Georges-Andr Silber

Alain Darte

The Nestor library: a tool for implementing Fortran source to source transformations

Keywords: Library, program transformations, HPF, parallelization, object oriented. R sum Biblioth que, transformation de programmes, HPF, parall lisation, orient objet

We describe Nestor, a library to easily manipulate Fortran programs through a high level internal representation based on C++ classes. Nestor is a research tool that can be used to quickly implement source to source transformations. The input of the library is Fortran 77, Fortran 90, and HPF 2.0. Its current output supports the same languages plus some dialects such a s P etit, OpenMP, C r a yMP. Compared to SUIF 2.0 that is still announced, Nestor is less ambitious, but is light, ready to use (http: //www.ens-lyon.fr/~gsilber/nestor), fully documented and is better suited for Fortran to Fortran transformations.

Introduction and motivations

Several theoretical methods that transform programs to gain parallelism or to improve m e mory locality h a ve b e e n d e v eloped (see [START_REF] Wolf | A loop transformation theory and an algorithm to maximize parallelism[END_REF][START_REF] Randy | Conversion of Control Dependence to Data Dependence[END_REF] for surveys). Unfortunately, there is a gap between the bunch of known parallelism detection and code optimization algorithms, and those implemented in real compilers. Indeed, these algorithms are often di cult to implement, because they use graph manipulations, linear algebra, linear programming, and complex code restructuring (see for example [START_REF] Desprez | LOCCS: Low O v erhead Communication and Computation Subroutines[END_REF][START_REF] Doran | A library for doing polyhedral operations[END_REF][START_REF] Kennedy | Loop Distribution with Arbitrary Control Flow[END_REF]9] for some parallelism detection algorithms). Consequently, their implementation is a research problem by itself and must be ease by a s i m p l e but powerful representation of the input program. This representation should provide all the basic blocks to let the researcher concentrate on algorithmic implementation problems, and hide the classical low l e v el representation of the program (low l e v el abstract syntax tree).

The Nestor library provides such a framework, focusing on tools for source to source transformation of Fortran and its dialects (Fortran 77, 90, HPF 2.0 12], OpenMP 17], CrayMP, SunMP, etc.). We c hose HPF and its variants because it o ers useful means to express parallelized codes, such as directives for parallel loops, privatized arrays, data distributions, task parallelism, etc. Moreover, the obtained codes can be executed on a parallel computer after compilation by an HPF (or equivalent) compiler. Furthermore, the parallel code is still readable for the programmer and by Nestor itself. We believe that LIP, ENS-Lyon, 69007 Lyon, France. E-mail: {gsilber,darte}@ens-lyon.fr 1 this high level parallelizing approach (through directives insertion) is important to improve the relationship between the programmer and the compiler, and to enable semi-automatic parallelization (see Figure 1 for the compilation scheme). Nestor is a C++ library that provides classes and methods to parse a source code in Fortran, to analyze or modify this source code easily with a high level representation, and to unparse this representation into Fortran with parallelization directives. The representation that can be manipulated with Nestor is a kind of AST (Abstract Syntax Tree) where each node is a C++ object that represents a syntactical element of the source code, and that can be easily transformed. The front-end of Nestor is the robust front-end of Adaptor 7], an excellent HPF compiler of the public domain written by Thomas Brandes. This front-end supports HPF 2.0 and Fortran 90.

Nestor aims to be used by researchers that want to implement high level transformations of Fortran source codes. It provides all the features for building a source to source Fortran transformer. The library is easy to use and is portable: it is written in GNU C++ and uses the STL (Standard Template Library) that implements classes for manipulating lists and other container objects. There is a full documentation in postscript and an on-line documentation in HTML and Java that describes all the classes of the library. The programmer has just to click o n t h e h ypertext links to follow the class hierarchy in order to nd a description of their methods, their attributes, and some useful examples. This documentation can be found at the World Wide Web url: http://www.ens-lyon.fr/~nestor/doc. This paper is organized as follows. In Section 2, we present the di erences between Nestor and existing related tools, in particular SUIF. In Section 3, we describe Nestor in details. The section 4 gives examples of its usefulness and its ease of use. Then, we g i v e some concluding remarks and some future work.

