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Abstract

We study the implementation of dense linear algebra computations, such as
matrix multiplication and linear system solvers, on two-dimensional (2D) grids
of heterogeneous processors. For these operations, 2D-grids are the key to scal-
ability and efficiency. The uniform block-cyclic data distribution scheme com-
monly used for homogeneous collections of processors limits the performance of
these operations on heterogeneous grids to the speed of the slowest processor.
We present and study more sophisticated data allocation strategies that bal-
ance the load on heterogeneous 2D-grids with respect to the performance of the
processors. The practical usefulness of these strategies is fully demonstrated
by experimental data for a heterogeneous network of workstations.

Keywords: heterogeneous network, heterogeneous grid, different-speed processors, load-balancing, data
distribution, data allocation, numerical libraries.

Résumé

Dans ce rapport, nous étudions l'implémentation de programmes d’algebre
linéaire, tels que la multiplication de matrices ou la résolution de systemes
linéaires, sur une grille hétérogene bidimensionnelle de processeurs. Pour ces
problemes, seule une grille 2D assure la scalabilité des algorithmes utilisés. La
distribution classique “bloc-cyclique” utilisée communément dans le cas d’une
grille homogene de processeurs, réduit la performance sur une grille hétérogene
ala vitesse du processeur le plus lent. L’intéret pratique de notre étude est gran-
dement justifié par des experiences effectuées sur un réseau local de machines
hétérogenes.

Mots-clés: plateforme hétérogene, grille hétérogene, processeurs de vitesses différentes, distribution des
données, équilibrage de charges, librairies de calcul.



1 Introduction

Heterogeneous networks of workstations (HNOWS) are ubiquitous in university departments and companies.
They represent the typical poor man’s parallel computer: running a large PVM or MPI experiment (possibly
all night long) is a cheap alternative to buying supercomputer hours. The idea is to make use of all available
resources, namely slower machines as well as more recent ones. In addition, parallel machines used in a multi-
user environment exhibit the very characteristics of a HNOW: different loads imply different processor speeds
when running a parallel application, even though all processors are identical. Note that multi-user parallel
machines are interesting in this context because they may exhibit a better communication-to-computation
ratio than Ethernet-based networks.

The major limitation to programming heterogeneous platforms arises from the additional difficulty of
balancing the load when using processors running at different speed. In this paper, we explore several pos-
sibilities to implement linear algebra kernels on HNOWs. We have been exploring data allocation strategies
for HNOWs arranged as a uni-dimensional (linear) array in previous papers [7, 8]. Arranging the processors
along a two-dimensional grid turns out to be surprisingly difficult. There are two complicated problems to
solve: (i) how to arrange the heterogeneous processors along a 2D-grid; (ii) how to distribute matrix blocks
to the processors once the grid is built. The major contribution of this paper is to provide an efficient solu-
tion to both problems, thereby providing the required framework to build an extension of the ScaLAPACK
library [6] capable of running on top of HNOWSs or non-dedicated parallel machines.

The rest of the paper is organized as follows. In Section 2 we discuss the framework for implementing
our heterogeneous kernels, and we briefly review the existing literature. In Section 3 we summarize existing
algorithms for matrix multiplication and dense linear solvers on 2D (homogeneous) grids. In Section 4 we
propose data allocation strategies for implementing the previous kernels on 2D heterogeneous grids. In
Section 5 we present experimental results that demonstrate the practical usefulness of these strategies on a
HNOW. We give some final remarks and conclusions in Section 6.

2 Framework

2.1 Static Versus Dynamic Strategies

Because we have a library designer’s approach, we target static strategies to allocate data and computa-
tions to the processors. In fact, distributing the computations (together with the associated data) can be
performed either dynamically or statically, or a mixture of both. On one hand, we may think that dynamic
strategies are likely to perform better, because the machine loads will be self-regulated, hence self-balanced,
if processors pick up new tasks just as they terminate their current computation. However, data depen-
dences, communication costs and control overhead may well lead to slow the whole process down to the
pace of the slowest processors. On the other hand, static strategies will suppress (or at least minimize) data
redistributions and control overhead during execution. Furthermore, in the context of a numerical library,
static allocations seem to be necessary for a simple and efficient data allocation.

However, to be successful, static strategies must obey a more refined model than standard block-cyclic
distributions: such distributions are well-suited to processors of equal speed but lead to a great load imbalance
between processors of different speed.

2.2 Machine Model

Our machine model is either a heterogeneous network of workstations of different speeds, or a parallel
computer with multiple users. In this latter case, we assume different loads on the different processors,
thereby considering the parallel computer as a heterogeneous machine (and calling it a HNOW as well).
In both cases, we have to model the communication links. For HNOWS interconnected with a standard
Ethernet network, all communications are inherently sequential, while for Myrinet or switched networks,
independent communications can take place in parallel. In all cases, we consider that the communications
performed by one processor are sequential.



In any case, we will configure the HNOW as a (virtual) 2D grid for scalability reasons [9]. We come
back to this point in Section 3 when describing the well-known blocked matrix multiplication and LU or QR
decomposition algorithms.

2.3 Load-balancing for Uni-dimensional Grids

We briefly survey our previous work [7, 8] in this section. We consider a linear array of heterogeneous
Processors.

2.3.1 Matrix-matrix Multiplication

The matrix-matrix multiplication algorithm basically reduces to a succession of steps composed of indepen-
dent computations on each processor [21].

To efficiently parallelize the matrix-matrix multiplication algorithm we therefore have to solve the fol-
lowing problem: given M independent chunks of computations, each requiring the same amount of work,
how can we assign these chunks to p processors P;, P, --, P, of respective execution times ¢;,ts,--- ,1,
so that the load ils best balanced ? Intuitively, the load of P; should be inversely proportional to t;: P;

receives ¢; = —pi— X M chunks. This strategy leads to a perfect load balance when M is a multiple

1
i=1;
of C = lem(ty,t2,--- ,1p) 2;’21 tl—,, a quantity that may be very large. For the general case, the following
7
algorithm provides the best solution [8]:

Algorithm 2.3.1: Optimal distribution for M independent chunks, over p processors of cycle-
times t1,...,¢,

# Initialization: Approximate the ¢; so that ¢; x t; = Constant, and ¢c1 +c2 + ...+ ¢, < M.

1

foralli € {1,... ,p}, ¢; = {% XMJ )

i=1%;
# lteratively increment some ¢; until ¢; +co+ ...+ ¢, =M
form=ci+c+...+cpto M
find k € {1,... ,p} such that t; x (¢t + 1) = min{t; x (¢; + 1))}
cL=cp +1

Consider a toy example with 3 processors of relative cycle-time ¢; = 3, to = 5 and t3 = 8. To allocate a
total of M = 10 chunks, Algorithm 2.3.1 assigns 5 chunks to P;, 3 chunks to P> and 2 chunks to Ps.

2.3.2 The LU and QR Decompositions

The (blocked) LU and QR decomposition algorithms work as follows on a linear array: at each step, the
pivot processor processes the pivot panel (a block of r columns) and broadcasts it to all the processors,
which update their remaining columns. For next step, the next r columns become the pivot panel, and the
computation progresses. The preferred distribution for a homogeneous NOW is a CYCLIC(r) distribution
of columns, where optimal values of r depend on the communication-to-computation ratio of the target
computer.

Consider the first step. After the factorization of the first block, all updates are independent chunks:
here a chunk consists of the update of a single block of r columns. If the matrix size is n = M X r, there are
M —1 chunks. We can use Algorithm 2.3.1 to distribute these independent chunks. The size of the trailing
submatrix shrinks as the computation goes on. At the second step, the number of blocks to update is only
M — 2. If we want to distribute these chunks independently of the first step, redistribution of data will have
to take place between the two steps, and this will incur a lot of communications. Rather, we search for a
static allocation of columns blocks to processors that will remain the same throughout the computations, as
the elimination progresses. We aim at balancing the updates of all steps with the same allocation: in other
words, we need a distribution that is kind of repetitive (because the matrix shrinks) but not fully cyclic
(because processors have different speeds).



Looking closer at the successive updates, we see that only column blocks of index i+ 1 to M are updated
at step ¢. Hence our objective is to find a distribution such that for each i € {2,..., M}, the amount of
blocks in {i,..., M} owned by a given processor is approximately proportional to its speed. To derive such
a distribution, we use a dynamic programming algorithm which is best explained using a toy example:

Table 1: Running the dynamic programming algorithm with 3 processors: ¢t; = 3, t2 = 5, and t3 = 8.

Number of chunks || ¢; | ¢2 | ¢3 | Average cost || Selected processor
0 0|0 |0 1
1 1 /{0 |0 |3 2
2 1 |1 ]0 |25 1
3 2 |1 |0 |2 3
4 2 |1 |1 |2 1
5 3 |1 |1 (18 2
6 3 12 |1 |1.67 1
7 4 |2 |1 |1.71 1
8 5 12 |1 |1.87 2
9 5 13 |1 |1.67 3
10 513 (2 |16

In Table 1, we report the allocations found by the algorithm up to B = 10. The entry “Selected processor”
denotes the rank of the processor chosen to build the next allocation. At each step, “Selected processor” is
computed so that the cost of the allocation is minimized. The cost of the allocation is computed as follows:
the execution time, for an allocation C = (c1,c¢2,...,¢p) IS maxi<i<p ¢ty (the maximum is taken over all
processor execution times), so that the average cost to execute one chunk is

cost(C) = 7max1§i§p citi
=1 Ci

For instance at step 4, i.e. to allocate a fourth chunk, we start from the solution for three chunks,
ie. (e1,c2,c3) = (2,1,0). Which processor P; should receive the fourth chunk, i.e. which ¢; should be
incremented? There are three possibilities (¢; + 1, ¢2,¢3) = (3,1,0), (c1,c2+1,¢3) = (2,2,0) and (¢, o, c3 +
1) = (2,1,1) of respective costs 2 (P is the slowest), 12 (P is the slowest), and  (P; is the slowest). Hence
we select ¢ = 3 and we retain the solution (e, ¢2,¢3) = (2,1,1).

Back to the LU and QR decompositions, we allocate slices of B consecutive blocks to processors, as
illustrated in Figure 1. B is a parameter to be provided by the user. For a matrix of size n = m X r, we
can simply let B = m, i.e. define a single slice. But we can prefer to have a fixed B, say B = 10, to have a
generic allocation that only depends upon the processor speeds, not upon the problem size.

Within each slice, we use the dynamic programming algorithm for s = 0 to s = B in a “reverse” order.
Consider again the toy example with 3 processors of relative cycle-time t; = 3, to = 5 and t3 = 8. The
dynamic programming algorithm allocates chunks to processors as shown in Table 2. The allocation of chunks
to processors is obtained by reading the second line of Table 2 from right to left: (3,2,1,1,2,1,3,1,2,1) (see
Figure 2 for the detailed allocation within a slice). As illustrated in Figure 1, at a given step there are
several slices of at most B chunks, and the number of chunks in the first slice decreases as the computation
progresses (the leftmost chunk in a slice is computed first and then there only remains B — 1 chunks in the
slice, and so on). In the example, the reversed allocation best balances the update in the first slice at each
step: at the first step when there are the initial 10 chunks (1 factor and 9 updates), but also at the second
step when only 8 updates remain, and so on. The updating of the other slices remains well-balanced by
construction, since their size does not change, and we keep the best allocation for B = 10. See Figure 2 for
the detailed allocation within a slice, together with the cost of the updates.



Table 2: Static allocation for B = 10 chunks.

Chunk number 11234567 |8]9]10
Processornumber |1 |2 |1 |3 |12 |1|1]|2] 3

1=

done

Figure 1: Allocating slices of B chunks.

2.4 Related Work

There is a great deal of papers in the literature dealing with dynamic schedulers to distribute the com-
putations (together with the associated data) onto heterogeneous platforms. Most schedulers use naive
mapping strategies such as master-slave techniques or paradigms based upon the idea “use the past to pre-
dict the future”; i.e. use the currently observed speed of computation of each machine to decide for the
next distribution of work: see the survey paper of Berman [4] and the more specialized references [2, 12]
for further details. Several scheduling and mapping heuristics have been proposed to map task graphs onto
HNOWSs [24, 25, 22, 19]. Scheduling tools such as Prophet [26] or AppLeS [4] are available (see also the
survey paper [23]).

The static mapping of numerical kernels has however received much less attention. To the best of our
knowledge, there is a single paper by Kalinov and Lastovetky [20] which has similar objectives as ours. They
are interested in LU decomposition on heterogeneous 1D and 2D grids. They propose a “heterogeneous
block cyclic distribution” to map matrix blocks onto the different-speed processors. They use the mPC
programming tool [3] to program the heterogeneous 1D or 2D grids, which they consider as fixed (they do
not discuss how to configure the grid). In fact, their “heterogeneous block cyclic distribution” does not lead
to a “true” 2D-grid, because each processor has more than 4 direct neighbors to communicate with. We
come back on this distribution in Section 3.1.2.

3 Linear Algebra Kernels on 2D Grids

In this section we briefly recall the algorithms implemented in the ScaLAPACK library [6] on 2D homoge-
neous grids. Then we discuss how to modify the two-dimensional block-cyclic distribution which is used in
ScaLAPACK to cope with 2D heterogeneous grids.

3.1 Matrix-matrix Multiplication
3.1.1 Homogeneous Grids

For the sake of simplicity we restrict to the multiplication C' = AB of two square n X n matrices A and B. In
that case, ScaLAPACK uses the outer product algorithm described in [1, 16, 21]. Consider a 2D processor
grid of size p % q.

Assume first that n = p = ¢. In that case, the three matrices share the same layout over the 2D grid:
processor P; ; stores a; j, b; ; and ¢; ;. Then at each step k,

e cach processor P, (for all i € {1,..,p}) horizontally broadcasts a;j to processors P; ..

e cach processor P, ; (for all j € {1, ..,q}) vertically broadcasts by ; to processors P ;.



average time average time

LU-decomposition L U-decomposition

Py

Static allocation Cyclic distribution

Figure 2: Comparison of two different distributions for the LU-decomposition algorithm on a heterogeneous
platform made of 3 processors of relative cycle-time 3, 5 and 8. The first distribution is the one given by our
algorithm, the second one is the cyclic distribution. The total number of chunks is B = 10.

so that each processor P; ; can independently compute ¢; j+ = a; 1 X by ;-

This algorithm is used in the current version of the ScaLAPACK library because it is scalable, efficient
and it does not need any initial permutation (unlike Cannon’s algoritm [21]). Moreover, on a homogeneous
grid, broadcasts are performed as independent ring broadcasts (along the rows and the columns), hence they
can be pipelined.

Of course, ScaLAPACK uses a blocked version of this algorithm to squeeze the most out state-of-the-art
processors with pipelined arithmetic units and multilevel memory hierarchy [15, 9]. Each matrix coefficient
in the description above is replaced by a r x r square block, where optimal values of r depend on the
communication-to-computation ratio of the target computer.

Finally, a level of virtualization is added: usually, the number of blocks [%x][%] is much greater than
the number of processors p x ¢g. Thus blocks are scattered in a cyclic fashion along both grid dimensions, so
that each processor is responsible for updating several blocks at each step of the algorithm. An example is
given in Figure 3 with p = ¢ =4 and [%] = 10.

9110(11|12] 9|10|11|12| 9 |10
13|14|15|16(13|14|15|16|13|14

9110(11|12] 9|10|11|12| 9 |10
13|14|15|16(13|14|15|16|13|14

Figure 3: Processors are numbered from 1 to 16. This figure represents the distribution of 10 x 10 matrix
blocks onto 4 x 4 processors.



3.1.2 Heterogeneous Grids

Suppose now we have a p x g grid of heterogeneous processors. Instead of distributing the r x r matrix
blocks cyclically along each grid dimension, we distribute block panels cyclically along each grid dimension.
A block panel is a rectangle of consecutive B, x B, r x r blocks. See Figure 4 for an example with B, =4
and B, = 3: this panel of 12 r x r blocks will be distributed cyclically along both dimensions of the 2D grid.
The previous cyclic dimension for homogeneous grids obviously corresponds to the case B, = p and B, = q.
Now, the distribution of individual blocks is no longer purely cyclic but remains periodic. We illustrate in
Figure 5 how block panels are distributed on the 2D-grid.

1 1 2

1 1 2
B,=4

1 1 2

336

B, =3

Figure 4: A block panel with B, = 4 and B; = 3. Each processor is labeled by its cycle-time, i.e the
(normalized) time it needs to compute one r x r block: the processor labeled 1 is twice faster than the one
labeled 2, hence it is assigned twice more blocks within each panel.

Figure 5: Allocating 4 x 3 panels on a 2 x 2 grid (processors are labeled by their cycle-time). There is a total
of 10 x 10 matrix blocks.

How many r X r blocks should be assigned to each processor within a panel ? Intuitively, as in the case
of uni-dimensional grids, the workload of each processor (i.e. the number of block per panel it is assigned
to) should be inversely proportional to its cycle-time. In the example of Figure 4, we have a 2 x 2 grid
of processors of respective cycle-time t1; = 1, t12 = 2, t57 = 3 and ¢35 = 6. The allocation of the
B, x By =4 x 3 = 12 blocks of the panel perfectly balances the load amongst the four processors.

There is an important condition to enforce when assigning blocks to processors within a block panel.
We want each processor in the grid to communicate only with its four direct neighbors. This implies that
each processor in a grid row is assigned the same number of matrix rows. Similarly, each processor in a grid
column must be assigned the same number of matrix columns. If these conditions do not hold, additional
communications will be needed, as illustrated in Figure 6.



Translated in terms of r X r matrix blocks, the above conditions mean that each processor P;;, 1 < j <g¢
in the ¢-th grid row must receive the same number r; of blocks. Similarly, P;;, 1 <4 < p must receive ¢;
blocks. This condition does hold in the example of Figure 5, hence each processor only communicates with
its direct neighbors.

Unfortunately, and in contrast with the uni-dimensional case, the additional constraints induced by the
communication pattern may well prevent to achieve a perfect load balance amongst processors. Coming back
to Figure 4, we did achieve a perfect load balance, owing to the fact that the processor cycle-times could be

arranged in the rank-1 matrix
tin tiz2 \ _ (1 2
tor t2 / \ U3 6 )7

For instance, change the cycle-time of P 5 into t22 = 5. If we keep the same allocation as in Figure 4, P»
remains idle every sixth time-step. Note that there is no solution to perfectly balance the work. Indeed, let
r1, T2, c1 and cp be the number of blocks assigned to each row and column grid. Processor P;; computes
r; X ¢j blocks in time r; X ¢; X t;;. To have a perfect load balance, we have to fulfill the following equations:

ry Xt Xcp =71 Xt1a X o =Ty Xitap X1 =72 Xiag X Co

that is rcy = 27"102 = 37”201 = 67”202.

We derive ¢; = 2¢q, then r; = 3ry = %7"2, hence a contradiction. Note that we have not taken into account

the additional condition (r; + 72) X (¢1 + ¢2) = 12, stating that there are 12 blocks within a block panel: it
is impossible to perfectly load-balance the work, whatever the size of the panel.

If we relax the constraints on the communication pattern, we can achieve a perfect load-balance as follows:
first we balance the load in each processor column independently (using the uni-dimensional scheme); next
we balance the load between columns (using the uni-dimensional scheme again, weighting each column by
the inverse of the harmonic mean of the cycle-times of the processors within the column, see below). This is
the “heterogeneous block cyclic distribution” of Kalinov and Lastovetky [20], which leads to the solution of
Figure 6. Because processor P» > has two west neighbors instead of one, at each step of the algorithm it is
involved in two horizontal broadcasts instead of one.

[ e P e F N N Y
anv (NN NN [olN

Figure 6: The distribution of Kalinov and Lastovetky. Two consecutive columns are represented here.
Processors have two west neighbors instead of one.

We use the example to explain with further details how the heterogeneous block cyclic distribution of
Kalinov and Lastovetky [20] works. First they balance the load in each processor column independently,
using the uni-dimensional scheme. In the example there are two processors in the first grid column with
cycle-times t1; = 1 and t3; = 3, so P;; should receive three times more matrix rows than P»;. Similarly
for the second grid column, P> (cycle-time ¢;2 = 2) should receive 5 out of every 7 matrix rows, while Pay
(cycle-time ta5 = 5) should receive the remaining 2 rows. Next how to distribute matrix columns? The first

grid column operates as a single processor of cycle-time QH% = % The second grid column operates as
3



a single processor of cycle-time 2 %il = %. So out of every 61 matrix columns we assign 40 to the first
processor column and 21 to the secorid processor column.

Because we have a library designer’s approach, we do not want the number of horizontal and vertical
communications to depend upon the data distribution. For large grids, the number of horizontal neighbors
of a given processor cannot be bounded a priori if we use Kalinov and Lastovetky’s approach. We enforce the
grid communication pattern (each processor only communicates with its four direct neighbors) to minimize
communication overhead. The price to pay is that we have to solve a difficult optimization problem to load-

balance the work as efficiently as possible. Solving this optimization problem is the objective of Section 4.

3.2 The LU and QR Decompositions

We first recall the ScaLAPACK algorithm for the LU or QR decompositions on a homogeneous 2D-grid. We
discuss next how to implement them on a heterogeneous 2D-grid.

3.2.1 Homogeneous Grids

In this section we briefly review the direct parallelization of the right-looking variant of the LU decomposition.
We assume that the matrix A is distributed onto a two-dimensional grid of (virtual) homogeneous processors.
We use a CYCLIC(b) decomposition in both dimensions. The right-looking variant is naturally suited to
parallelization and can be briefly described as follows: Consider a matrix A of order N and assume that the
LU factorization of the & x b first columns has proceeded with k € {0, 1,... %} During the next step,
the algorithm factors the next panel of r columns, pivoting if necessary. Next the pivots are applied to the
remainder of the matrix. The lower trapezoid factor just computed is broadcast to the other process columns
of the grid using an increasing-ring topology, so that the the upper trapezoid factor can be updated via a
triangular solve. This factor is then broadcast to the other process rows using a minimum spanning tree
topology, so that the remainder of the matrix can be updated by a rank-r update. This process continues
recursively with the updated matrix. In other words, at each step, the current panel of columns is factored
into L and the trailing submatrix A4 is updated. The key computation is this latter rank-b update A < A—LU
that can be implemented as follows:

1. The column processor that owns L broadcasts it horizontally (so there is a broadcast in each processor
row)

2. The row processor that owns U broadcasts it vertically (so there is a broadcast in each processor
column)

3. Each processor locally computes its portion of the update

The communication volume is thus reduced to the broadcast of the two row and column panels, and matrix
A is updated in place (this is known as an outer -product parallelization). Load balance is very good. The
simplicity of this parallelization, as well as its expected good performance, explains why the right-looking
variants have been chosen in ScaLAPACK [9]. See [14, 9, 5] for a detailed performance analysis of the
right-looking variants, that demonstrates their good scalability property. The parallelization of the QR
decomposition is analogous [11, 10]

3.2.2 Heterogeneous Grids

For the implementation of the LU and QR decomposition algorithms on a heterogeneous 2D grid, we modify
the ScaLAPACK CYCLIC(r) distribution very similarly as for the matrix-matrix multiplication problem.
The intuitive reason is the following: as pointed out before, the core of the LU and QR decompositions is a
rank-r update, hence the techniques for the outer-product matrix algorithm naturally apply.

We still use block panels made up with several r x r matrix blocks. The block panels are distributed
cyclically along both dimensions of the grid. The only modification if that the order of the blocks within a
block panel becomes important.



Consider the previous example with four processors laid along a 2 x 2 grid as follows:

ti1 t1o _ 1 2
tor taa / \ U3 5 )7

Say we use a panel with B, = 8 ad B, = 6, i.e. a panel composed of 48 blocks. Using the methods described
below (see Section 4), we assign he blocks as follows:

e Within each panel column, the first processor row receives 6 blocks and the second processor rows
receives 2 blocks

e Out of the 6 panel columns, the first grid column receives 4 and the second grid column receive 2

This allocation is represented in Figure 7. We need to explain how we have allocated the six panel columns.
For the matrix multiplication problem, the ordering of the blocks within the panel was not important, be-
cause all processors execute the same amount of (independent) computations at each step of the algorithm.
For the LU and QR decomposition algorithms, the ordering of the columns is quite important: as explained
in Section 2.3.2, the size of the matrix shrinks at each step of the computation. We use the uni-dimensional
algorithm of Section 2.3.2 to compute the column ordering for the 2D panel. In the example, the first pro-
cessor column operates like 6 processors of cycle-time 1 and 2 processors of cycle-time 3, which is equivalent
to a single processor A of cycle-time 23—0; the second processor column operates like 6 processors of cycle-

time 2 and 2 processors of cycle-time 5, which is equivalent to a single processor B of cycle-time 137 The

uni-dimensional algorithm allocates the six panel columns as ABAABA, and we retrieve the allocation of
Figure 7.
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Figure 7: Allocation of the blocks within a block panel with B, = 8 and B, = 6. Each processor of the 2 x 2
grid is labeled by its cycle-time.

To conclude this section, we have a difficult load-balancing problem to solve. First we do not know which
is the best layout of the processors, i.e. how to arrange them to build an efficient 2D grid. In some cases
(rank-1 matrices) we are able to load-balance the work perfectly, but in most cases it is not the case. Next,
once the grid is built, we have to determine the number of blocks that are assigned to each processor within
a block panel. Again, this must be done so as to load-balance the work, because processors have different
speeds. Finally, the panels are cyclically distributed along both grid dimensions. The rest of the paper is
devoted to a solution to this difficult load-balancing problem.

4 Solving the 2D Heterogeneous Grid Allocation Problem

4.1 Problem Statement and Formulation

Consider n processors Py, P, ... , P, of respective cycle-times 1,2, ... ,t,. The problem is to arrange these
processors along a two-dimensional grid of size p X ¢ < n, in order to compute the product Z = XY of two
N x N matrices as fast as possible. We need some notations to formally state this objective.

Consider a given arrangement of p X ¢ < n processors along a two-dimensional grid of size p x q. Let
us re-number the processors as P;;, with cycle-time ¢;;, 1 <14 < p,1 < j < ¢. Assume that processor P;; is



assigned a block of 7; rows and c¢; columns of data elements, meaning that it is responsible for computing
r; X ¢; elements of the Z matrix: see Figure 8 for an example.

c1 c2 c3 C4
r1 P Pio Pi3 P4
T2 P Pas Pa3 Py
r3 Psy P3o P33 P34

Figure 8: Allocating computations to processors on a 3 x 4 grid

There are two (equivalent) ways to compute the efficiency of the grid:

e Processor P;; is assigned a rectangular data block of size r; x ¢;, which it will process within r; x ¢; x t;;
units of time. The total execution time T,,. is taken over all processors:

Tepe = max{r; X tij X ¢j}.
2,]

T... must be normalized to the average time T,,. needed to process a single data element: since there
is a total of N? elements to compute, we enforce that >37_, r; = N and that 327 , ¢; = N. We get

maxi,j{ri X tij X C]'}
(Xt mi) X ( 5:1 CJ')

We are looking for the minimum of this quantity over all possible integer values r; and c¢;. We can
simplify the expression for Ty, by searching for (nonnegative) rational values r; and ¢; which sum up
to 1 (instead of N):

Objective Obji: min(y» r=LY, c;=D)ATi X tij X ¢j}

=1

Ttwe =

Given the rational values r; and c; returned by the solution of the optimization problem Obj;, we
scale them by the factor IV to get the final solution. We may have to round up some values, but we
do so while preserving the relation 3 7_, 7 = >_7_, ¢; = N. Stating the problem as Opt; renders its
solution generic, i.e. independent of the parameter N.

e Another way to tackle the problem is the following: what is the largest number of data elements that
can be computed within one time unit? Assume again that each processor P;; of the p x ¢ grid is
assigned a block of r; rows and c; columns of data elements. We need to have r; x t;; X ¢; <1 to
ensure that P;; can process its block within one cycle. Since the total number of data elements being

processed is (3°F_ r;) x (23:1 Cj), we get the (equivalent) optimization problem:
Objective Objo: max,, x¢,; xe;<1{(>_h—; 1) X (2?21 cj)}

Again, the rational values r; and ¢; returned by the solution of the optimization problem Obj> can be
scaled and rounded to get the final solution.

Although there are p 4+ g variables r; and c;, there are only p+4 ¢ — 1 degrees of freedom: if we multiply
all r;’s by the same factor A and divide all ¢; by A, nothing changes in Obj>. In other words, we can
impose r; = 1, for instance, without loss of generality.

10



We can further manipulate Objy as follows:

mae, iy e <t {00y 1) % (S0oi i)} = maxe, {maxe;wienroces; xeg<1 { (202 7o) x (Eloy e) 1
- maxri{(zzp 17“;) ><Inaxc]wnshn><tl]><z':J<1{ E] 165 }}
= max, {3} X max, < 1 {( 1 CJ)}}

<= i

(=2, m)
= maxri{(z ;) X ( 1m1nl{m})}
= max,, (T2, ) x (z] i)

We obtain an expression with only p variables (and p— 1 degrees of freedom). This last expression does
not look very friendly, though. Solving this optimization problem, optimally or through an heuristic,
is the main objective of Section 4.3.

The 2D load-balancing problem In the next sections we give a solution to the 2D load-balancing
problem which can be stated as follows: given n = p X ¢ processors, how to arrange them along a 2D grid
of size p X ¢ so as to optimally load-balance the work of the processors for the matrix-matrix multiplication
problem. Note that solving this problem will in fact lead to the solution of many linear algebra problems,
including dense linear system solvers.

The problem is even more difficult to tackle than the optimization problem stated above, because we do
not assume the processors arrangement as given. We search among all possible arrangements (layouts) of
the p X g processors as a p X ¢ grid, and for each arrangement we must solve the optimization problem Obj;
or Objs.

We start with a useful result to reduce the number of arrangements to be searched. Next we derive
an algorithm to solve the optimization problem Obj; or Objs for a fixed (given) arrangement. Despite
the reduction, we still have an exponential number of arrangements to search for. Even worse, for a fixed
arrangement, our algorithm exhibits an exponential cost. Therefore we introduce a heuristic to give a fast
but sub-optimal solution to the 2D load-balancing problem.

4.2 Reduction to Non-Decreasing Arrangements

The arrangement of the processors along the grid is a degree of freedom of the problem. For example when
using a Myrinet network [13] we can define every desired topology for a fixed degree (number of neighbors) of
the interconnection graph. Hence, finding a good arrangement is a key step of the load-balancing problem.

In this section, we show that we do not have to consider all the possible arrangements; instead, we reduce
the search to “non-decreasing arrangements”. A non-decreasing arrangement on a p X ¢ grid is defined as
follows: in every grid row, the cycle-times are increasing: t;; < ¢; j+1,1 < j < ¢ — 1. Similarly, in every grid
column, the cycle-times are increasing: ¢;; < t;41,;,1 <i<p—1.

Theorem 1 There exists a non-increasing arrangement which is optimal.

Proof The proof works as follows:
1. Let the p x g cycle-times be denoted as t,%2,%,xq4

2. Consider an optimal arrangement of the grid. There is no reason that the optimal arrangement be a
non-decreasing arrangement,.

3. Show that some well-chosen “correct” transpositions can be applied to the arrangement while preserving
the optimality of the solution. The correct transpositions will make the arrangement “closer” to a non-
decreasing arrangement

We need a few definitions:

11



Definition 1 Arrangement An arrangement is a one-to-one mapping

U_({l,...,pxq} — {1,...,p}x{1,...,q}>
' Eo— oh) = (.d)

which assigns a position to each processor in the grid.

Non-decreasing arrangement An arrangement o is non-decreasing if to—1(; jy < to—1(y jry for all (1,1) <
(4,5) < (@,5") < (p,q)

Correct transposition Let o be an arrangement. If o(k) < o(l) and tx > t;, the transposition 7(k,l)
which transposes the values of o(k) and o(l) is said to be correct.

Given any arrangement o, there exists a suite of of correct transpositions that modifies o into a non-
decreasing arrangement. To prove this, we use a weight function W that quantifies the distance to the
“non-decreasing-ness”, so to speak: a correct transposition will decrease the weight of the arrangement it is

applied to. We search for
A Z, = N
W ( o — W(o) )

(where X, , is the set of all arrangements and N represents the set of positive integers) such that for each
correct transposition 7, W(r (o)) < W(o). We choose

W(o) = Zta—l(i,j) X(p+q—i—1j)
4,J

To check that W has the desired property, let o be an arrangement such that (i,j) < (i',j') and t,-1(; ;) >
to—1(ir,j)- Let k= o~ 1(i,j) and [ = o 1(i’,j'): by hypothesis, the transposition 7 = 7(k,[) is correct. Let
o' =71 o0. We have

Wi(o") =W(o) + oy —te135)P+aq— l - j_)
+ (o0 —tori )0+ =i =)
=W(o) — ("= + G =) te-135) — tomr(,5)
< W(o)
Consider an optimal arrangement o, and let r1,...,7, and ¢1,... , ¢, be the solution to the optimization

problem Obj;. Since an equivalent solution is obtained by transposing two columns or two rows of the
arrangement, we can assume that ry > 7y > ...rp and ¢1 > c2 > ...¢4. If 0 is non-decreasing, we are done.
Otherwise, there exists (1,1) < (i,) < (p,q) such that either t,-1(;41,j) < te-1(:j) OF to-1(ij4+1) < to—1(ij)-
The proof is the same in both cases, hence assume that t,-1(;41,;) < ty-1(;,5. Let k = o 1(i,7) and
I =0 1(i +1,5): by hypothesis, the transposition 7 = 7(k,[) is correct. Let ¢/ = 7 0 0. We want to show
that o' is as good as o, which achieves the quantity O = (3 r; x ) ¢; subject to max; j(ricjto-1(;5)) < 1.
We have r; > 71 and t,-1(341,5) < ts-1(;,), hence

{ TiCit(roo)-1(i,j) = TiCile—1(i+1,j) < TiCitg—1(ij) <1
TiJrlcjt(‘roo-)*l(iJrl,j) = Ti+16jt0.71(i7j) S T‘iCjt0.71(i7j) S 1

Therefore, o' is optimal too, and W(c') < W (o). If ¢’ is not non-decreasing, we repeat the process, which
converges in a finite number of steps, because there is a finite number of weight values. |

4.3 Solution for a Given Arrangement

In this section, we show how to solve the optimization problem Obj; or Objs for a given arrangement.
For small size problems, all the possible non-decreasing arrangements can be generated, hence we have an
exponential but feasible solution to the 2D load balancing problem. Let ¢ be a given arrangement on a p X g
grid, and let ry,... ,r, and c1,... , ¢, be the solution to the optimization problem Obj;

12



4.3.1 Spanning Trees

Consider the optimization problem Obji. We have to maximize the quadratic expression (3, <;<, 7)) (221 <j<, ¢5)
under p X ¢ inequalities r;t;;¢; < 1. We have p+ g — 1 degrees of freedom. The objective of this section is to
show that for at least p + ¢ — 1 inequalities are in fact equalities. We use a graph-oriented approach to this
purpose.

We consider the following bipartite graph G = (V, ). There are p + g vertices labeled with r; and ¢; and
the graph is complete. The weight of the edge (r;,¢;) is ¢;;. Given a spanning tree 7 = (V,&’) of the graph
G, if we start from r = 1, we can (uniquely) determine all the values of the r; and ¢; by following the edges
of T, enforcing the equalities

V(Ti,Cj) € 5’, Titi’jCj =1.

The spanning tree 7 is said to be acceptable if and only if all the remaining inequalities are satisfied:
V(ri,cj) € €, it je; = 1.. The value of an acceptable spanning tree is (3. r;)(3 ¢j). We claim that the
solution of Obj; is obtained with the acceptable spanning tree of maximal value. This leads to the following
algorithm:

Algorithm We generate all the spanning trees of G. For a given tree T, we first impose that 71 = 1, then
by walking on the tree we find the values for the other ; and ¢;. For example, if ¢3 is connected to r{ in T,
then we take ¢ = - t —. . When we have a value for all r; and c¢;, we check if the tree is acceptable. Finally,
we select the acceptable tree that maximizes lelgp Ty EISJSq cj.

Justification To justify the previous algorithm, consider an optimal solution to Obj; and draw the bipar-
tite graph U = (V,&’) corresponding to the equalities: ¢/ has p + ¢ vertices labeled with r; and ¢;. There is
an edge between vertices r; and ¢; ((ri,c;) € €') iff rje;t; ; = 1. If U is connected, we are done. Otherwise,
we decrease the number of connected components in U/, assigning new values to some r; and c;, but without
decreasing the quantity EKKP r; Zl<]<q cj. Let V' be a connected component of ¢/. Suppose (without
any loss of generahty) that V' = {ry,... ,rp,c1,... ,cp} with p’ < p.

First case If ¢’ = ¢, it means that for all 1 < j < g, rpyi¢jtpyy1,; < 1. Let @ = minj<j<q m
Then, r,41 can be increased by a factor of a, and the product ZKKP Ty El<]<q c¢;j is increased too.
Moreover, the vertex r, ;1 becomes connected to the component V'. So the number of connected components
is decreased by one.

Second case If ¢’ < ¢, it means that for all (p' +1,1) < (i,5) < (p,¢’) and for all (1,¢' +1) < (i,j) <
(', q), ricjti; < 1. Let o, = ming g 11)<(i,j)< (0’ ,0) # and o, = min(y1,1)<(i,)<(p.¢') # We also
introduce the notations R, = Elgigp’ ri, Ry = Ep’-HSiSp ri, Cf = Zlgg’gq' cj and Cy = Zq’HSJ’Sq cj.

Now, we have two possibilities to increase the connectivity of the graph: either increase R; and decrease
Cy by a factor of a, or decrease R, and increase C} by a factor of a.. We must check that at least one of
this solution does increase the product (Rq + Ryp)(Cy + Cp). Indeed, consider the function

f:<7z1 — R% )
A — f(A) = (AR + R,) (5 + Cy)

Note that f'(1) = RyC, — R,C). Moreover, f is a continuous function that is first decreasing to a minimum
and then increasing. Therefore,

o if f'(1) >0, then for all A > 1, f(A\) > f(1). In particular, f(a,) > f(1).
e if f'(1) <0, then for all A <1, f(A\) > f(1). In particular, f(a%) > f(1).

One of the previous two solutions will indeed increase the connectivity of &/ while preserving the objective
function ), <i<pTi > <j<q Ci- We conclude that there does exist an acceptable spanning tree whos value is
the optimal solution.

To summarize, given an arrangement, we are able to compute the solution to the optimization problem.
The cost is exponential because there is an exponential number of spanning trees to check for acceptability.
Still, our method is constructive, and can be used for problems of limited size.

In the rest of this section we deal with two particular simple cases.
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4.3.2 Case of a 2 x2 Grid

For small size grids, we can find analytical solutions to the optimization problem. As an example, we will
solve in this section the 2 x 2 case.

In the 2 X 2 case, we want to maximize (see the definition of Obj,) the quantity (1 +r2)(

1
max(ritie,rates)

1
max(ritii,rater) +
). We normalize our problem by letting r; = 1 and ry = r. We have to maximize

1 1
max(tn 5 Tt21) max(tlg, TtQQ) )

(I+7r)(

There are three cases to study:

First case 0 <r < min(f, f12): in this interval, the value of the expression varies as an increasing function

of r. So the maximum on this interval is obtained for r = mm(gi , 22)

Second case max(g—i, g—z) < r < 4o0: in this interval, the expression varies as a decreasing function of r.

So, the maximum is obtained for r = max(gi , gi)

Third case min(&L, b2) < p < max(LL, 82). by symmetry, we can suppose that t“ < b2 §g our
ta1? toa/ — — ta1? too ’ — to2

expression is now (1 + r) This function is first decreasing and then i 1ncreasmg Hence, the

T‘t21 t12 )

maximum is obtained on the bounds of the interval, i.e. for r = gi orr = 22

In conclusion, there are 2 possible values for the maximum, namely r = 2—1 orr = tl—z For the objective
function we obtain the value

Py (L L |y ! .
max — —t ], — —_—— + —
tgl tll max(t12, —t1t12t122 ) t22 max(t11, —t1t22t221 ) t12

4.3.3 Rank-1 Matrices

If the matrix (t;;)1<i<p,1<j<q 18 a rank-1 matrix, then the optimal arrangement for the 2D load-balancing
problem is easy to determine. Assume without loss of generality that ;1 = 1. Welet ry =¢; =1, r; = ﬁ
for2<i<pandc; = % for 2 < i < g. All the p x g inequalities r;t;;c; are equalities, which means that

all processors are fully utilized:

t 1 tii X 1 t 1
PotiCs = i X s =
vy ) tzl 1) tjl 1) )
. t ti; |. . . . . .
because the 2 x 2 determinant ‘ tll tlJ is zero (with ¢;; = 1). No idle time occurs with such a solution,
i1 Ly

the load-balancing is perfect.

Unfortunately, given p X g integers, it is very difficult to know whether they can be arranged into a rank-1
matrix of size p x ¢. If such an arrangement do not exist, we can intuitively say that the optimal arrangement
is the “closest one” to a rank-1 matrix.

4.4 Polynomial Heuristic

In this section, we study a polynomial heuristic to find an arrangement of the processors (and a solution to
the corresponding optimization problem) that leads to a good load-balancing.

We are given the processor cycle-times as input to the heuristic. Either all cycle-times are relatively
close, or there are some very slow machines whose cycle-times are much larger than the others. Such slow
machines should be either discarded or, at least, grouped in some grid row or column so that they do not
interfere with the faster processors.

In other words we want to separate the case where some processors are very slow compared to the others,
from the case where all processor speeds are relatively close. We use a probabilistic criteria to this purpose:
consider p X ¢ integers 1,2, -+ ,Tpy increasingly sorted (z1 < w2 < --- < xpq). Let ex be the average of
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the first k integers and oy, the standard deviation of these k integers: o}, = (Ele(a:, —e;))z. We study the
graph of Zt: if there exists a jump for k = ko in the graph, we will consider that the z; with i > ko are larger
than the others. Otherwise, if there is no jump, we will consider that all the values are close. We detect this
jump by measuring the angle between two pairs of consecutive points. If this angle is greater than a fixed
value, we say there is a jump. Consider the following example: X = (1,2,3,4,5,6,7,100,100). We see on
Figure 9 that there is a jump before the last two integers. Consequently, we separate them from the others.

T
‘separator’ —

Figure 9: Graph of Z&

In the following we study the two different cases when mapping p x g processors Py, of cycle-time ¢ on
ap X q grid:

4.4.1 First Case: All Values Are Close

First we sort all the values. Then we put the first p + ¢ — 1 values on the border of the grid (first row and
column). We would like to balance the values in th row and in the column, which means Y°7_, t1; = >_5_, t1;-
Because this PARTITION problem is NP-complete [18], we simply put alternatively the ¢;; on the first row
and on the first column of the grid.

Consider the following example for p = ¢ = 5 with ¢, = k,1 < k < 25. Let Ay be the arrangement given

by our heuristic. We get for the first nine values:

3 5 7 9

Ap =

N =

8

Then we continue the same strategy with the other values by placing them on the remaining grid, on the
second row and column, next on the third row and column, and so on. The final solutions is:

13 5 7 9
2 10 12 14 16
Ap,=1 4 11 17 19 21
6 13 18 22 24
8 15 20 23 25

4.4.2 Second Case: There Are Some Larger Values

With the previous criteria, we decompose the set C of the processor cycle-times into two subsets C; and Cs
where the cycle-times in Cy are greater than in C;. If we consider the example C = (1,2, 3,4, 5,6, 7,100, 100),
we have C; = (1,2,3,4,5,6,7) and Cy = (100, 100).

Although some processors are very slow, we want to use them, but we put them on the same grid row
(or on the same grid column, or on both a row and a column, according to the number of slow processors).
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The intuition behind this is to prevent them from slowing the other processors. If necessary, we fill the row
made up with the slow processors with the slowest numbers of C;. In our example we put (100, 100,7) on a
same column.

Then, we fill the remaining grid with the remaining processors as in the previous case. In the example
we obtain:

13 7
Apewr =1 2 5 100
4 6 100

4.4.3 Computing the r; and the ¢;

Once the arrangement has been found, we have to find values for the r; and c¢;. Because the spanning tree
method has a cost exponential in p+ ¢, we use a polynomial heuristic instead. We consider the first row or the
first column in the submatrix of the faster processors, depending upon which one is faster. We evaluate the
speed of a row or a column by computing the harmonic mean of the cycle-times. The speed of n processors
is defined by n x S S

i=1 t;
For example, suppose that the first column is faster. We impose the values for the r;: we let r; = ﬁ for

1 <14 < p. Now, to define the remaining c;, we use the conditions r;¢;;c; < 1, hence ¢; = , where 1

1
max; ritij;
belongs to the submatrix. If there are some slow processors, we first compute the r; and the c¢; corresponding
to the submatrix of fast processors; then we compute the remaining r; or c¢; at the end.

For instance, consider the following arrangement:
1 3 5
A= 2 6 7
4 8 9

We will first consider the processors of cycle-times 1,2,4 in the first column because they are faster than
those of cycle-times 1,3, 5 in the first row. Indeed, the average speed of the first column is 3 x —— = 1.7

I+3+3
while the average speed of the first row is 3 x ﬁ = 1.95. So we first compute the r;. We have r; = 1,
3 5
ro = % and r3 = % Then the constraints impose c1 = m = 1, Cy = rna,x#rtg = %, C3 = ﬁm = %

Here is an example with slow processors:

1 4 8
A= 1 6 8
1 8 8

There are 6 slow processors, which we assign to the second and third grid columns. The submatrix of fast

processor is simply the first grid column We compare the speed of 1,1, 1 with the speed of 1. The two speeds

are equals, so we first compute the r; because the length of the first column is greater than the length of the

first row. Then we compute the ¢;. Wefindsor; = 1,73 =1,r3=1,¢; = =l,co=—>r——~=1
1 1

max(r;ti2) 8
and finally ¢s = s = 5

1
max('r'i til)

4.4.4 Refinement

Consider the Obj; optimization problem of Section 4.1. In this formulation, values of r; and ¢; can be
separated: with fixed values of r; we easily find the best values of c;, and reciprocally. We use this idea to
implement a cheap refinement algorithm: to improve a given solution r;, ¢;, we alternatively: fix r;, calculate
the corresponding best c;; fix ¢;, calculate the corresponding best r;, and so on. It can be written as follow:

last = +00

fized =r
while (max; j(r;c;t; ;) < last)
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last = max; ; (ricjtt}j)
if (fized ==r)
ki = max; (¢jti,;)

k

i

r; =

>iw
firzed = c
else

k‘j = m?,xi (TitiJ')

ki

GTEE
fized =r
end
end

This refinement is used to improve the solution given in the previous section.

5 MPI Experiments

We report several experiments in this section. First, we present the HNOW used for those experiments.
Then, we present the different arrangements and allocations that we have tested. Finally, we report the
results of the experiments, which we compare to the standard Scal,LAPACK block-cyclic distribution.

5.1 Description of the HNOW

We use 9 heterogeneous Sun workstations whose characteristics are summarized in Table 3. These 9 pro-
cessors are linked by a local Ethernet network. Hence, as already said in section 2, all communications are
performed mostly sequentially.

Name Description | Execution time ¢;
smirnoff SS 5 7.8

guinness Ultra 1 1.0

farot Ultra 1 1.0

arquebuse | SS 20 4.0

zelfde Ultra 1 1.0

loop SS 5 6.3

isostar SS 5 7.8

arnica SS 5 7.95

utltrafuel | SS 5 8

Table 3: Description of the processors. The (relative) cycle time ¢; have been determined by running the
matrix-matrix multiplication routine on each processor, with matrices of size 500 x 500.

5.2 Description of the Grids

With 9 processors, there are several possible grids: 3 x 3, 2 x4, 1 x 9, 4 x 2. Because we concentrate on
2D-grids, we limit our experiments to the 3 x 3 and 2 x 4 grids (likely to perform better than a 4 x 2 grid
for LU decomposition, due to pivoting issues).

5.2.1 Grid of size 3 x 3

We have 9 processors of relative cycle time ¢; € {1.0,1.0,1.0,4.0,6.3,7.8,7.8,7.95,8.0}. The polynomial
heuristic of Section 4.4, in that case, separates processors of cycle time {1.0,1.0,1.0} from the others. Hence,
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we obtain the following arrangement

1.0 40 7.8
A= 1.0 63 795
1.0 78 8.0

The heuristic forces the faster processors to never remain idle: we obtain ¢; = 1 and ry = ro = r3 = 1.
Then, the other values can be easily determined: we get, co = 0.128 and ¢z = 0.125.

For small size problems, it is easy to generate all possible solutions and then to derive the optimal one.
We have implemented the (exponential) algorithms given in Sections 4.2 and 4.3. It turns out that the
solution given by the heuristic is indeed optimal.

5.2.2 Grid of size 2 x 4

In this case, we keep the fastest 8 processors. As for the previous grid, the first 3 processors are separated
from the others. Then the first row is completed with the fourth fastest processor. Finally, we obtain the

following arrangement,
A= 1.0 1.0 1.0 4.0
“\ 63 78 78 7,95

Again, the heuristic forces the load of the 4 fast processors to be maximum. We get r; =c¢; =3 =¢c3 =1
and ¢4 = 0.25. The value of the last variable follows: ro = 0.128. As for the previous case, the solution
obtained by the heuristic turns out to be optimal.

5.3 Results

We compare the standard ScaLAPACK cyclic allocation (CY CLIC(r,r) to be precise) with an MPI imple-
mentation of our static distribution, using a single panel of size B, = B, = [ ] for n X n matrices. We let
r = 64 in all experiments.

Assessing the Experiments To assess the relevance of our results, we have to investigate the value of a
“reasonable” (theoretical) speedup that should be targeted. For a given solution of the Opts problem, the
value of W = (3_,; ;) x (3_; ;) represents the (normalized) total amount of work executed in one time unit.
Hence, for the 2 previous grids, given the values of the r; and ¢;, we get

Whetero(3><3) =3.76 and Whetero(2><4) = 3.67.

To calculate W for a purely cyclic allocation, we set r; = ry and ¢; = ¢j for all ¢,4',j and j'. Hence
for the 3 x 3 grid, we get r; = 1 and ¢; = %, hence W.yciic(3x3) = 1.125. For the 2 x 4 grid, we get
chclic(2><4) = 1.01.

Consequently, the best speedup that can be achieved is Szx3 = Wheteroxs) _ g 34 for the 3 x 3 grid, and

Weyelic(3x3)
Whetero(2x4) £ .
= s — 9J. r h 2 X 4 r1d.
S2x4 Weyelic(2x4) 3.63 for the g d

Experiments For each algorithm (MM, LU and QR) and for both grids, we represent on the same graph

e the actual execution time for a cyclic(64,64) distribution: blocks are distributed in a cyclic manner
over the processors within each dimension. This is the ScaLAPACK distribution.

e the actual execution time for the hetero(64,64) distribution: blocks are distributed using the algo-
rithm described in Section 3.2.2.

e the theoretical execution time of an algorithm that would achieve the best theoretical speedup Szx3 =
3.34 and Szx4 = 3.63. We simply multiply the actual execution time for the ScaLAPACK distribution
by this speedup.
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Figure 10: Matrix multiplication on a 3 x 3 grid. Figure 11: Matrix multiplication on a 2 x 4 grid.
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Figure 12: LU decomposition on a 3 x 3 grid. Figure 13: LU decomposition on a 2 x 4 grid.
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Figure 14: QR decomposition on a 3 x 3 grid. Figure 15: QR decomposition on a 2 x 4 grid.
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The graphs of Figures 10 and 11 nicely demonstrate the relevance of our heterogeneous distribution
strategy for the matrix multiplication problem. The actual performance optained for both grids is very close
to the theorical speed-up.

For LU and QR decomposition, the results are not convincing. Still, we do observe (i) an important
gain in the execution time which is more than halved ; (ii) a steady increase of this gain as the matrix
size increases. We stress that the theorical speedup does not take into account neither the impact of the
communications nor that of the pivoting, both of them being executed less efficiently on the slower processors.
To summarize, these results are very encouraging because they demonstrate that a significant improvement
can be made out of a very unbalanced HNOW as compared to the current ScaLAPACK implementation.
However, there is room to improve further our solution (a possibility would be to have the fastest processor
column execute all the pivoting steps).

6 Conclusion

In this paper, we have discussed static allocation strategies to implement matrix-matrix products and dense
linear system solvers on heterogeneous computing platforms. Extending the standard ScaLAPACK block-
cyclic distribution to heterogeneous 2D grids turns out to be surprisingly difficult. In most cases, a perfect
balancing of the load between all processors cannot, be achieved, and deciding how to arrange the processors
along the 2D grid is a challenging problem. But we have formally stated the optimization problem to be
solved, and we have presented both an exact solution (with exponential cost) and a polynomial heuristic.

Preliminary MPI experiments run a heterogeneous network fully demonstrate the practical value of our
static allocation strategy. We believe to have provided an important contribution to the design of a complete
ScaLAPACK library for heterogeneous clusters.

7 Appendix : description of the algorithms

7.1 Generation of the arrangements

Generating non-decreasing arrangements is equivalent to a string matching problem. To help understanding,

let’s introduce a few notations: let ¥ = {1,2,... ,px ¢q}* (the set of strings of the alphabet {1,2,... ,p x ¢}).

Let uv be the concatenation of the strings v and v (if v = wius...up & v = viv2...Vy, then v =

ULUs ... UpV1V2 . .. Uy ). Hence, if u and v have a respective length of n and m (which can be denoted by |u| = n

and |v| = m), then |uv| = n+m. We also say that u is a prefiz of length n of the string uv. Finally, we define

the weight of a character « in the string u = ujus ... u, as the integer |u|, = Card{i € {1,... ,n},u; = a}.
Now, we define a well-balanced string of length n to be a string u such that

e for all prefix v of u, for all character i € {2,...,p X ¢}, |v|i—1 > |v]:.
e for all characters (i,7) € {1,...,p X ¢}?, |ul; = |u|;.

There is an isomorphism between the non-decreasing arrangements for a grid of size p X ¢, and the well-
balanced strings of length p x ¢ on an alphabet of size q. The following algorithm generates very efficiently
all the non-decreasing arrangements by taking this remark into account. It needs the following asumption:
[V(i,j) € {1,-...px q}? i < j=t; < t5].

global variables : deep, 0, aqi, .. g
procedure generate_arrangement rec()
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local variables : i
deep + deep + 1
if (deep = p+ q)
o(p,q) < deep
o is a correct arrangement
else
foralli e {1,... ,p}, (i =1o0r a;_1 >a;) and a; < ¢q
a; < a; +1
o(i,a;) « deep
generate_arrangement rec()
a; <—a; — 1
endforall
endif
deep + deep — 1
endprocedure

procedure generate_arrangement|()
forallie {1,... ,p},a; <0
deep < 0
generate_arrangement rec()
endprocedure

To evaluate the complexity of this algorithm, we remark that the number of well-balanced strings of
length p x g on an alphabet of size ¢ is the number of linear extensions of a partial order defined by a
rectangle of size p x ¢q. Hence, we get from the Hook formula [17] a complexity of

-1 .
() TT7, !

ey i
(pEaI[2] 3 [ 1 | |
1 1] 1 1 1 1
2 ) 14 42
) 42 462 6006

14 | 462 24024 1662804
42 | 6006 | 1662804 | 701149020

Table 4: Number of non-decreasing arrangements.

7.2 Generation of the spanning trees

Generating all the subsets of a given set To generate all the spanning trees of a bipartite graph,
we have to generate efficiently all the subsets of a given set. The method is simple, it uses the arithmetic
incrementation algorithms ; one must previously make the assumption that E is a totaly ordered set. Then,
the following loop generates all the subsets F' of E:

F=0

do

e=max{e € E,e ¢ F}

F+ FU{e}\{f€eF f>e}
until (F=E)
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Generating all the spanning trees of a bipartite graph The method consists on taking the vertex
r1 has the root. Then we build the tree, depth by depth:

Global variables : v
procedure Generate_tree
v(r;) =1
forall (i,5) € {L,...,p} x {L,... ,q}, v((ri,¢;)) = ti
Generate_treerec(D, {r1},{r2,rs,... ,7p},0,{c1,c2,... ,¢cq})
endprocedure

procedure Generate_tree_rec(Rp, Ry, Rz, Cp, Cs)
forall c € Cy

v(e) = min,eRr,uR, (m)
alc) = {r € RyURy, v(c) = m}
endforall
Cy + {C S CQ, a(c) N Ry = [Z)}
if (R # 0)
forall C| € P(Cy) \ {0}, Generate_tree_rec(Co, Ci,C2 — Ci, Ry U Ry, R»)
else if (Cy = Cy)
v is an acceptable solution
endif

endprocedure
Hence, the complexity (Comp(p, q)) of this algorithm can be approximated by the following formulae:
Comp(p, q) = Comp(q,p)
(p,q)

Comp(p,q) = T(q,p—1)
T(p,0) =

1
for ¢ >0, T(p,q) =30, < 2; > xT(q,p—1)

Using these formulae, we get values for small-size problems which are summarized in table 5.

(p&afltf2] 3 | 4 [ 5 [ 6 |
T 1] 1] 1 I I 1
2 [1[3] 7 | 15 | 31 63
3 | 1] 7 | 31 | 115 | 391 | 1267
I | 115|115 | 675 | 3451 | 16275
5 || 1|31 391 | 3451 | 25231 | 164731
6 | 1|63 1267 | 16275 | 164731 | 1441923

Table 5: Approximation (upper-bound) of the complexity of the algorithm that generates all the acceptable
spanning trees.
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