

do J 
 �	N

�HPF� INDEPENDENT

do K 
 �	nst���J�

A�I	J	K� 
 B�I	J	K��A�I	J��	K�

end do

end do

�HPF� INDEPENDENT

do J 
 �	N

�HPF� INDEPENDENT

do K 
 �	nst���J�

C�I	J	K� 
 A�I	J��	K����D�I	J	K�

end do

end do

end do

Figure �� Code after parallelization�

do�loop�new�variables�push�back��new�array��

During the unparse� the array nst�� appears in the list of all variables that are declared NEW

in the 	HPF
 INDEPENDENT directive�

� Examples

We now illustrate some features of Nestor through examples�

��� Printing unit names

Example 	� This example prints on the standard output the name of all the units in
the Fortran �le passed as parameter in the command line� It illustrates the use of the
traversal methods� The parameter of this method is a function� called for each node
during the traversal� passing the node as parameter of the function� Note the use of the cast
method isNstUnit�� that returns a pointer to a NstUnit object if the NstTree object is a
unit�

� include �libnstbase�H�

int print�unit�name�NstTree
 t	 void
 ignored� �

NstUnit
 unit 
 t��isNstUnit���

��



if �unit� cout �� 
unit��name�� �� endl�

return ��

�

void main�int argc	 char

 argv�

�

if �argc 

 �� �

NstComputationUnit file�argv�����

file�traversal�print�unit�name��

�

�

��� Renaming a variable

Example 
� This example renames all the variables of a unit by giving them a unique
identi�er that is not present anywhere in the entire internal representation� This could be
the �rst pass of the inlining of a function call� This example illustrates the fact that each
access to a variable refers to the object stored in the symbol table of the unit� so it is the only
place where we have to change the identi�er� The call to the constructor NstIdentifier��
creates a unique identi�er by the use of a hash table that stores all the identi�ers of the
internal representation� Consequently� Nestor can quickly checks if the identi�er is already
used�

void rename�all�identifiers�NstUnitSubroutine� us�

�

NstSymbolTable sb 
 us�object����symbols���

NstTree
 current�

NstIdentifier
 name�

current 
 sb�init���

while �current� �

if �current��type�� 

 NST�OBJECT�VARIABLE� �

name 
 new NstIdentifier���

��NstObject
�current���identifier�
name��

�

current 
 sb�next���

�

�

��� Checking if a loop is parallel

Example �� This example builds a dependence graph from a statement and checks if
there are no dependences carried by the loop �in this case� the loop is parallel�� Note that
this simple example is a parallelizer from Fortran to HPF for a shared memory machine
�no distributions are generated�� This example illustrates the use of a dependence graph
that contains a list of edges labeled with dependences and a list of vertices representing
statements� The function check�level checks if there is a dependence carried by the loop�

��



int check�level�NstRDGVar� dg	 int level�

�

NstEdgeList��iterator el�it�

NstDependence
 dep�

for �el�it 
 dg�edges�begin��� el�it �
 dg�edges�end��� el�it��� �

dep 
 �NstDependence
� �
el�it��

if �dep��level 

 level� return ��

�

return ��

�

int parallel�loop�NstTree
 t	 void
 ignored�

�

NstStatementDo
 stdo 
 NULL�

if �t��type�� 

 NST�STATEMENT�DO� stdo 
 �NstStatementDo
� t�

if �stdo� �

NstRDGVar dep�graph�
stdo��

if �dep�graph�built��� � �� graph successfully built

stdo��independent 
 �check�level�dep�graph	 ���

�

�

return ��

�

void main�int argc	 char

 argv�

�

if �argc 

 �� �

NstComputationUnit file�argv�����

file�traversal�parallel�loop��

cout �� file �� endl�

�

�

��� Creating a program

Example ��� In the previous examples� the internal represention is created with a call to
the NstComputationUnit constructor� In this example� we illustrate the fact that we can
create new objects and create easily an internal representation� This last example creates
the following program from scratch �without any parsing��

PROGRAM ESSAI

INTEGER
� I

I 
 �

END PROGRAM ESSAI

The corresponding internal representation is represented by Figure � in Appendix A�
Here is the C�� code that creates and unparses the previous Fortran code�

��



�include �libnstbase�H�

void main��

�

�� Create the program

NstIdentifier id�essai��essai���

NstUnitProgram prog�essai�id�essai��

�� Declares the variable I in prog�essai

NstIdentifier id�i��i���

NstDeclarationVariable decl�i�prog�essai	 id�i	 nst�integer�type��

�� Creates an assignment instruction

NstVariableUsed use�i�
decl�i�object����

NstInteger three����

NstSimpleAssign assignment�use�i	 three��

�� Creates the statement and add to the program

NstStatementBasic stat�assign�assignment��

prog�essai�statements�push�back��stat�assign��

cout �� endl �� prog�essai �� endl�

�

Example ��� This example illustrates the fact that some operators are overloaded to
create new expressions� The object new�exp contains the expression i���j��� All the usual
operators are overloaded�

NstExpression
 create�exp�NstVariableUsed� i	 NstVariableUsed� j�

�

NstExpression
 new�exp 
 i 
 � � j 
 ��

return new�exp�

�

� Conclusion and future work

This paper provides a description of the Nestor library� We think that this library is very use�
ful for the researcher who wants to implement and test new source to source transformations�
Our library has a front�end and a back�end that totally supports Fortran and its dialects�
and an object�oriented internal representation that eases the process of implementing new
algorithms� Furthermore� it is fully documented� small� robust� and easy to install on every
system�

Several researchers are already interested by Nestor� especially by the fact that it is both
light and practical� We hope that Nestor is going to be e�ectively widely used by researchers
for implementing new parallelization strategies� For the time being� Nestor is used at LIP
by researchers involved in automatic parallelization and high level transformations� It is
used in the project Alasca for automatic insertion of HPF data redistributions� it is used

��



for inserting automatically low overhead communication and computation subroutines in
Fortran codes ��
�� it is used in high level loop transformations before compilation to VHDL�
and it is used in the project HPFIT ��� �� to implement parallelization algorithms� Nestor is
now publicly available with its source code and its documentation at the address

http���www�ens�lyon�fr��gsilber�nestor

We are implementing new parallelization algorithms ��� into it� These parallelization al�
gorithms could be included in the base Nestor package and then transform it into a more
powerful source to source automatic parallelization kernel�
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A Example of an internal representation

Figure � gives the example of the internal representation representing the following program�

� file essai�f

PROGRAM ESSAI

INTEGER
� I

I 
 �

END PROGRAM ESSAI

This internal representation is obtained after a call to the constructor�

NstComputationUnit essai��essai�f���

or by the execution of the program of Example �
�

units()

essai.f

nst_integer_type

3

I

ESSAI

NstComputationUnit

NstUnitProgram

object()

statements()

declarations()

NstObjectProcedure

symbol_table()

NstObjectVariable

declaration()

in_unit()object()

NstDeclarationVariable

NstStatementBasic

instruction()

NstSimpleAssign

lvalue()

rvalue()

NstVariableUsed

object()

NstInteger

Figure �� internal representation of the Fortran program ESSAI�
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