Related tools

Several research tools implementing program analysis or parallelization algorithms have b e e n developed (Bouclettes 4], Petit 19], LooPo 13]). Their main objectives were to prove that these algorithms could be implemented in a real compiler. For example, Petit demonstrates the power of the Omega test and of the Omega library. N e v ertheless, they were not conceived to handle real codes: they all take as input a toy language, usually a subset of Fortran.

But theoretical methods have t o b e v alidated also by testing their behaviors on real applications, such a s b e n c hmarks or scienti c codes. Seve r a l m o r e a m bitious tools have b e e n developed in the past: PIPS 18] developed at the Ecole des Mines de Paris, Polaris 21] developed at Urbana-Champaign, SUIF 20] developed at Stanford, PAF developed at PRiSM. These tools have b e e n d e v eloped over more than ten years for some of them: they are now huge systems (di cult to maintain and extend) and their internal representations begin to be a t a t o o l o w level for new developers. For example, SUIF 1.0 is currently moving to SUIF 2.0 with deep changes. Pe o p l e f r o m P olaris think of changing their internal representation. We believe that Nestor could be an interesting platform for that.

One could argue that SUIF 2.0 has the same objectives as Nestor concerning the simplicity of use of its internal representation. Compared to SUIF 1.0, the main transformation is indeed to make the representation more object-oriented. Although this feature is already available in Nestor, when SUIF 2.0 is only announced, Nestor should not be seen as a rival tool for SUIF 2.0. First of all, Nestor is devoted to Fortran like languages, whereas SUIF has been designed for manipulating C programs (Fortran is handled through f2c and cannot be unparsed). Fortran is a simpler language than C, easier to optimize at a high level (in particular for dependence analysis), and thus it leads to a simpler internal representation.

In addition to this main di erence in the input and output languages, Nestor is far less ambitious. It is not a full compiler, but just a kernel for source to source transformations of Fortran programs. Nestor does nothing! It only provides means to do something. But this limited goal gives it some advantages.

Nestor is small. The library provides only the basic blocks for building source to source transformation systems. Its size allows an easy and quick installation on every system. It is developed and maintained by a s i n g l e p e r s o n . Nestor is fully documented. We think that this feature is maybe even more important t h a n a n y other, as far as implementing algorithms is the main issue. There is a postscript documentation describing in details the whole library and each class. There is also an HTML/Java documentation that is very useful when developing with the library. This documentation is automatically generated from the source les and is always up to date, thanks to doc++, a public domain software 25].

Nestor o ers a Fortran90/HPF input and output. All the other tools support only Fortran 77. It is impossible for example to insert parallelizing directives a la HPF as easily as Nestor does (see examples in Section 4).

3 Description of Nestor

Implementation choices

The rst choice was to choose a language to develop the library. T h i s c hoice is important, because users that are going to use the library will have to write their transformations in this language. For several reasons, we h a ve c hosen C++ to develop Nestor.

C++ is widely used, and a lot of existing libraries are written with this language (or in C). This means that these libraries can be used together with the Nestor library.

C++ is object-oriented. The internal representation of a Fortran program ts very well in the object-oriented world. For instance, the inheritance principle gives several views of the internal representation. All objects composing it can be seen as a tree organization of NstTree objects, which is the base class of the library (each class inherits from it). But, the programmer can have a higher view of the representation by using the actual type of each object. There are no real NstTree objects, but only child objects of this class (NstStatement, NstDeclaration, etc.). This is explained in Section 3.3. C++ o ers a lot of useful templates with the Standard Template Library (STL)1 . This library is now widely available, especially in the GNU C++ compiler that is our compiler of development. This compiler is available on every usual platform. The choice of using the STL is then a reasonable choice, instead of investing a lot of time developing and maintaining new templates for lists, containers, etc. C++ o ers operator overloading. This feature is useful, especially for writing the unparse: the operator is overloaded for each class of the library, allowing to write custom unparse and to write to a le or to standard output easily. It is also useful for creating new expressions (see Example 11 in Section 4.4). C++ o ers virtual methods that are useful to de ne type methods. For instance, a virtual method type() is de ned in each class and returns the actual type of the object, even if there is only a subpart of it that is available.

Writing a source to source transformation pass

When developing Nestor, w e w anted to create a development platform for writing a source to source parallelizer. We had a lot of algorithms to implement and evaluate, and we w anted to automatically generate HPF programs starting from Fortran sequential programs. With Nestor, each transformation can be written independently, because the output of one pass can be used by another pass. It is one of the advantages of working at the source level. For instance, one pass can take a F ortran source code, insert HPF directives in front o f DO loops and unparse the internal representation. One second pass can take the result of this pass and can generate the distributions of the arrays. The main idea is that each programmer can write its own optimization and test it immediately by compiling the result with a Fortran compiler that supports parallelization directives. Moreover, the result is easy to read because it is still written in a high level language instead of a tricky internal representation or in a low level language like C .

A quick l o o k a t t h e i n ternal representation

Usually, compilers use program internal representations that are too low-level for user's manipulation. They do not fully retain the high-level language semantics of a program written in Fortran. O n e o f t h e a d v antage of Nestor is that its internal representation is intuitive because there is a one-to-one correspondence betwe e n a s y n tactical element i n a Fortran code and the Nestor object representing this element.

Example 2: Consider a DO statement i n F ortran as given in Figure 3. It is composed of an index variable, a lower bound, an upper bound, possibly a step, and a list of statements. The following source code is an excerpt of the C++ de nition of the Nestor class NstStatementDo, representing DO statements of Fortran. Each element o f a DO can be accessed or modi ed by the corresponding method in the class. A call to the method index() returns an object representing the index variable of the loop. A call to the method index(j) replaces the old index variable by a new object j. Each element of the DO can be accessed/modi ed the same way. The statements in the body of the loop are stored in the list of statements body. This is a doubly-linked list that can be modi ed with usual operations on a list: add, delete, traversal, . . . The ag independent tells if the loop is parallel or not and unparses an !HPF$ INDEPENDENT in front of the loop if the ag is set (or the equivalent directive for other dialects).

The class NstStatementDo inherits from the class NstStatement and then has all the methods and attributes of this class. The class NstStatement contains all the informations that are common to all types of statement s i n a F ortran code: line number in the source code, label of the statement, . . . This class inherits from the class NstTree, l i k e all the other classes of the Nestor library.

Type of objects

In the AST created with the Nestor library, each object (i.e., each instance of a class) has a type. Each class inherits (directly or indirectly) from the class NstTree. This class de nes a virtual method type() that is rede ned in each subclass. This method is very useful, because it introduces some genericity i n t h e i n ternal representation and in its use. Remember the class NstStatementDo (see Example 2). Inside, the attribute body is a list of statements. An object representing a statement can be an instance of one of these classes:

NstStatementContinue NstStatementBasic NstStatementWhere NstStatementWhile NstStatementIf NstStatementNestor NstStatementDo NstStatementForall
It is di cult to make a list containing objects of di erent t ypes, this is why a l i s t o f statements is a list of NstStatement objects. Each statement inherits from this class, the method type() will give the actual type of the object. Example 3: This example is a traversal of a list of statements that prints the number of speci ed parallel loops. It illustrates the use of the type() method, and the use of the lists de ned in the Standard Template Library). Lists can be traversed with iterator objects. Instead of doing a cast from the object NstStatement to the object NstStatementDo, there are some safe cast methods implemented from each parent class to its child. Here, these three lines can be replaced by:

do_loop = current_stat->isNstStatementDo() if (do_loop && do_loop->independent) ++num
The virtual method isNstStatementDo() returns NULL if the actual object is not an object of the class NstStatementDo and a pointer to the NstStatementDo object otherwise.

Traversals

The class NstTree gives a mechanism to write recursive t r a versals of the AST. The class NstTree provides the two virtual methods init() and next() that gives respectively the rst and the next child of a NstTree (or a derived class) object.

Example 4: A recursive traversal of an AST that prints the ty p e o f e a c h object encountered. The method class_type() is de ned for each class and returns a string containing the type of the class. This example illustrates the use of the init() and next() methods. These methods are de ned for each class, even for classes representing lists. Consequently, they can be used to traverse a list instead of using an object iterator. The recursion stops when action returns a nonzero value. There is a class NstTreeTravel that can be extended to write more complicated recursive travels.

The front-end

The front-end of Nestor is a slightly modi ed version of the front-end of Adaptor 7] that recognizes HPF 2.0 12]2 . Adaptor has been written by Thomas Brandes and is an excellent public domain HPF compiler. Its front-end is robust, publicly available, and has been written with the GMD compiler toolbox 7] (a high level language to easily describe grammars). We have added the directives of OpenMP and Cray. This front-end allows Nestor to handle real codes, instead of only considering a subset of language or an ad-hoc language. This part is also useful because it checks the syntax and the semantics of the code. Once the code has been parsed, the resulting internal representation is a correct Fortran program.

For supporting semi-automatic parallelization, it is useful to de ne parts of code that have to be parallelized and others that must be ignored. The library o ers a mechanism, by the use of new directives, that permits to ignore parts of codes that are known to be sequential and to emphasize parts that must be parallelized. These directives are comments and do not modify the compilation of the code. They begin with the keyword !NESTOR$. The directive !NESTOR$ SINGLE is to be placed in front o f a l o o p (DO or FORALL), it sets a ag in the corresponding Nestor object. The second directive (!NESTOR$ BEGIN, !NESTOR$ END) de nes a region of code. The library provides functions to retrieve the marked statements.

There is only one way t o p a r s e a c o d e w i t h t h e Nestor library, with the constructor of the NstComputationUnit class. The following code: NstComputationUnit file_parsed("example.f") parses the Fortran le example.f, c hecks if the source code is a correct Fortran program, and creates an object file_parsed that contains the Nestor representation of the source code. This internal representation captures all the information of the source code. A table of symbols is created for each subroutine or function of the source code. Figure 6 in Appendix A gives an example of an internal representation for a simple program.

The constructor has some parameters that can be con gured, for instance to parse Fortran 90 free code format or to tag all the code as if BEGIN-END directives were enclosing all the statements of the code. The object NstComputationUnit has also two special tables of symbols that store the externals and the intrinsics of the Fortran source code. By default, the table of intrinsics knows all the Fortran 90 and HPF intrinsics.

The back-end

The internal representation of Nestor can be unparsed in Fortran 77, Fortran 90, HPF 2.0, OpenMP, C r a yMP directives and in the Petit language. Each object has its own unparse methods, one for each o f t h e F ortran dialect. Unparsing recursively an object is a very simple task by t h e o verload of the C++ operator . The unparsed language can be chosen by a global ag. By default, the unparsed language is HPF 2.0. Example 5: The example below is extracted from the code of the Nestor library. This is the unparse method that is called when a NstStatementIf is unparsed in Fortran. This example shows how the overload of the operator leads to a simple and clean code.

Dependences and graphs

Dependence analysis is the rst step before any optimization that modi es the order of computations in a program. Without a sophisticated dependence analyzer, code transformations such as loop transformations, scalar expansion, array privatization, dead code removal, etc. are impossible. Therefore, any parallelizing tool must contain a dependence analyzer.

Nevertheless, it is well known that the development of a dependence analyzer both powerful and fast is a very hard task. This comes from the fact that the problem is in theory NP-complete, if not undecidable, but that it can be fasten in practice thanks to a pool of ad-hoc methods devoted to frequent cases. For this reason, we decided to rely on a free software tool, named Petit 19], developed by Bill Pugh's team at the University of Maryland. Petit's input is a short program, written in a restricted language, close to -but di erent than -Fortran 77. Its output is a le that describes pairs of array references involved in a dependence, and this dependence is represented by a (sometimes complicated) relation based on Presburger arithmetic.

A possibility t o i n tegrate Petit into Nestor was to plug all Petit's techniques directly into Nestor's abstract syntax trees. However, since Nestor accepts the full Fortran, and Petit only a simple Fortran-like language, it is not so simple to modify the sources of Petit, even for the creators of Petit themselves. Following Bill Pugh's advice, we c hose to use Petit as an independent tool through its input and output les. This strategy is not only simpler to implement, it is also more portable: potential bugs in Petit and potential bugs in Nestor are separated, and furthermore updating Petit to new versions will be easier. Two problems still remained: feeding Petit with a correct input, and plugging Petit's output at the right place into the original Fortran code.

The rst task was easy to complete thanks to the clean design of Nestor. As mentioned before, Nestor is a C++ library. The unparse function (i.e. the function that transforms an abstract syntax tree into a program in a given language) has been de ned simply as the output operator (the C++ operator). Therefore, we just had to rede ne this operator for all C++ classes that have their equivalence in the Petit language. For example, the operator , applied to the class that corresponds to a Fortran DO loop, automatically generates a loop in Petit's format, and recursively applies the operator to the body of the loop. In Nestor, there is a global ag that determines the output language chosen by the unparse function, and that switches from one to another.

The second task was twofold. First, we had to make the correspondence between array references in Petit and the original array references of the Fortran program. Line numbers are not su cient because both languages can be formatted in a di erent manner, and furthermore, only a part of the original code may be sent t o P etit. Therefore, we slightly modi ed Petit's grammar so as to number array references in the same order as they appear in Nestor's abstract syntax trees. Second, we modify the way dependences are represented in Petit's output. Indeed, in most parallelizing algorithms, what we need is an approximation of distance vectors, and not a too complicated Presburger formula. We wrote a small tool, based on the Polylib 22], a library for manipulating polyhedra, developed at IRISA in Patrice Quinton's team (mainly by Doran Wilde and Herv L e V erge). This tool extracts, from a Presburger formula, a description of dependences by l e v el, direction vector, and polyhedral approximation, the three representations used respectively by the parallelizing algorithms of Allen and Kennedy 1], Wolf and Lam 23], and Darte and Vivien 9].

We point out that we don't need to send the full program to Petit. Indeed, we use Petit only to analyze small portions of codes that we w ant to parallelize: the unparse function of Nestor builds the corresponding code in Petit's format, and also creates the declaration part of this small program, based on all variables that are used in this portion. For example, if we decide to analyze a single loop, surrounded by an outer loop, then the loop counter of the outer loop becomes a parameter that must be declared in Petit's input. This local unparsing technique allows us to manipulate large codes, even if Petit is limited to the analysis of small codes.

Example 6: The very simple example below illustrates the dependence representations that are now a vailable in our Petit implementation. It is the typical case where level and direction vectors are not su cient to detect parallelism.

DO I=1,n DO J=1,n S:

A(i,j) = A(j,i) + A(i,j-1) ENDDO ENDDO Our tool detects three dependences: a ow dependence, due to the read A(i,j-1), o f level 2, direction vector (0 1) and whose polyhedral approximation is the singleton (0 1), and two other dependences, one ow dependence and one anti dependence, both due to the read A(i,j), and of level 1, direction vector (1+ 1;) and whose polyhedral approximation is the polyhedron with one vertex (1 ;1) and one ray (1 ;1).

Building a dependence graph is a very easy task and is completed by a call to the constructor of the class NstRDGVar. This class contains the list of edges and the list of vertices of the dependence graph. The constructor builds the Petit input, calls Petit and retrieves the output of Petit to build the dependence graph. Each v ertex is linked to the corresponding variable access in the AST of Nestor. Classical graph manipulation algorithms, such as computations of connected components, of strongly connected components, topological ordering, etc. are provided.

Automatic parallelization

Nestor already implements t wo algorithms for parallelism detection. These algorithms are very simple and were implemented to validate the internal representation of Nestor and to check its ease of use. The rst algorithm only detects if the loop is parallel without any modi cation (see Example 9 of Section 4 for a description). The second is a modi ed version of the Allen-Kennedy algorithm 1]. Our goal with this modi ed version was to have a t least one robust algorithm, able to handle complex loops with conditionals and possibly non constant loop bounds, in other words structured codes that may c o n tain control dependences. Many extensions of the Allen-Kennedy algorithm have been proposed in the literature that are able to handle control dependences. All of them rely on the creation of execution variables (scalar or array v ariables) that are used to pre-compute and store the conditionals, and on the conversion of control dependences into data dependences 2, 1 4 , 1 6] .

While implementing such an algorithm, we found out that it was di cult, in general, to determine the size of these new arrays, especially in parameterized codes. Furthermore, in the context of High Performance Fortran and distributed memory systems, the problem of aligning and distributing these new arrays arises. To a void these two problems, it may b e better to re-compute the conditionals (when it is possible) instead of using a stored value. It may also be better to manipulate privatized arrays or scalars than to manipulate distributed arrays. We therefore tried to understand how t h e s e t wo new constraints the control of the new array dimensions, and the re-computations of conditionals can be handled, since no previously proposed algorithm can take t h e m i n to account.

For that, we explored a new strategy for taking control dependences into account. The technique is to pre-process the dependence graph, and once this process is achieved, any version of the Allen-Kennedy algorithm can be used: the dimensions of the new arrays are guaranteed to satisfy the desired constraints. To m a k e things simpler, the automatic version that is currently implemented in Nestor is a version that guarantees that all new variables are at worst privatized scalar variables (thus, with no size to declare). A semi-automatic version o ers to the user the choice of the array dimension he tolerates for his program.

On Figure 5, we g i v e a parallel version of the code of Figure 4, obtained with our algorithm. The important thing here is the new array nst_0 introduced to hold the values of the loop upper bound. This code is correct only because this array is privatized. In the implementation of our algorithm, this array has been privatized by adding it to the list of privatized variables in the NstStatementDo class, with the instructions:

Examples

We n o w illustrate some features of Nestor through examples. This paper provides a description of the Nestor library. W e think that this library is very useful for the researcher who wants to implement and test new source to source transformations. Our library has a front-end and a back-end that totally supports Fortran and its dialects, and an object-oriented internal representation that eases the process of implementing new algorithms. Furthermore, it is fully documented, small, robust, and easy to install on every system.

Printing unit names

Several researchers are already interested by Nestor, especially by the fact that it is both light and practical. We h o p e t h a t Nestor is going to be e ectively widely used by researchers for implementing new parallelization strategies. For the time being, Nestor is used at LIP by researchers involved in automatic parallelization and high level transformations. It is used in the project Alasca for automatic insertion of HPF data redistributions, it is used for inserting automatically low o verhead communication and computation subroutines in Fortran codes 10], it is used in high level loop transformations before compilation to VHDL, and it is used in the project HPFIT 5,[START_REF] Brandes | HPFIT: A Set of Integrated Tools for the Parallelization of Applications Using High Performance Fortran: Part I: HPFIT and the TransTOOL Environment[END_REF] to implement parallelization algorithms. Nestor is now publicly available with its source code and its documentation at the address http://www.ens-lyon.fr/~gsilber/nestor We are implementing new parallelization algorithms 8] into it. These parallelization algorithms could be included in the base Nestor package and then transform it into a more powerful source to source automatic parallelization kernel.

A Example of an internal representation

Figure 1 :

 1 Figure 1: source to source parallelization of sequential Fortran.

Example 1 :FigureFigure 3 :

 13 Figure 2: C++ code of Example 1

 class NstStatementDo : public NstStatement { public: NstVariable* index() const NstVariable* index(NstVariable& new_var) NstExpression* lower_bound() const NstExpression* lower_bound(NstExpression& new_exp) NstExpression* upper_bound() const NstExpression* upper_bound(NstExpression& new_exp) NstStatementList body bool independent ... }

 void print_number_of_par(NstStatementList& sl) { int num = 0 NstStatementList::iterator sl_it NstStatement* current_stat NstStatementDo* do_loop for (sl_it = sl.begin() sl_it != sl.end() sl_it++) { current_stat = *sl_it if (current_stat->type() == NST_STATEMENT_DO) { do_loop = (NstStatementDo*) current_stat if (do_loop->independent) ++num } } cout << "There are " << num << " parallel loops." << endl } If you take a look at the example above, you can see the three lines: if (current_stat->type() == NST_STATEMENT_DO) { do_loop = (NstStatementDo*) current_stat if (do_loop->independent) ++num }

 void print_type(NstTree* t) { cout << t->class_type() << endl NstTree* current = t->init() while (current) { print_type(current) current = t->next() } } The class NstTree also provides the method: void traversal(int (*action)(NstTree*, void*), void* extra = NULL) that executes a recursive traversal of the object, executing the function action at each n o d e .

Figure 4 :Figure 5 :

 45 Figure 4: Original code.

Example 7 :

 7 This example prints on the standard output the name of all the units in the Fortran le passed as parameter in the command line. It illustrates the use of the traversal methods. The parameter of this method is a function, called for each n o d e during the traversal, passing the node as parameter of the function. Note the use of the cast method isNstUnit() that returns a pointer to a NstUnit object if the NstTree object is a unit. # include <libnstbase.H> int print_unit_name(NstTree* t, void* ignored) { NstUnit* unit = t->isNstUnit() #include <libnstbase.H> void main() { // Create the program NstIdentifier id_essai("essai") NstUnitProgram prog_essai(id_essai) // Declares the variable I in prog_essai NstIdentifier id_i("i") NstDeclarationVariable decl_i(prog_essai, id_i, nst_integer_type) // Creates an assignment instruction NstVariableUsed use_i(*decl_i.object()) NstInteger three(3) NstSimpleAssign assignment(use_i, three) // Creates the statement and add to the program NstStatementBasic stat_assign(assignment) prog_essai.statements.push_back(&stat_assign) cout << endl << prog_essai << endl } Example 11: This example illustrates the fact that some operators are overloaded to create new expressions. The object new_exp contains the expression i*5+j*4. All the usual operators are overloaded. NstExpression* create_exp(NstVariableUsed& i, NstVariableUsed& j) { NstExpression* new_exp = i * 5 + j * 4 return new_exp } 5 Conclusion and future work

Figure 6

 6 Figure 6 gives the example of the internal representation representing the following program: ! file essai.f PROGRAM ESSAI INTEGER*4 I I = 3 END PROGRAM ESSAI This internal representation is obtained after a call to the constructor: NstComputationUnit essai("essai.f") or by the execution of the program of Example 10.

Figure 6 :

 6 Figure 6: internal representation of the Fortran program ESSAI.

Included in the ANSI/ISO Standard C++ Library, corresponding to Committee Draft 14882 as revised through July 1997.

Historically, Nestor has been written as a parallelizing pre-phase for Adaptor. Starting from a sequential Fortran program, Nestor+Adaptor can transform it into a parallel program with message passing. The name Nestor comes from the term loop nest and the name Adaptor.

if (unit) cout << *unit->name() << endl return 0 } void main(int argc, char** argv) { if (argc == 2) { NstComputationUnit file(argv 1]) file.traversal(print_unit_name) } } 4.2 Renaming a variable Example 8: This example renames all the variables of a unit by giving them a unique identi er that is not present a n ywhere in the entire internal representation. This could be the rst pass of the inlining of a function call. This example illustrates the fact that each access to a variable refers to the object stored in the symbol table of the unit, so it is the only place where we h a ve t o c hange the identi er. The call to the constructor NstIdentifier() creates a unique identi er by the use of a hash table that stores all the identi ers of the internal representation. Consequently, Nestor can quickly checks if the identi er is already used. there are no dependences carried by the loop (in this case, the loop is parallel). Note that this simple example is a parallelizer from Fortran to HPF for a shared memory machine (no distributions are generated). This example illustrates the use of a dependence graph that contains a list of edges labeled with dependences and a list of vertices representing statements. The function check_level checks if there is a dependence carried by the loop. Here is the C++ code that creates and unparses the previous Fortran code: