
HAL Id: hal-02102034
https://hal-lara.archives-ouvertes.fr/hal-02102034

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Nestor library: a tool for implementing Fortran
source to source transformations

Georges-Andre Silber, Alain Darte

To cite this version:
Georges-Andre Silber, Alain Darte. The Nestor library: a tool for implementing Fortran source to
source transformations. [Research Report] LIP RR-1998-42, Laboratoire de l’informatique du paral-
lélisme. 1998, 2+19p. �hal-02102034�

https://hal-lara.archives-ouvertes.fr/hal-02102034
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

�cole Normale Sup�rieure de Lyon
Unit� de recherche associ�e au CNRS no ����

SPI

The Nestor library� a tool for

implementing Fortran source to

source transformations

Georges�Andr� Silber

Alain Darte
September ����

Research Report No �����

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.00
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip�ens�lyon�fr

The Nestor library� a tool for implementing Fortran

source to source transformations

Georges�Andr� Silber

Alain Darte

September ����

Abstract

We describe Nestor� a library to easily manipulate Fortran pro�
grams through a high level internal representation based on C��
classes� Nestor is a research tool that can be used to quickly im�
plement source to source transformations� The input of the li�
brary is Fortran 		� Fortran �
� and HPF ��
� Its current out�
put supports the same languages plus some dialects such as Pe�
tit� OpenMP� CrayMP� Compared to SUIF ��
 that is still an�
nounced� Nestor is less ambitious� but is light� ready to use �http�
��www�ens�lyon�fr��gsilber�nestor�� fully documented and is
better suited for Fortran to Fortran transformations�

Keywords� Library� program transformations� HPF� parallelization� object oriented�

R�sum�

Dans ce rapport� nous d
crivons Nestor� une biblioth�que pour ma�
nipuler facilement des programme Fortran � l�aide d�une repr
senta�
tion interne de haut niveau qui se fonde sur des classes C��� Nestor
est un outil de recherche qui peut �tre utilis
 pour implanter rapi�
dement des transformation source � source� Les langages reconnus
par la librairie sont Fortran 		� Fortran �
 et HPF ��
� Les langages
disponibles en sortie sont les pr
c
dents plus des dialectes de For�
tran comme Petit� OpenMP� CrayMP� etc� Compar
 � SUIF ��
 qui
est toujours annonc
� Nestor est moins ambitieux� mais il est l
ger�
pr�t � �tre utilis
 �http���www�ens�lyon�fr��gsilber�nestor�
et compl�tement document
� De plus� Nestor est mieux adapt
 aux
transformations source � source de Fortran�

Mots�cl�s� Biblioth�que� transformation de programmes� HPF� parall
lisation�
orient
 objet�

The Nestor library� a tool for implementing Fortran

source to source transformations

Georges�Andr� Silber Alain Darte�

��th September ����

Abstract

We describe Nestor� a library to easily manipulate Fortran programs through a
high level internal representation based on C�� classes� Nestor is a research tool
that can be used to quickly implement source to source transformations� The input
of the library is Fortran ��� Fortran ��� and HPF ���� Its current output supports
the same languages plus some dialects such as Petit� OpenMP� CrayMP� Compared to
SUIF ��� that is still announced� Nestor is less ambitious� but is light� ready to use
�http���www�ens�lyon�fr��gsilber�nestor�� fully documented and is better suited
for Fortran to Fortran transformations�

� Introduction and motivations

Several theoretical methods that transform programs to gain parallelism or to improve mem�
ory locality have been developed �see ���� �� for surveys�� Unfortunately� there is a gap be�
tween the bunch of known parallelism detection and code optimization algorithms� and those
implemented in real compilers� Indeed� these algorithms are often di�cult to implement� be�
cause they use graph manipulations� linear algebra� linear programming� and complex code
restructuring �see for example ���� ��� ��� �� for some parallelism detection algorithms�� Con�
sequently� their implementation is a research problem by itself and must be ease by a simple
but powerful representation of the input program� This representation should provide all the
basic blocks to let the researcher concentrate on algorithmic implementation problems� and
hide the classical low level representation of the program �low level abstract syntax tree��

The Nestor library provides such a framework� focusing on tools for source to source
transformation of Fortran and its dialects �Fortran 		� �
� HPF ��
 ����� OpenMP ��	��
CrayMP� SunMP� etc��� We chose HPF and its variants because it o�ers useful means
to express parallelized codes� such as directives for parallel loops� privatized arrays� data
distributions� task parallelism� etc� Moreover� the obtained codes can be executed on a
parallel computer after compilation by an HPF �or equivalent� compiler� Furthermore� the
parallel code is still readable for the programmer and by Nestor itself� We believe that

�LIP� ENS�Lyon� ����� Lyon� France� E�mail� �gsilber�darte	�ens�lyon�fr

�

this high level parallelizing approach �through directives insertion� is important to improve
the relationship between the programmer and the compiler� and to enable semi�automatic
parallelization �see Figure � for the compilation scheme��

HPF
Fortran

OpenMP
Cray

Parallel
machine
code

Fortran
HPF

source to source
compiler

Nestor

compiler
adaptor, pghpf, sunf90, ...

Figure �� source to source parallelization of sequential Fortran�

Nestor is a C�� library that provides classes and methods to parse a source code in
Fortran� to analyze or modify this source code easily with a high level representation� and to
unparse this representation into Fortran with parallelization directives� The representation
that can be manipulated with Nestor is a kind of AST �Abstract Syntax Tree� where each
node is a C�� object that represents a syntactical element of the source code� and that can
be easily transformed� The front�end of Nestor is the robust front�end of Adaptor �	�� an
excellent HPF compiler of the public domain written by Thomas Brandes� This front�end
supports HPF ��
 and Fortran �
�

Nestor aims to be used by researchers that want to implement high level transformations
of Fortran source codes� It provides all the features for building a source to source Fortran
transformer� The library is easy to use and is portable� it is written in GNU C�� and uses
the STL �Standard Template Library� that implements classes for manipulating lists and
other container objects� There is a full documentation in postscript and an on�line docu�
mentation in HTML and Java that describes all the classes of the library� The programmer
has just to click on the hypertext links to follow the class hierarchy in order to �nd a de�
scription of their methods� their attributes� and some useful examples� This documentation
can be found at the World Wide Web url� http���www�ens�lyon�fr��nestor�doc�

This paper is organized as follows� In Section �� we present the di�erences between Nestor
and existing related tools� in particular SUIF� In Section �� we describe Nestor in details� The
section � gives examples of its usefulness and its ease of use� Then� we give some concluding
remarks and some future work�

� Related tools

Several research tools implementing program analysis or parallelization algorithms have been
developed �Bouclettes ���� Petit ����� LooPo ������ Their main objectives were to prove that
these algorithms could be implemented in a real compiler� For example� Petit demonstrates
the power of the Omega test and of the Omega library� Nevertheless� they were not conceived
to handle real codes� they all take as input a toy language� usually a subset of Fortran�

But theoretical methods have to be validated also by testing their behaviors on real ap�
plications� such as benchmarks or scienti�c codes� Several more ambitious tools have been

�

developed in the past� PIPS ���� developed at the Ecole des Mines de Paris� Polaris ���� de�
veloped at Urbana�Champaign� SUIF ��
� developed at Stanford� PAF developed at PRiSM�
These tools have been developed over more than ten years for some of them� they are now
huge systems �di�cult to maintain and extend� and their internal representations begin to be
at a too low level for new developers� For example� SUIF ��
 is currently moving to SUIF ��

with deep changes� People from Polaris think of changing their internal representation� We
believe that Nestor could be an interesting platform for that�

One could argue that SUIF ��
 has the same objectives as Nestor concerning the simplicity
of use of its internal representation� Compared to SUIF ��
� the main transformation is
indeed to make the representation more object�oriented� Although this feature is already
available in Nestor� when SUIF ��
 is only announced� Nestor should not be seen as a rival
tool for SUIF ��
� First of all� Nestor is devoted to Fortran like languages� whereas SUIF
has been designed for manipulating C programs �Fortran is handled through f�c and cannot
be unparsed�� Fortran is a simpler language than C� easier to optimize at a high level �in
particular for dependence analysis�� and thus it leads to a simpler internal representation�

In addition to this main di�erence in the input and output languages� Nestor is far less
ambitious� It is not a full compiler� but just a kernel for source to source transformations of
Fortran programs� Nestor does nothing� It only provides means to do something� But this
limited goal gives it some advantages�

� Nestor is small� The library provides only the basic blocks for building source to source
transformation systems� Its size allows an easy and quick installation on every system�
It is developed and maintained by a single person�

� Nestor is fully documented� We think that this feature is maybe even more impor�
tant than any other� as far as implementing algorithms is the main issue� There is a
postscript documentation describing in details the whole library and each class� There
is also an HTML�Java documentation that is very useful when developing with the
library� This documentation is automatically generated from the source �les and is
always up to date� thanks to doc��� a public domain software �����

� Nestor o�ers a Fortran�
�HPF input and output� All the other tools support only
Fortran 		� It is impossible for example to insert parallelizing directives a la HPF as
easily as Nestor does �see examples in Section ���

� Description of Nestor

��� Implementation choices

The �rst choice was to choose a language to develop the library� This choice is important�
because users that are going to use the library will have to write their transformations in
this language� For several reasons� we have chosen C�� to develop Nestor�

� C�� is widely used� and a lot of existing libraries are written with this language �or
in C�� This means that these libraries can be used together with the Nestor library�

�

� C�� is object�oriented� The internal representation of a Fortran program �ts very
well in the object�oriented world� For instance� the inheritance principle gives several
views of the internal representation� All objects composing it can be seen as a tree
organization of NstTree objects� which is the base class of the library �each class inherits
from it�� But� the programmer can have a higher view of the representation by using
the actual type of each object� There are no real NstTree objects� but only child objects
of this class �NstStatement� NstDeclaration� etc��� This is explained in Section ����

� C�� o�ers a lot of useful templates with the Standard Template Library �STL���
This library is now widely available� especially in the GNU C�� compiler that is our
compiler of development� This compiler is available on every usual platform� The
choice of using the STL is then a reasonable choice� instead of investing a lot of time
developing and maintaining new templates for lists� containers� etc�

� C�� o�ers operator overloading� This feature is useful� especially for writing the
unparse� the operator � is overloaded for each class of the library� allowing to write
custom unparse and to write to a �le or to standard output easily� It is also useful for
creating new expressions �see Example �� in Section �����

� C�� o�ers virtual methods that are useful to de�ne type methods� For instance� a
virtual method type�� is de�ned in each class and returns the actual type of the object�
even if there is only a subpart of it that is available�

��� Writing a source to source transformation pass

When developing Nestor� we wanted to create a development platform for writing a source
to source parallelizer� We had a lot of algorithms to implement and evaluate� and we wanted
to automatically generate HPF programs starting from Fortran sequential programs� With
Nestor� each transformation can be written independently� because the output of one pass
can be used by another pass� It is one of the advantages of working at the source level� For
instance� one pass can take a Fortran source code� insert HPF directives in front of DO loops
and unparse the internal representation� One second pass can take the result of this pass
and can generate the distributions of the arrays� The main idea is that each programmer can
write its own optimization and test it immediately by compiling the result with a Fortran
compiler that supports parallelization directives� Moreover� the result is easy to read because
it is still written in a high level language instead of a tricky internal representation or in a
low level language like C�

Example �� The code example depicted in Figure ��� gives the scheme of a typical trans�
formation pass written with our library� The �rst statement creates an object from the
class NstComputationUnit that gives a starting point to the internal representation of the
program passed in parameter in the command line� The last statement unparses the inter�
nal representation in Fortran on the standard output� This program adds� in front of the

�Included in the ANSI
ISO Standard C�� Library� corresponding to Committee Draft �
��� as revised
through July �����

�

output� a comment with the name of the source �le� It shows the simplicity of writing a
transformation pass with the library�

�include �libnstbase�H�

void main�int argc	 char

 argv� �

if �argc

 �� �

NstComputationUnit prog�argv�����

cout �� �� file�� �� argv��� �� endl�

cout �� prog �� endl�

�

�

Figure �� C�� code of Example �

�HPF� INDEPENDENT

DO I
 �	N

A�I�
 B�I� � �

D�I�
 C�I� � �

ENDDO

Figure �� Fortran code for Example �

��� A quick look at the internal representation

Usually� compilers use program internal representations that are too low�level for user�s
manipulation� They do not fully retain the high�level language semantics of a program
written in Fortran� One of the advantage of Nestor is that its internal representation is
intuitive because there is a one�to�one correspondence between a syntactical element in a
Fortran code and the Nestor object representing this element�

Example �� Consider a DO statement in Fortran as given in Figure �� It is composed of an
index variable� a lower bound� an upper bound� possibly a step� and a list of statements� The
following source code is an excerpt of the C�� de�nition of the Nestor class NstStatementDo�
representing DO statements of Fortran�

class NstStatementDo � public NstStatement �

public�

NstVariable
 index�� const�

NstVariable
 index�NstVariable� new�var��

NstExpression
 lower�bound�� const�

NstExpression
 lower�bound�NstExpression� new�exp��

NstExpression
 upper�bound�� const�

NstExpression
 upper�bound�NstExpression� new�exp��

NstStatementList body�

bool independent�

���

��

Each element of a DO can be accessed or modi�ed by the corresponding method in the
class� A call to the method index�� returns an object representing the index variable of
the loop� A call to the method index�j� replaces the old index variable by a new object j�
Each element of the DO can be accessed�modi�ed the same way� The statements in the body

�

of the loop are stored in the list of statements body� This is a doubly�linked list that can
be modi�ed with usual operations on a list� add� delete� traversal� � � � The �ag independent

tells if the loop is parallel or not and unparses an 	HPF
 INDEPENDENT in front of the loop
if the �ag is set �or the equivalent directive for other dialects��

The class NstStatementDo inherits from the class NstStatement and then has all the
methods and attributes of this class� The class NstStatement contains all the informations
that are common to all types of statements in a Fortran code� line number in the source
code� label of the statement� � � � This class inherits from the class NstTree� like all the other
classes of the Nestor library�

��� Type of objects

In the AST created with the Nestor library� each object �i�e�� each instance of a class� has a
type� Each class inherits �directly or indirectly� from the class NstTree� This class de�nes a
virtual method type�� that is rede�ned in each subclass� This method is very useful� because
it introduces some genericity in the internal representation and in its use� Remember the
class NstStatementDo �see Example ��� Inside� the attribute body is a list of statements�
An object representing a statement can be an instance of one of these classes�

NstStatementContinue NstStatementBasic NstStatementWhere

NstStatementWhile NstStatementIf NstStatementNestor

NstStatementDo NstStatementForall

It is di�cult to make a list containing objects of di�erent types� this is why a list of
statements is a list of NstStatement objects� Each statement inherits from this class� the
method type�� will give the actual type of the object�

Example �� This example is a traversal of a list of statements that prints the number of
speci�ed parallel loops� It illustrates the use of the type�� method� and the use of the lists
de�ned in the Standard Template Library�� Lists can be traversed with iterator objects�

void print�number�of�par�NstStatementList� sl� �

int num
 ��

NstStatementList��iterator sl�it�

NstStatement
 current�stat�

NstStatementDo
 do�loop�

for �sl�it
 sl�begin��� sl�it �
 sl�end��� sl�it��� �

current�stat

sl�it�

if �current�stat��type��

 NST�STATEMENT�DO� �

do�loop
 �NstStatementDo
� current�stat�

if �do�loop��independent� ��num�

�

�

cout �� �There are � �� num �� � parallel loops�� �� endl�

�

If you take a look at the example above� you can see the three lines�

�

if �current�stat��type��

 NST�STATEMENT�DO� �

do�loop
 �NstStatementDo
� current�stat�

if �do�loop��independent� ��num�

�

Instead of doing a cast from the object NstStatement to the object NstStatementDo� there
are some safe cast methods implemented from each parent class to its child� Here� these
three lines can be replaced by�

do�loop
 current�stat��isNstStatementDo���

if �do�loop �� do�loop��independent� ��num�

The virtual method isNstStatementDo�� returns NULL if the actual object is not an object
of the class NstStatementDo and a pointer to the NstStatementDo object otherwise�

��� Traversals

The class NstTree gives a mechanism to write recursive traversals of the AST� The class
NstTree provides the two virtual methods init�� and next�� that gives respectively the
�rst and the next child of a NstTree �or a derived class� object�

Example �� A recursive traversal of an AST that prints the type of each object encoun�
tered� The method class�type�� is de�ned for each class and returns a string containing
the type of the class� This example illustrates the use of the init�� and next�� methods�
These methods are de�ned for each class� even for classes representing lists� Consequently�
they can be used to traverse a list instead of using an object iterator�

void print�type�NstTree
 t�

�

cout �� t��class�type�� �� endl�

NstTree
 current
 t��init���

while �current� �

print�type�current��

current
 t��next���

�

�

The class NstTree also provides the method�

void traversal�int �
action��NstTree
	 void
�	 void
 extra
 NULL��

that executes a recursive traversal of the object� executing the function action at each node�
The recursion stops when action returns a nonzero value� There is a class NstTreeTravel
that can be extended to write more complicated recursive travels�

	

��� The front�end

The front�end of Nestor is a slightly modi�ed version of the front�end of Adaptor �	� that
recognizes HPF ��
 ������ Adaptor has been written by Thomas Brandes and is an excellent
public domain HPF compiler� Its front�end is robust� publicly available� and has been written
with the GMD compiler toolbox �	� �a high level language to easily describe grammars�� We
have added the directives of OpenMP and Cray� This front�end allows Nestor to handle real
codes� instead of only considering a subset of language or an ad�hoc language� This part is
also useful because it checks the syntax and the semantics of the code� Once the code has
been parsed� the resulting internal representation is a correct Fortran program�

For supporting semi�automatic parallelization� it is useful to de�ne parts of code that
have to be parallelized and others that must be ignored� The library o�ers a mechanism�
by the use of new directives� that permits to ignore parts of codes that are known to be
sequential and to emphasize parts that must be parallelized� These directives are comments
and do not modify the compilation of the code� They begin with the keyword 	NESTOR
�
The directive 	NESTOR
 SINGLE is to be placed in front of a loop �DO or FORALL�� it sets a �ag
in the corresponding Nestor object� The second directive �	NESTOR
 BEGIN� 	NESTOR
 END�
de�nes a region of code� The library provides functions to retrieve the marked statements�

There is only one way to parse a code with the Nestor library� with the constructor of
the NstComputationUnit class� The following code�

NstComputationUnit file�parsed��example�f���

parses the Fortran �le example�f� checks if the source code is a correct Fortran program�
and creates an object file�parsed that contains the Nestor representation of the source
code� This internal representation captures all the information of the source code� A table of
symbols is created for each subroutine or function of the source code� Figure � in Appendix A
gives an example of an internal representation for a simple program�

The constructor has some parameters that can be con�gured� for instance to parse For�
tran �
 free code format or to tag all the code as if BEGIN�END directives were enclosing all
the statements of the code� The object NstComputationUnit has also two special tables of
symbols that store the externals and the intrinsics of the Fortran source code� By default�
the table of intrinsics knows all the Fortran �
 and HPF intrinsics�

��� The back�end

The internal representation of Nestor can be unparsed in Fortran 		� Fortran �
� HPF ��
�
OpenMP� CrayMP directives and in the Petit language� Each object has its own unparse
methods� one for each of the Fortran dialect� Unparsing recursively an object is a very simple
task by the overload of the C�� operator �� The unparsed language can be chosen by a
global �ag� By default� the unparsed language is HPF ��
�

�Historically� Nestor has been written as a parallelizing pre�phase for Adaptor� Starting from a sequential
Fortran program� Nestor�Adaptor can transform it into a parallel program with message passing� The name
Nestor comes from the term loop nest and the name Adaptor�

�

Example �� The example below is extracted from the code of the Nestor library� This
is the unparse method that is called when a NstStatementIf is unparsed in Fortran� This
example shows how the overload of the operator � leads to a simple and clean code�

void NstStatementIf��unparse�fortran�ostream� s� const

�

indent�s�� s �� �if �� ��
condition�� �� �� then� �� endl�

inc�indent���

s �� then�part �� endl�

dec�indent���

if �else�part�size�� � �� �

indent�s�� s �� �else� �� endl�

inc�indent���

s �� else�part �� endl�

dec�indent���

�

indent�s�� s �� �end if��

�

��	 Dependences and graphs

Dependence analysis is the �rst step before any optimization that modi�es the order of com�
putations in a program� Without a sophisticated dependence analyzer� code transformations
such as loop transformations� scalar expansion� array privatization� dead code removal� etc�
are impossible� Therefore� any parallelizing tool must contain a dependence analyzer�

Nevertheless� it is well known that the development of a dependence analyzer both pow�
erful and fast is a very hard task� This comes from the fact that the problem is in theory
NP�complete� if not undecidable� but that it can be fasten in practice thanks to a pool of
ad�hoc methods devoted to frequent cases� For this reason� we decided to rely on a free soft�
ware tool� named Petit ����� developed by Bill Pugh�s team at the University of Maryland�
Petit�s input is a short program� written in a restricted language� close to � but di�erent
than � Fortran 		� Its output is a �le that describes pairs of array references involved in a
dependence� and this dependence is represented by a �sometimes complicated� relation based
on Presburger arithmetic�

A possibility to integrate Petit into Nestor was to plug all Petit�s techniques directly into
Nestor�s abstract syntax trees� However� since Nestor accepts the full Fortran� and Petit only
a simple Fortran�like language� it is not so simple to modify the sources of Petit� even for
the creators of Petit themselves� Following Bill Pugh�s advice� we chose to use Petit as an
independent tool through its input and output �les� This strategy is not only simpler to
implement� it is also more portable� potential bugs in Petit and potential bugs in Nestor are
separated� and furthermore updating Petit to new versions will be easier� Two problems still
remained� feeding Petit with a correct input� and plugging Petit�s output at the right place
into the original Fortran code�

The �rst task was easy to complete thanks to the clean design of Nestor� As mentioned
before� Nestor is a C�� library� The unparse function �i�e� the function that transforms

�

an abstract syntax tree into a program in a given language� has been de�ned simply as the
output operator �the C�� operator ��� Therefore� we just had to rede�ne this operator for
all C�� classes that have their equivalence in the Petit language� For example� the operator
�� applied to the class that corresponds to a Fortran DO loop� automatically generates a loop
in Petit�s format� and recursively applies the operator � to the body of the loop� In Nestor�
there is a global �ag that determines the output language chosen by the unparse function�
and that switches from one to another�

The second task was twofold� First� we had to make the correspondence between array
references in Petit and the original array references of the Fortran program� Line num�
bers are not su�cient because both languages can be formatted in a di�erent manner� and
furthermore� only a part of the original code may be sent to Petit� Therefore� we slightly
modi�ed Petit�s grammar so as to number array references in the same order as they appear
in Nestor�s abstract syntax trees� Second� we modify the way dependences are represented in
Petit�s output� Indeed� in most parallelizing algorithms� what we need is an approximation
of distance vectors� and not a too complicated Presburger formula� We wrote a small tool�
based on the Polylib ����� a library for manipulating polyhedra� developed at IRISA in Patrice
Quinton�s team �mainly by Doran Wilde and Herv
 Le Verge�� This tool extracts� from a
Presburger formula� a description of dependences by level� direction vector� and polyhedral
approximation� the three representations used respectively by the parallelizing algorithms of
Allen and Kennedy ���� Wolf and Lam ����� and Darte and Vivien ����

We point out that we don�t need to send the full program to Petit� Indeed� we use Petit
only to analyze small portions of codes that we want to parallelize� the unparse function of
Nestor builds the corresponding code in Petit�s format� and also creates the declaration part
of this small program� based on all variables that are used in this portion� For example�
if we decide to analyze a single loop� surrounded by an outer loop� then the loop counter
of the outer loop becomes a parameter that must be declared in Petit�s input� This �local�
unparsing technique allows us to manipulate large codes� even if Petit is limited to the
analysis of small codes�

Example �� The very simple example below illustrates the dependence representations
that are now available in our Petit implementation� It is the typical case where level and
direction vectors are not su�cient to detect parallelism�

DO I�
�n

DO J�
�n

S� A�i�j� � A�j�i� � A�i�j�
�

ENDDO

ENDDO

Our tool detects three dependences� a �ow dependence� due to the read A�i�j�
�� of
level �� direction vector ��� �� and whose polyhedral approximation is the singleton ��� ���
and two other dependences� one �ow dependence and one anti dependence� both due to the
read A�i�j�� and of level �� direction vector ���� ��� and whose polyhedral approximation
is the polyhedron with one vertex ������ and one ray �������

�

Building a dependence graph is a very easy task and is completed by a call to the con�
structor of the class NstRDGVar� This class contains the list of edges and the list of vertices of
the dependence graph� The constructor builds the Petit input� calls Petit and retrieves the
output of Petit to build the dependence graph� Each vertex is linked to the corresponding
variable access in the AST of Nestor� Classical graph manipulation algorithms� such as com�
putations of connected components� of strongly connected components� topological ordering�
etc� are provided�

��
 Automatic parallelization

Nestor already implements two algorithms for parallelism detection� These algorithms are
very simple and were implemented to validate the internal representation of Nestor and to
check its ease of use� The �rst algorithm only detects if the loop is parallel without any
modi�cation �see Example � of Section � for a description�� The second is a modi�ed version
of the Allen�Kennedy algorithm ���� Our goal with this modi�ed version was to have at
least one robust algorithm� able to handle complex loops with conditionals and possibly non
constant loop bounds� in other words structured codes that may contain control dependences�
Many extensions of the Allen�Kennedy algorithm have been proposed in the literature that
are able to handle control dependences� All of them rely on the creation of �execution
variables� �scalar or array variables� that are used to pre�compute and store the conditionals�
and on the conversion of control dependences into data dependences ��� ��� ����

While implementing such an algorithm� we found out that it was di�cult� in general� to
determine the size of these new arrays� especially in parameterized codes� Furthermore� in
the context of High Performance Fortran and distributed memory systems� the problem of
aligning and distributing these new arrays arises� To avoid these two problems� it may be
better to re�compute the conditionals �when it is possible� instead of using a stored value� It
may also be better to manipulate privatized arrays or scalars than to manipulate distributed
arrays� We therefore tried to understand how these two new constraints the control of the
new array dimensions� and the re�computations of conditionals can be handled� since no
previously proposed algorithm can take them into account�

For that� we explored a new strategy for taking control dependences into account� The
technique is to pre�process the dependence graph� and once this process is achieved� any
version of the Allen�Kennedy algorithm can be used� the dimensions of the new arrays are
guaranteed to satisfy the desired constraints� To make things simpler� the automatic version
that is currently implemented in Nestor is a version that guarantees that all new variables
are at worst privatized scalar variables �thus� with no size to declare�� A semi�automatic
version o�ers to the user the choice of the array dimension he tolerates for his program�

On Figure �� we give a parallel version of the code of Figure �� obtained with our al�
gorithm� The important thing here is the new array nst�� introduced to hold the values
of the loop upper bound� This code is correct only because this array is privatized� In the
implementation of our algorithm� this array has been privatized by adding it to the list of
privatized variables in the NstStatementDo class� with the instructions�

NstIdentifier new�id�

NstDeclarationVariable new�array�program	 new�id	 array�type��

��

do I
 �	N

do J
 �	N

do K
 �	 A�I	J��	��

A�I	J	K�
 B�I	J	K��A�I	J��	K�

C�I	J	K�
 A�I	J��	K����D�I	J	K�

enddo

enddo

enddo

Figure �� Original code�

�HPF� INDEPENDENT	 NEW�nst���

do I
 �	N

�HPF� INDEPENDENT

do J
 �	N

nst���J�
 A�I	J��	��

end do

do J
 �	N

�HPF� INDEPENDENT

do K
 �	nst���J�

A�I	J	K�
 B�I	J	K��A�I	J��	K�

end do

end do

�HPF� INDEPENDENT

do J
 �	N

�HPF� INDEPENDENT

do K
 �	nst���J�

C�I	J	K�
 A�I	J��	K����D�I	J	K�

end do

end do

end do

Figure �� Code after parallelization�

do�loop�new�variables�push�back��new�array��

During the unparse� the array nst�� appears in the list of all variables that are declared NEW

in the 	HPF
 INDEPENDENT directive�

� Examples

We now illustrate some features of Nestor through examples�

��� Printing unit names

Example 	� This example prints on the standard output the name of all the units in
the Fortran �le passed as parameter in the command line� It illustrates the use of the
traversal methods� The parameter of this method is a function� called for each node
during the traversal� passing the node as parameter of the function� Note the use of the cast
method isNstUnit�� that returns a pointer to a NstUnit object if the NstTree object is a
unit�

� include �libnstbase�H�

int print�unit�name�NstTree
 t	 void
 ignored� �

NstUnit
 unit
 t��isNstUnit���

��

if �unit� cout ��
unit��name�� �� endl�

return ��

�

void main�int argc	 char

 argv�

�

if �argc

 �� �

NstComputationUnit file�argv�����

file�traversal�print�unit�name��

�

�

��� Renaming a variable

Example
� This example renames all the variables of a unit by giving them a unique
identi�er that is not present anywhere in the entire internal representation� This could be
the �rst pass of the inlining of a function call� This example illustrates the fact that each
access to a variable refers to the object stored in the symbol table of the unit� so it is the only
place where we have to change the identi�er� The call to the constructor NstIdentifier��
creates a unique identi�er by the use of a hash table that stores all the identi�ers of the
internal representation� Consequently� Nestor can quickly checks if the identi�er is already
used�

void rename�all�identifiers�NstUnitSubroutine� us�

�

NstSymbolTable sb
 us�object����symbols���

NstTree
 current�

NstIdentifier
 name�

current
 sb�init���

while �current� �

if �current��type��

 NST�OBJECT�VARIABLE� �

name
 new NstIdentifier���

��NstObject
�current���identifier�
name��

�

current
 sb�next���

�

�

��� Checking if a loop is parallel

Example �� This example builds a dependence graph from a statement and checks if
there are no dependences carried by the loop �in this case� the loop is parallel�� Note that
this simple example is a parallelizer from Fortran to HPF for a shared memory machine
�no distributions are generated�� This example illustrates the use of a dependence graph
that contains a list of edges labeled with dependences and a list of vertices representing
statements� The function check�level checks if there is a dependence carried by the loop�

��

int check�level�NstRDGVar� dg	 int level�

�

NstEdgeList��iterator el�it�

NstDependence
 dep�

for �el�it
 dg�edges�begin��� el�it �
 dg�edges�end��� el�it��� �

dep
 �NstDependence
� �
el�it��

if �dep��level

 level� return ��

�

return ��

�

int parallel�loop�NstTree
 t	 void
 ignored�

�

NstStatementDo
 stdo
 NULL�

if �t��type��

 NST�STATEMENT�DO� stdo
 �NstStatementDo
� t�

if �stdo� �

NstRDGVar dep�graph�
stdo��

if �dep�graph�built��� � �� graph successfully built

stdo��independent
 �check�level�dep�graph	 ���

�

�

return ��

�

void main�int argc	 char

 argv�

�

if �argc

 �� �

NstComputationUnit file�argv�����

file�traversal�parallel�loop��

cout �� file �� endl�

�

�

��� Creating a program

Example ��� In the previous examples� the internal represention is created with a call to
the NstComputationUnit constructor� In this example� we illustrate the fact that we can
create new objects and create easily an internal representation� This last example creates
the following program from scratch �without any parsing��

PROGRAM ESSAI

INTEGER
� I

I
 �

END PROGRAM ESSAI

The corresponding internal representation is represented by Figure � in Appendix A�
Here is the C�� code that creates and unparses the previous Fortran code�

��

�include �libnstbase�H�

void main��

�

�� Create the program

NstIdentifier id�essai��essai���

NstUnitProgram prog�essai�id�essai��

�� Declares the variable I in prog�essai

NstIdentifier id�i��i���

NstDeclarationVariable decl�i�prog�essai	 id�i	 nst�integer�type��

�� Creates an assignment instruction

NstVariableUsed use�i�
decl�i�object����

NstInteger three����

NstSimpleAssign assignment�use�i	 three��

�� Creates the statement and add to the program

NstStatementBasic stat�assign�assignment��

prog�essai�statements�push�back��stat�assign��

cout �� endl �� prog�essai �� endl�

�

Example ��� This example illustrates the fact that some operators are overloaded to
create new expressions� The object new�exp contains the expression i���j��� All the usual
operators are overloaded�

NstExpression
 create�exp�NstVariableUsed� i	 NstVariableUsed� j�

�

NstExpression
 new�exp
 i
 � � j
 ��

return new�exp�

�

� Conclusion and future work

This paper provides a description of the Nestor library� We think that this library is very use�
ful for the researcher who wants to implement and test new source to source transformations�
Our library has a front�end and a back�end that totally supports Fortran and its dialects�
and an object�oriented internal representation that eases the process of implementing new
algorithms� Furthermore� it is fully documented� small� robust� and easy to install on every
system�

Several researchers are already interested by Nestor� especially by the fact that it is both
light and practical� We hope that Nestor is going to be e�ectively widely used by researchers
for implementing new parallelization strategies� For the time being� Nestor is used at LIP
by researchers involved in automatic parallelization and high level transformations� It is
used in the project Alasca for automatic insertion of HPF data redistributions� it is used

��

for inserting automatically low overhead communication and computation subroutines in
Fortran codes ��
�� it is used in high level loop transformations before compilation to VHDL�
and it is used in the project HPFIT ��� �� to implement parallelization algorithms� Nestor is
now publicly available with its source code and its documentation at the address

http���www�ens�lyon�fr��gsilber�nestor

We are implementing new parallelization algorithms ��� into it� These parallelization al�
gorithms could be included in the base Nestor package and then transform it into a more
powerful source to source automatic parallelization kernel�

References

��� John Randy Allen and Ken Kennedy� Automatic Translation of Fortran Programs to
Vector Form� ACM Transactions on Programming Languages and Systems� ��������
���� October ���	�

��� John Randy Allen� Ken Kennedy� Carrie Porter�eld� and Joe Warren� Conversion of
Control Dependence to Data Dependence� In Conference Record of the Tenth Annual

ACM Symposium on the Principles of Programming Language� Austin� Texas� January
�����

��� David F� Bacon� Susan L� Graham� and Oliver J� Sharp� Compiler transformations for
high�performance computing� ACM Computing Surveys� ������ �����

��� Pierre Boulet� Bouclettes� A fortran loop parallelizer� In HPCN ��� pages 	�� 	���
Bruxelles� Belgium� June ����� Springer Verlag Lecture Notes in Computer Science�

��� T� Brandes� S� Chaumette� M��C� Counilh� A� Darte� J�C� Mignot� F� Desprez� and
J� Roman� HPFIT� A Set of Integrated Tools for the Parallelization of Applications
Using High Performance Fortran� Part I� HPFIT and the TransTOOL Environment�
Parallel Computing� ��������	� �	� ���	�

��� T� Brandes� S� Chaumette� M��C� Counilh� A� Darte� J�C� Mignot� F� Desprez� and
J� Roman� HPFIT� A Set of Integrated Tools for the Parallelization of Applications
Using High Performance Fortran� Part II� Data�structure Visualization and HPF ex�
tensions for Irregular Problems� Parallel Computing� ���������� �
�� ���	�

�	� Thomas Brandes� ADAPTOR� High Performance Fortran Compilation System� World
Wide Web document� http���www�gmd�de�SCAI�lab�adaptor�adaptor�home�html�

��� Alain Darte� Georges�Andr
 Silber� and Fr
d
ric Vivien� Combining Retiming and
Scheduling Techniques for Loop Parallelization and Loop Tiling� Parallel Processing

Letters� 	�����	� ���� ���	�

��� Alain Darte and Fr
d
ric Vivien� Optimal �ne and mediumgrain parallelism detection in
polyhedral reduced dependence graphs� International Journal of Parallel Programming�
��������	 ��	� ���	�

��

��
� F� Desprez and B� Tourancheau� LOCCS� Low Overhead Communication and Com�
putation Subroutines� Future Generation Computer Systems� �
��!����	� ���� June
�����

���� Paul Feautrier� Some e�cient solutions to the a�ne scheduling problem� part II� multi�
dimensional time� Int� J� Parallel Programming� ��������� ��
� December �����

���� High Performance Fortran Forum� High Performance Fortran Language Speci�cation�
Technical Report ��
� Rice University� January ���	�

���� The group of Pr� Lengauer� The loopo project� World Wide Web document� http�
��brahms�fmi�uni�passau�de�cl�loopo�index�html�

���� Ken Kennedy and Kathryn S� McKinley� Loop Distribution with Arbitrary Control
Flow� In Supercomputing���� August ���
�

���� AmyW� Lim and Monica S� Lam� Maximizing parallelism and minimizing synchroniza�
tion with a�ne transforms� In Proceedings of the ��th Annual ACM SIGPLAN�SIGACT

Symposium on Principles of Programming Languages� ACM Press� January ���	�

���� Kathryn S� McKinley� Automatic and Interactive Parallelization� PhD thesis� Depart�
ment of Computer Science� Rice University� �����

��	� OpenMP Standard for Shared�memory parallel directives� World Wide Web document�
http���www�openmp�org�

���� PIPS Team� PIPS �Interprocedural Parallelizer for Scienti�c Programs�� World Wide
Web document� http���www�cri�ensmp�fr��pips�index�html�

���� William Pugh� Release ���
 of Petit� World Wide Web document� http���www�cs�
umd�edu�projects�omega��

��
� Stanford Compiler Group� The SUIF Compiler System� World Wide Web document�
http���suif�stanford�edu�suif�suif�html�

���� The Polaris Group� Polaris Project Home Page� World Wide Web document� http�
��polaris�cs�uiuc�edu�polaris�polaris�html�

���� Doran K� Wilde� A library for doing polyhedral operations� Master�s thesis� Oregon
State University� Corvallis� Oregon� Dec ����� Also published in IRISA technical report
PI 	��� Rennes� France" Dec� �����

���� Michael E� Wolf and Monica S� Lam� A loop transformation theory and an algorithm to
maximize parallelism� IEEE Trans� Parallel Distributed Systems� �������� �	�� October
�����

���� Michael Wolfe� High Performance Compilers for Parallel Computing� Addison�Wesley�
�����

�	

���� Roland Wunderling and Malte Z#ckler� A documentation system for C�C�� and
Java� World Wide Web document� http���www�zib�de�Visual�software�doc���

index�html�

��

A Example of an internal representation

Figure � gives the example of the internal representation representing the following program�

� file essai�f

PROGRAM ESSAI

INTEGER
� I

I
 �

END PROGRAM ESSAI

This internal representation is obtained after a call to the constructor�

NstComputationUnit essai��essai�f���

or by the execution of the program of Example �
�

units()

essai.f

nst_integer_type

3

I

ESSAI

NstComputationUnit

NstUnitProgram

object()

statements()

declarations()

NstObjectProcedure

symbol_table()

NstObjectVariable

declaration()

in_unit()object()

NstDeclarationVariable

NstStatementBasic

instruction()

NstSimpleAssign

lvalue()

rvalue()

NstVariableUsed

object()

NstInteger

Figure �� internal representation of the Fortran program ESSAI�

��

